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Abstract: We present a direct synthesis approach to H2-gain-scheduling for time-varying
parametric scheduling blocks with D- and positive real scalings based on a convexifying
transformation for the controller parameters. In particular, finiteness of the H2-norm for the
closed-loop system is achieved by solving a specific design problem with structured linear
fractional representations of the plant and the controller. To enlarge the field of applications, we
extend the framework to networks consisting of gain-scheduling systems with a delayed coupling.

Keywords: H∞/H2 control, optimal control, network controlled-systems

1. INTRODUCTION

Gain-scheduled controller design plays an important role
in modern control theory and has gained increasing atten-
tion. A concrete example is a wind park with on-line mea-
surable rotor speeds of the generators as e.g. described in
Tien et al. (2016). For gain-scheduled controller synthesis,
we take such measurements into account to improve per-
formance, which is in contrast to a classical robust design
where these measurements are considered as uncertainties.

On the one hand, gain-scheduling synthesis is often ap-
proached in the literature by using parameter-dependent
Lyapunov functions (see e.g. de Souza and Trofino (2006)
for H2-performance with state-feedback or Wu and Dong
(2005a) for a combination with scalings) or by focusing on
scheduling operators which, for example, can be delays as
in de Oliveira and Geromel (2004).
On the other hand, there exist scaling approaches that are
based on the feedback configuration in Fig. 1 consisting
of a linear parametrically-varying (LPV) system G(δ) and
a to-be-designed LPV controller K(δ) with time-varying
parametric scheduling block δ = δ(t) which has proven to
be an insightful starting point for synthesis (see Packard
(1994), Apkarian and Gahinet (1995)). If δ is complex and
bounded by |δ(t)| ≤ 1 for t ≥ 0, linear matrix inequalities
(LMIs) are used with so-called constant D-scalings in
Packard (1994), Apkarian and Gahinet (1995), Wu and
Dong (2005b), while a solution for δ(t) ∈ [−1, 1] is given
in Scorletti and El Ghaoui (1998) with less conservative
constant block-diagonal D/G-scalings. Moreover, if δ is re-
stricted to be real with δ(t) ≥ 0 for t ≥ 0, i.e., passive, suit-
able scalings are provided in Helmersson (1998). Further,
the generalization to full-block scalings is considered in
Scherer (2000b), while the recent work of Guo and Scherer
(2018) is dedicated to structured robust gain-scheduled
controller design with L2-performance based on a suitable
scaling factorization for positive definite matrices.
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Fig. 1. Feedback-loop for gain-scheduled controller design.

As a first contribution of this paper, we provide a synthesis
framework based on scalings for the configuration in Fig. 1
with an H2-cost criterion imposed on wp → zp and with δ
being either passive or complex valued with absolute value
bounded by 1. Technically, all existing scaling approaches
rely on eliminating the controller parameters. As known
from nominal synthesis, this prevents us from consider-
ing H2-design. Therefore, we present for the first time
a complete controller parameter transformation for gain-
scheduling based on Masubuchi et al. (1998), Scherer et al.
(1997).
Furthermore, H2-synthesis requires to guarantee finite-
ness of the H2-norm which, in the related gain-scheduling
literature, is often achieved by initially imposing several
restrictions for the uncertainty model, controller or the
closed-loop system (see e.g. de Souza and Trofino (2006),
Scherer (2000b)). As a second contribution, we systemat-
ically address this issue by using tailored linear fractional
transformations (LFTs) for G(δ) and K(δ). In particular,
well-posedness of the H2-norm for the closed-loop requires
only an assumption for the direct feedthrough terms of
G(δ) and K(δ) which amounts to dealing with a struc-
tured design problem for partially triangular controller
matrices. Such structured H2-design problems are solved
without elimination for block-triangular controller matri-
ces in Voulgaris (2000) based on Youla-parameterization
methods, as well as by the direct state-space approaches
in Lessard and Lall (2015) or Scherer (2014) relying on
coupled algebraic Riccati equations or LMIs, respectively.
Technically, the latter approach uses a structured convex-
ifying parameter transformation along with a structured
factorization for symmetric, positive definite Lyapunov
matrices. For passive δ, a further contribution of this paper



is a new factorization for scaling matrices M satisfying a
positive real property, i.e., M +MT is positive definite.

The paper is organized as follows. After briefly describing
the relevant notation, Section 2 introduces the H2-gain
scheduling problem with the proper assumption for the
plant/controller LFT to render the H2-norm finite. The
associated synthesis problem is solved in Section 3 for
D- and positive real scalings with a controller parameter
transformation. Moreover, applications to delayed systems
are presented in Section 4.1 and 4.2. As a last contribution,
Section 4.3 extends our framework to H2-synthesis for
delayed networked LPV systems which requires to design,
in addition to K(δ), a parametric controller component.

Notation. Let D≤ be the closed unit disc in C and R≥ be
the nonnegative real axis. For some matrices M ∈ Rr×s
and P ∈ Rr×r we abbreviate MTPM by (∗)TPM and
P +PT by He(P ), denote by tr(P ) the trace of P , and call
P positive real (PR) if He(P ) � 0. Matrix entries that are
irrelevant or can be inferred by symmetry are indicated by
∗. Further, we drop superscripts specifying partitions and
dimensions of matrices if they are clear from the context.

We exploit the abbreviation col(u1, u2) :=
(
uT1 uT2

)T
for

vectors and matrices and denote by I and Im identity
matrices (withm specifying the dimension if not clear from
the context). If a transfer matrix J(s) has the realization
C(sI − A)−1B + D, we express this fact by J =

[
A B
C D

]
.

Further, R(s) denotes the set of real-rational functions.

2. PROBLEM FORMULATION

First, we introduce the H2-gain scheduling problem in-
volving a compact value set 0 ∈ V that is contained in
D≤ if using D-scalings or in R≥ if employing positive real
scalings. Let us consider Fig. 1 and assume that the LPV
system G(δ) is described for some parameter δ ∈ V by(

zp
y

)
=

(
G11(δ) G12(δ)
G21(δ) G22(δ)

)(
wp
u

)
(1)

with a performance channel wp → zp and a control channel
u → y, as well as parameterized transfer matrices Gij(δ)
in δ whose elements can be expressed as a fraction of
two polynomials in δ over the field R(s) such that the
denominator does not vanish at δ = 0. Each Gij(δ)
represents an LPV system compactly written in an input-
output description. As we focus onH2-performance for the
uncertain controlled interconnection of Fig. 1, we have to
make sure that the direct feedthrough term of the channel
wp → zp is zero such that the H2-norm is finite. To
achieve this requirement, let us suppose that the direct
feedthrough block of G11(δ) vanishes. Moreover, to ensure
well-posedness of the controller feedback loop, we suppose
that the direct feedthrough block of G22(δ) nominally
vanishes, i.e. G22(0) = 0. Under these assumptions, we
can describe (1) by ẋ

zp
y

 =

 A(δ) Bp(δ) Bu(δ)
Cp(δ) 0 Du(δ)
Cy(δ) Dy(δ) D(δ)

 x
wp
u

 (2)

with D(0) = 0. Let us emphasize that the zero block for
wp → zp reflects the hypothesis on the direct feedthrough
block of G11(δ). By using standard manipulations, this
allows for representing such a system as the structured
linear fractional representation (LFR)


ẋ
z1

z2

zp
y

 =

A11 A12 Bp1 B1

A21 A22 Bp2 B2

Cp1 Cp2 Dp D1

C1 C2 D2 D3




x
w1

w2

wp
u

, w = (δIrs)z

=


A11 Ā12 Ā13 Bp1 B1

Ā21 Ā22 0 0 B̄2

Ā31 Ā32 Ā33 B̄p3 B̄3

Cp1 C̄p2 0 0 D1

C1 C̄2 C̄3 D2 0




x

w1

w2

wp
u


(3)

with a triangular matrix A22 and structured Bp2 , Cp2 , as
well as Dp = 0 and D3 = 0; here w → z is the uncertainty
channel with w = col(w1, w2), z = col(z1, z2) partitioned
as rs = rs1 + rs2, and A11 ∈ Rns×ns

, B1 ∈ Rns×m, C1 ∈
Rk×ns

are unstructured matrices.

Let us denote by ∆ the set of all admissible time-
varying parametric uncertainties encompassing all contin-
uous curves δ : [0,∞) → V; we allow for complex valued
uncertainties to handle a larger class of interesting prob-
lems as e.g. delayed systems in Section 4.1. The LFR in (3)
for time-varying δ ∈ ∆ is then the precise mathematical
plant description for us to work with.

Moreover, as a further step to guarantee finiteness of the
H2-norm, we only search for gain-scheduling controllers
K(δ) with vanishing direct feedthrough term, i.e. K(δ) is
described by(

ẋc
u

)
=

(
Ac(δ) Bc(δ)
Cc(δ) 0

)(
xc
y

)
. (4)

In view of the structural similarities to (2), the correspond-
ing controller LFR is taken to be ẋc
zc,1
zc,2
u

 =

Ac11 Ac12 Bc1
Ac21 Ac22 Bc2
Cc1 Cc2 Dc


 xc
wc,1
wc,2
y

, wc = (δIrc)zc

=


Ac11 Āc12 Ā

c
13 Bc1

Āc21 Āc22 0 0

Āc31 Āc32 Ā
c
33 B̄c3

Cc1 C̄c2 0 0




xc
wc,1
wc,2
y


(5)

with δ ∈∆ and matrices
(
Ac

22 B
c
2

Cc
2 Dc

)
inheriting the sparsity

pattern of
(
A22 B

p
2

Cp
2 Dp

)
in (3), while the scheduling channel

wc → zc involves wc = col(wc,1, wc,2), zc = col(zc,1, zc,2)
of partition rc = rc1 + rc2. Further, the choice of rc and
the dimension nc for the unstructured unknowns Ac11 ∈
Rnc×nc

, Bc1 ∈ Rnc×k, Cc1 ∈ Rm×nc

are part of the design
problem. In the sequel, we also abbreviate n := ns + nc

and r := rs + rc.

Due to D3 = 0, the controlled interconnection of (3) and
(5) can be routinely expressed for δ ∈∆ by ẋe

ze
zp

A11 A12 B1

A21 A22 B2

C1 C2 D

 xe
we
wp

, we = (δIr)ze (6)

with the extended signals xe := col(x, xc), ze := col(z, zc),
we := col(w,wc) and with closed-loop matrices given as



A11 A12 B1

A21 A22 B2

C1 C2 D

 =


A11 0 A12 0 Bp1
0 0 0 0 0
A21 0 A22 0 Bp2
0 0 0 0 0
Cp1 0 Cp2 0 Dp

+

+


0 0 B1

Inc 0 0
0 0 B2

0 Irc 0
0 0 D1


Ac11 Ac12 Bc1
Ac21 Ac22 Bc2
Cc1 Cc2 Dc

 0 Inc 0 0 0
0 0 0 Irc 0
C1 0 C2 0 D2

.
(7)

Definition 1. The controlled interconnection (6) is well-
posed if I − vA22 is non-singular for all v ∈ V. It is called
stable if there exist constants K and α > 0 such that every
solution of (6) for wp = 0 and for any δ ∈∆ satisfies

‖xe(t)‖ ≤ Ke−α(t−t0)‖xe(t0)‖ for all t ≥ t0 ≥ 0.

If (6) is well-posed, we can close the loop with the
scheduling block δIr to obtain the uncertain closed-loop
description which, in the sequel, is denoted by

(
ẋe
zp

)
=(

A(δ) B(δ)
C(δ) 0

)
( xe
wp ). As desired, the direct feedthrough block

of the performance channel of this system is identically
zero. This also results from interconnecting (2) with (4)
and is hence only achieved due to the specific choice of
the LFRs (3), (5). The H2-gain-scheduling problem thus
translates into a structured design problem as follows.

Problem 2. For a given bound γ > 0, determine a con-
troller K(δ) structured as in (5) such that

(G1) the controlled interconnection (6) is well-posed and
stable,

(G2) the squared H2-norm of wp → zp for linear time-
varying systems (with the stochastic interpretation
as in Paganini and Feron (2000)) is smaller than γ
for xe(0) = 0 and for all δ ∈∆.

In order to render this problem computationally tractable,
we introduce the following class of D-scalings S and of
positive real scalings R:

S :=
{(
−Q 0
0 Q

) ∣∣Q � 0
}
, R :=

{(
0 Q

QT 0

) ∣∣He(Q) � 0
}
.

Note that the blocks Q in S have to be symmetric, while
those in R can be unstructured. As a step towards synthe-
sis, the following standard result with matrix inequalities
can then be derived after applying the so-called full-block
S-procedure (c.f. Scherer (2000b)).

Theorem 3. Let P = S or P = R. The controller K(δ)
structured as in (5) achieves (G1), (G2) if there exist
X1 � 0, Z � 0 with tr(Z) < 1 as well as P1, P2 ∈ P
such that

(∗)T

 0 X1 0 0
X1 0 0 0
0 0 P1 0
0 0 0 Pp




In 0 0
A11 A12 B1

0 Ir 0
A21 A22 B2

0 0 I
C1 C2 D

 ≺ 0,

(∗)T
−X1 0 0

0 P2 0
0 0 Z−1


 In 0

0 Ir
A21 A22

C1 C2

 ≺ 0

(8)

hold for (6) and Pp =
(−γI 0

0 0

)
.

3. SYNTHESIS

3.1 Synthesis for Positive Real Scalings

In order to solve the H2-design Problem 2 by using
positive real scalings, we aim to match (8) with convex
synthesis constraints in terms of LMIs. An elimination of
the controller matrices, as e.g. applied in Scherer (2000b),
is not possible since some of these matrices affect both
inequalities in (8). As a remedy, we use a novel structured
factorizing for positive real scalings combined with a
suitable convexifying controller parameter transformation.
As introduced in the notations and in what follows, we
call a positive real matrix shortly PR. To formulate the
corresponding main result, we introduce the associated
variables that consist of the symmetric unknowns X1

and Y1 of dimension ns × ns. Moreover, as an essential
new ingredient for the structured controller design with
positive real scalings, we take the rectangular variables
X2, Y2 ∈ Rrs×(rs+rs) which are partitioned according to

X2 := (X22 X23 ) and Y2 := ( Y21 Y22 ) (9)

with PR matrices X23, Y21 and structured blocks

X22 :=

(
X̂2 Ẑ2

0 Irs2

)
, Y22 :=

(
Irs1 0

Ẑ1 Ŷ2

)
(10)

which are composed of the PR matrices X̂2, Ŷ2 of dimen-
sion rs1 × rs1, rs2 × rs2 and the unstructured real matrix

variables Ẑ1, Ẑ2 of dimension rs2 × rs1, rs1 × rs2. In addition,
let us also define the partially structured block matrixK11 K12 L1

K21 K22 L2

M1 M2 N

 :=


K̄11 K̄12 K̄13 L̄1

K̄21 K̄22 X
T
22A22Y22 0

K̄31 K̄32 K̄33 L̄3

M̄1 M̄2 0 0

 (11)

of dimension (ns + rs + rs + m) × (ns + rs + rs +
k) comprising the rectangular variables K̄ij , L̄i, M̄j , as

well as XT
22A22Y22 =

(
X̂T

2 Ā22 0

Ā32+Ā33Ẑ1+ẐT
2 Ā22 Ā33Ŷ2

)
with the

unknowns X̂2, Ŷ2, Ẑ1, Ẑ2 from (10).

If both multipliers P1 and P2 are taken to be identical in
(8), we obtain the following result for synthesis.

Theorem 4. Let Pp and Z � 0 with tr(Z) < 1 be given as
in Theorem 3. There exists a controller (5) such that the
inequalities (8) are satisfied for (6) with some X1 � 0 and
P1 = P2 ∈ R iff there exist symmetric X1, Y1 ∈ Rns×ns

,
structured X2, Y2 ∈ Rrs×(rs+rs) from (9), (10) as well as
Kij , Li, Mj from (11) such that the inequalities

(∗)T


0 I 0 0 0
I 0 0 0 0
0 0 0 I 0
0 0 I 0 0
0 0 0 0 Pp




I 0 0
A11 A12 B1

0 I 0
A21 A22 B2

0 0 I
C1 C2 D

 ≺ 0 (12)

and

(∗)T

−X1 0 0 0
0 0 I 0
0 I 0 0
0 0 0 Z−1


 I 0

0 I
A21 A22

C1 C2

 ≺ 0 (13)

as well as

He(Y21) � 0, He(X23) � 0, He

(
X̂2 Ẑ2

Ẑ1 Ŷ2

)
� 0 (14)



are fulfilled after inserting for i, j = 1, 2 the blocks

X1 :=

(
Y1 Ins

Ins X1

)
,

(
Aij Bi

Cj D

)
:=

AijYj Aij Bpi
0 XT

i Aij X
T
i B

p
i

Cpj Yj Cpj Dp

+

+

 0 Bi
I 0
0 D1

(Kij Li
Mj N

)(
I 0 0
0 Cj D2

)
.

(15)

Despite the fact that Dp and N actually vanish, we
still depict these matrices in (15) as a preparation for
Section 4.1. If applying the Schur complement to (13),
we arrive at a standard LMI test. The following proof is
constructive, i.e., if (12), (13), (14) are satisfied for (15),
a controller can be computed to render (8) valid for (6).
Moreover, the construction can be performed such that
the controller McMillan degree is at most ns, whereas the
degree rc of the scheduling channel wc = (δIrc)zc is at
most 2rs.

Proof. Necessity. Let (8) being satisfied for (6), X1 � 0 as
well as for P1 = P2 ∈ R. By definition of R we can express

P1 = P2 =
(

0 X2

XT
2 0

)
with X2 of dimension r × r being

PR. Hence X1 and X2 are invertible. Moreover, w.l.o.g. we
can assume that nc ≥ ns which leads for i = 1 to the
factorizations (see Scherer et al. (1997))

XiYi = Zi with Yi :=

(
Yi I
Vi 0

)
, Zi :=

(
I Xi

0 Ui

)
(16)

such that Y1 has full column rank. Further, w.l.o.g. let
us assume that rc1 ≥ rs and rc2 ≥ rs. As a key step, we
clarify in Appendix A that X2 can be factorized as in (16)
with Y2 of full column rank, and such that V2 and U2 are
lower and upper block-triangular matrices, respectively,
in the partition (rc1 + rc2) × (rs + rs), while Y2 and X2

are structured as in (9), (10). By applying congruence
transformations with Yi along with the corresponding
factorization (16) for i = 1, 2, the inequalities in (8) and
He(X2) � 0 lead to He(ZT2 Y2) � 0 and

(∗)T


0 I 0 0 0
I 0 0 0 0
0 0 0 I 0
0 0 I 0 0
0 0 0 0 Pp




I 0 0
ZT1 A11Y1 ZT1 A12Y2 ZT1 B1

0 I 0
ZT2 A21Y1 ZT2 A22Y2 ZT2 B2

0 0 I
C1Y1 C2Y2 D

 ≺ 0,

(∗)T

−Z
T
1 Y1 0 0 0
0 0 I 0
0 I 0 0
0 0 0 Z−1


 I 0

0 I
ZT2 A21Y1 ZT2 A22Y2

C1Y1 C2Y2

 ≺ 0.

(17)
Now, by definition of V2, U2 in Appendix A, let us express

V T2 U2 =:

(
W11 W12

0 W22

)
(18)

such that He(ZT2 Y2) � 0 explicitly reads asHe(Y21) Y22+Y T21X22+W11 I+Y T21X23+W12

∗ He(Y T22X22) XT
22+Y T22X23+W23

∗ ∗ He(X23)

 � 0.

(19)

Moreover, He(Y T22X22) = He
(
X̂2 Ẑ2

Ẑ1 Ŷ2

)
is true by definition

(10) and, thus, (14) follows from (19). Further, we extract

ZT1 Y1 =

(
Y1 Ins

Ins X1

)
(20)

which relates to the usual coupling condition and cor-
responds to X1 in (15). We emphasize that X1, Y1 are
symmetric matrices. In order to finish the necessity proof,
let us zoom into the outer factors of the inequalities in
(17). Simple calculations reveal that(
ZTi AijYj ZTi Bi
CjYj D

)
=

AijYj Aij Bpi
0 XT

i Aij X
T
i B

p
i

Cpj Yj Cpj Dp

+

+

(
0 Bi
I 0
0 D1

)(
Kij Li
Mj N

)(
I 0 0
0 Cj D2

) (21)

for i, j = 1, 2 after substituting(
K11 K12 L1
K21 K22 L2

M1 M2 N

)
:=

(
XT

1 A11Y1 X
T
1 A12Y2 0

XT
2 A21Y1 X

T
2 A22Y2 0

0 0 0

)
+

+

(
UT1 0 XT

1 B1

0 UT2 XT
2 B2

0 0 Im

)(
Ac11 A

c
12 B

c
1

Ac21 A
c
22 B

c
2

Cc1 Cc2 Dc

)(
V1 0 0
0 V2 0

C1Y1 C2Y2 Ik

)
.

(22)
Since relevant in Section 4.1, we also display Dp = 0,
Dc = 0, N = 0 and D = 0 in the above formula. Due
to the triangular structure of U2, V2 and the structure of
the controller matrices with Dc = 0, we observe that ∗ 0 0

∗ ∗ L̄3

M̄2 0 0

 :=

(
Ā L2

M2 0

)
:=

(
UT2 A

c
22V2 U

T
2 B

c
2

Cc2V2 0

)
(23)

are sparse matrices, which allows to infer from (22) that

K22 = XT
2 A22Y2 + Ā+ L2C2Y2 +XT

2 B2M2

=

(
∗ XT

22A22Y22

∗ ∗

)
+ Ā+

(
0
L̄3

)
C2Y2 +XT

2 B2

(
M̄2 0

)
=

(
0 XT

22A22Y22

0 0

)
+

(
∗ 0
∗ ∗

)
.

(24)

Therefore, by defining
(
K̄22 0
K̄32 K̄33

)
:= K22−

(
0 XT

22A22Y22

0 0

)
,

the inequality (17) implies (12) and (13) for (15).

Sufficiency. Suppose that the inequalities in Theorem 4 are
feasible. This means that there exist symmetric X1, Y1,
structured variables X2, Y2 from (9), (10), as well as
Kij , Li, Mj from (11) such that (12)-(14) hold after in-
serting (15). Let us now set U1 := Ins , V1 := Ins−XT

1 Y1 to
define Y1, Z1 by (16). Due (13) we get X1 � 0 and hence
the choice of U1, V1 shows that (20) is satisfied. Moreover,

(14) implies that Y21, X23, X̂2 and Ŷ2 are invertible. By
definition, we note that X22, Y22 are invertible, too. In
view of the strict right upper part of (19), let us choose

V2 :=−
(
Y21 0
0 Y22

)
, U2 :=

(
X22 X23

0 X23

)
−V −T2

(
Y22 I
0 XT

22

)
with a triangular structure to infer by inspection that

−V T2 U2 =

(
Y21 0
0 Y22

)T(
X22 X23

0 X23

)
+

(
Y22 I
0 XT

22

)
.



In particular, this shows with (18) and (14) that (19) is
true. Hence, by defining Y2, Z2 through (16), this implies
He(ZT2 Y2) � 0. We note that U1, V1 and V2 are invertible.
Moreover, U2 is also invertible since its diagonal blocks
are invertible. Exemplarily, let us show this for X22 +
Y −T21 Y22: We infer from (19) that He(Y T22X22) � 0 which,
by applying a congruence transformation with Y −1

22 , shows
that X22Y

−1
22 is PR. Further, Y −1

21 is PR by (14) which

implies that X22Y
−1
22 +Y −T21 is PR and thus, X22+Y −T21 Y22

is invertible. Hence Yi and Zi are invertible which allows to
define Xi := ZiY−1

i such that (16) is satisfied for i = 1, 2.
Furthermore, in view of (24), let us define

Ā:=

(
K̄22 X

T
22A22Y22

K̄32 K̄33

)
−XT

2 A22Y2−L2C2Y2−XT
2 B2M2

to infer that (24) is true for the full matrices. Moreover,
since Ui, Vi are invertible, we can solve (22) for the
controller blocks Acij , B

c
i , C

c
j which shows that (21) is true

for the closed-loop matrices (6). In particular, we note
that Ā is lower block-triangular by definition. Thus (23)
is satisfied which shows that Ac22, Bc2 and Cc2 have the
desired sparsity pattern as in (5). Hence the inequalities
(12), (13) with (15) are equivalent to (17). By using (16)
and congruence transformations with Y−1

i for i = 1, 2, this
leads back to (8) for (6). �

Remark 5. For quadratic performance, let Pp :=
(
Qp ∗
Sp Rp

)
with Rp < 0 denote the associated performance index. A
sufficient synthesis inequality for the corresponding gain-
scheduling problem with positive real scalings is then given
by (12) and (14) after replacing Pγ by Pp and inserting
(15). In particular, the parameter transformation approach
in Theorem 4 allows to solve the gain-scheduling problem
for H∞-performance as well as for multiple objectives.

Remark 6. Since the unstructured K11, K12, L1 affect
only (12) and not (13), they can be partially eliminated
with the standard elimination lemma (e.g. Lemma A.3 in
Scherer (2000b)). This allows to reduce the computational
complexity by decreasing the number of the LMI variables.

3.2 Synthesis for D-scalings

Analogously to Theorem 4, we now sketch how to derive a
synthesis result for D-scalings. If the analysis inequalities
(8) are fulfilled for (6), X1 � 0, Z � 0 with tr(Z) < 1
as well as for P1 = P2 ∈ S, we can express P1 = P2 =(−X2 0

0 X2

)
with X2 � 0 of dimension r×r. If treating X2 in

the same fashion as the Lyapunov variable X1 (c.f. Guo and
Scherer (2018)), similar arguments can be applied as before
by taking rectangular variables X2, Y2 ∈ Rrs×(rs+rs)

partitioned according to (9) with symmetric X23, Y21,
structured blocks

X22 :=

(
X̂2 Ẑ

T
2

0 Irs2

)
and Y22 :=

(
Irs1 0

−Ẑ2 Ŷ2

)
(25)

with symmetric X̂2 ∈ Rrs1×rs1 , Ŷ2 ∈ Rrs2×rs2 and a rectan-
gular Ẑ2 ∈ Rrs2×rs1 . After applying the Schur complement,
the corresponding synthesis result for D-scalings can then
be compactly formulated in the same fashion as Theorem 4
by replacing the inequalities (12)-(14) through the LMIs

He(A11) ∗ ∗ ∗
AT

12 −X2 ∗ ∗
BT

1 0 −γI ∗
A21 A22 B2 −X2

 ≺ 0,

(
−X1 ∗ ∗ ∗

0 −X2 ∗ ∗
A21 A22 −X2 ∗
C1 C2 0 −Z

)
≺ 0

(26)
with the function blocks from (15) and with

X2 :=

 Y21 Y22 I
Y T22 Y

T
22X22 X

T
22

I X22 X23

.
If (26) are feasible, one can construct a controller with
McMillan degree of at most ns and rc bounded by 2rs.

4. APPLICATIONS

4.1 Delayed systems

A nice application of our framework is the design of
operator-scheduled controllers. As an example, let us con-
sider the scenario in de Oliveira and Geromel (2004). We
denote by dτ the standard delay operator of τ seconds in
continuous-time mapping û(.) into ŷ(t) = û(t− τ) if t ≥ τ
and into ŷ(t) = 0 if 0 ≤ t < τ . The plant and controller in
de Oliveira and Geromel (2004) can then be expressed as ẋ

zp
y

 =

A00 +A01dτ Bp B
Cp00 + Cp01dτ Dp D1

Cy00 + Cy01dτ D2 0

 x
wp
u


and

(
ẋc
u

)
=

(
Ac00 +Ac01dτ B

c

Cc00 + Cc01dτ D
c

)(
xc
y

)
,

(27)

respectively, with initial conditions x(t) = 0 and xc(t) = 0
for t ∈ [−τ, 0]. The descriptions in (27) result from

ẋ
z1

z2

zp
y

 =


A11 Ā12 Ā13 Bp1 B1

Ā21 Ā22 0 0 0

Ā31 Ā32 Ā33 0 0

Cp1 C̄p2 0 Dp D1

C1 C̄2 0 D2 0




x
w1

w2

wp
u

, w = (dτIrs)z

 ẋc
zc,1
zc,2
u

=


Ac11 Āc12 Ā

c
13 Bc1

Āc21 Āc22 0 0

Āc31 Āc32 Ā
c
33 0

Cc1 C̄c2 0 Dc




xc
wc,1
wc,2
y

, wc = (dτIrc)zc

(28)
if w2 → z2, wc,2 → zc,2 are empty. Note that (28) is a
modification of (3) and (5) with Dp 6= 0, Dc 6= 0, C̄3 = 0

and Bp2 = 0, B2 = 0, Bc2 = 0. (29)

Further, if ‖
(
Ā22 0
Ā32 Ā33

)
‖ < 1, well-posedness of the plant

LFR follows from a small-gain argument for dτ , while the
delay variations in time are covered by using D-scalings
(c.f. Megretski and Rantzer (1997)). Contrary to Section 2,
the analysis conditions in de Oliveira et al. (2002) are
based on a deterministic interpretation of the H2-norm.
If (6) is the closed-loop system for (28), these conditions
are a special case of [Veenman et al. (2016), Corollary 9]
for D-scalings. In our setting, this amounts to replacing
(8) for P1 = P2 =

(−X2 0
0 X2

)
∈ S, by tr(Z) < γ andHe(X1A11) ∗ ∗ ∗

AT12X1 −X2 ∗ ∗
C1 C2 −I ∗
X2A21 X2A22 0 −X2

≺ 0,

(
Z BT1 X1

X1B1 X1

)
� 0 .



0.4 0.6 0.8 1 1.2
a

0

10

20

30

40
γ

op
t

Fig. 2. Optimal bounds γopt for (syst) with different a ∈
[0.4, 1.2]. The results are given for the unstructured
(full blue) and the structured design (dashed red).

Note that this requires to guarantee B2 = 0, D = 0
in (6), which is achieved due to (29) and by adjoining
the equality constraint D = Dp + D1D

cD2 = 0 to
the analysis and synthesis conditions. Exactly the same
procedure as in Section 3 leads to LMIs in terms of (11)
for L̄3 = 0 and M2 = ( M̄2 D

cC2 ). Further, convexification
in the structured controller parameter transformation (22)
is achieved since C̄3 = 0 implies the crucial relation
C2Y22 = C2; for reasons of space, we drop further details.

4.2 A Numerical Example

Based on the Matlab Robust Control Toolbox, let us
present a short academic example with (28) for

A11 Ā12 Ā13 Bp1 B1

Ā21 Ā22 0 0 0

Ā31 Ā32 Ā33 0 0

Cp1 C̄p2 0 Dp D1

C1 C̄2 0 D2 0

 :=



0 1 a 2.4a a 1 1

0 −3 2.4a −2a 0.1a 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 1 0.1 0 −0.9 0 0

1 1 0 0 0 0 0.1

1 1 1 −1 0 −0.1 0


(30)

where a ∈ [0.4, 1.2]. Let us first design a strictly proper
controller if w2 → z2 is empty in (28), which exactly
corresponds to the example in [de Oliveira et al. (2002),
Sec. 5.2] for a = 1. The design based on de Oliveira
et al. (2002) with (27) comprises 32 LMI variables, while
those relying on (28) with the empty channels w2 → z2,
wc,2 → zc,2 involves 36. As depicted in Fig. 2 (full blue),
both designs lead to the same optimal bound γopt of
the squared H2-norm for a ∈ [0.4, 1.2]; as expected from
Section 4.1, γopt computed for (28) is less than or equal to
those obtained for (27). Moreover, we can even design a
strictly proper, structured H2-controller (28) with rational
dependence on dτ for the full matrices in (30). To the best
knowledge of the authors, this cannot be handled by other
techniques in this generality since finiteness of the H2-
norm has to be guaranteed by solving a specific structured
design problem. The results for our example are depicted
in Fig. 2 (dashed red) and involve 88 LMI variables.

4.3 Networked H2-Gain-Scheduling

The recent approach in Rösinger and Scherer (2017) han-
dles H∞-problems for networks of LTI systems with de-
layed couplings. This is based on Fig. 3 with δ-independent
transfer matrices G̃ = G̃(δ), K = K(δ), while K and some
parameter F ∈ F have to be designed; here F is a set of
structured real matrices determined by the delayed cou-
pling and admitting an LMI representation. In particular,
this approach can be also applied in continuous-time with

G̃(δ)

K(δ)

F

zp wp

uFyF

uy

Fig. 3. Configuration for parametric H2-gain-scheduling.

an H2-cost criterion, e.g., by using the delay approxima-
tion DT (s) := 1/(1 + sT ) with delay-time T which differs
from the delay interpretation used in Section 4.1 and 4.2.
As a step towards networked LPV systems, this motivates
to consider Fig. 3 with G̃(δ) and K(δ) being scheduled by

δ ∈ V. Further, we assume that G̃(δ) is structured as in zp
y
yF

 =

 G̃11(δ) G̃12(δ) G̃13(δ)

G̃21(δ) G̃22(δ) 0

G̃31(δ) 0 0

 wp
u
uF

 (31)

with LPV systems G̃ij(δ) depending on δ in the same
fashion as in (1), while the particular zero structure in (31)
is motivated by Rösinger and Scherer (2017) for reasons of
convexification.
As in Section 2, we assume that the direct feedthrough
block of wp → zp is zero, while that of u → y is zero for
δ = 0. In addition, let also those of uF → zp and wp → yF
be zero. After interconnecting (31) with uF = FyF ,
F ∈ F , we get (1) with an F -dependent operator block
G11(δ) whose direct feedthrough term vanishes.

Note that we can realize each G̃ij(δ) with an LFR as done
for G(δ) in (3); especially, suitable zero matrices appear for
those blocks where we impose an assumption for the direct
feedthrough term. After composing these LFRs, this allows
to express the interconnection of G̃(δ) with uF = FyF by


ẋ
z1

z2

zp
y

 =



∗ 0 0 ∗ 0 0 ∗ 0
∗ ∗ 0 ∗ ∗ 0 ∗ ∗

Ã11(F ) ∗ ∗ Ã12(F ) ∗ ∗ B̃p1(F ) ∗
∗ 0 0 ∗ 0 0 0 0
∗ ∗ 0 ∗ ∗ 0 0 ∗

Ã21(F ) ∗ ∗ Ã22(F ) ∗ ∗ B̃p2(F ) ∗
C̃p1 (F ) ∗ ∗ C̃p2 (F ) ∗ 0 0 D1

∗ ∗ 0 ∗ ∗ 0 D2 0




x
w1

w2

wp
u



=:

A11(F ) A12(F ) Bp1(F ) B1

A21(F ) A22(F ) Bp2(F ) B2

Cp1 (F ) Cp2 (F ) Dp D1

C1 C2 D2 D3




x
w1

w2

wp
u

;

(32)

here Ãij(F ), B̃pj (F ), C̃pi (F ) depend affinely on F for i =
1, 2, while F -independent real matrices are displayed by
∗. We emphasize again that the structure of (32) induced
by the grey lines (e.g. the triangular structure of A22(F ))
reflects the assumptions for the direct feedthrough terms.
By proceeding similarly to Section 2, we work with (32) for
δ ∈ ∆ and describe the controller component K(δ) again
by (5) such that the controlled interconnection for (32) is
given by (6) after properly adjoining the argument F to
(7). This leads to the following synthesis problem which is
called parametric H2-gain scheduling.

Problem 7. For γ > 0, determine a controller K(δ) as in
(5) and F ∈ F such that (G1), (G2) from Problem 2 hold.



For reasons of space, we only discuss the solution of Prob-
lem 7 for positive real scalings. Note that an application
of Theorem 4 leads to the same inequalities (12)-(14) with
the difference that Aij , B

p
i and Cpj in the variable blocks

(15) depend affinely on the to-be-designed parameter F ;
in particular, if viewing F as a design variable, nonlinear
expressions like Aij(F )Yj appear in (15). To overcome
this problem, we introduce for i = 1, 2 the variables
Ri := (Rikl)1≤k,l≤3, Si := (Sikl)1≤k,l≤3 which have the
same size and partition as Aii(F ) in (32). We assume that
Ri, Si are symmetric for i = 1 (c.f. Scherer (2000a)). As a
new condition for positive real scalings, the unknowns Ri,
Si are assumed to be PR for i = 2. Moreover, let us define

R1
i :=

Ri11 0 0
Ri21 I 0
Ri31 0 I

, R2
i :=

 I Ri12 R
i
13

0 Ri22 R
i
23

0 Ri32 R
i
33

,
S1
i :=

 Si11 S
i
12 S

i
13

Si21 S
i
22 S

i
23

0 0 I

, S2
i :=

 I 0 0
0 I 0
Si31 S

i
32 S

i
33


(33)

for i = 1, 2 as well as, with (10), the blocks

Xs
2 :=

(
X22 S

1
2

)
and Y r2 :=

(
(R2

2)T Y22

)
. (34)

By abbreviating Xs
1 := S1

1 and Y r1 := (R2
1)T , we can

compactly express the following synthesis result.

Theorem 8. Let Pp and Z � 0 with tr(Z) < 1 be given
as in Theorem 3. There exists a controller (5) and F ∈ F
such that the inequalities (8) are satisfied for the closed-
loop matrices (7) obtained from (32) and (5), X1 � 0 as
well as for P1 = P2 ∈ R iff there exist structured R1

i , R
2
i ,

S1
i , S2

i from (33), structured X̂2, Ŷ2, Ẑ1, Ẑ2 from (10), as
well as Kij , Li, Mj from (11) satisfying the inequalities

He
(
R1

2(R2
2)T
)
� 0, He

(
(S2

2)TS1
2

)
� 0, He

(
X̂2 Ẑ2

Ẑ1 Ŷ2

)
� 0

(35)
and (12), (13) after inserting for i, j = 1, 2 the blocks

X1 :=

(
R1

1(R2
1)T ∗

(S2
1)T (R1

1)T (S2
1)TS1

1

)
,

(
Aij Bi

Cj D

)
:=

 0 Bi
I 0
0 D1

(Kij Li
Mj N

)(
I 0 0
0 Cj D2

)
+

+

R1
iAij(F )Y rj R1

iAij(F )S2
j R1

iB
p
i (F )

0 (Xs
i )TAij(F )S2

j (Xs
i )TBpi (F )

Cpj (F )Y rj Cpj (F )S2
j Dp

.
Indeed, let us stress that (35) is affine in the decision
variables which leads again to a standard LMI test. For
reasons of space, we only present a brief sketch of the proof
of Theorem 8. The essential part is a suitable structured
factorization for PR matrices from the Appendix B that
extends those presented in Scherer (2000a) and allows to
treat symmetric and PR matrices in the same fashion,
while taking care of the F -dependent structure in (32).

Proof. The proof follows by applying suitable congruence
transformations with R1

i , R
2
i , S

1
i , S2

i from (33) to the
inequalities in (12)-(14), and by exploiting, with Lemma 9,
the factorizations R1

1Y
T
1 = R2

1, R1
2Y

T
21 = R2

2 and X1S
2
1 =

S1
1 , X23S

2
2 = S1

2 along with suitable variable substitutions
on (11). Note that a direct calculation shows that the

congruence transformations do not influence the block
XT

22A22Y22 of (11) (c.f. Rösinger and Scherer (2017)). �

5. CONCLUSION AND OUTLOOK

We have presented a parameter transformation approach
for the H2-gain-scheduling problem with D- and positive
real scalings. A key step is to solve a structured design
framework to guarantee finiteness of the H2-norm by de-
sign. Further, the application of the setting is demon-
strated for delayed systems and we also sketched an ex-
tension to handling networked LPV controller design. A
future goal is the inclusion of robust H2-gain-scheduling
problems for networked LPV systems into our framework.
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Appendix A. FACTORIZATION 1

The following factorization is part of the proof of The-
orem 4 and extends the version in Scherer (2014) for
symmetric matrices to the positive real case. For reasons
of space, we only present the relevant modifications.
Let X2 being PR with rci ≥ rs, i = 1, 2, and partitioned as

X2 =

X23 W13 W23

U13 Z11 Z12

U23 Z21 Z22

 ∈ R(rs+rc1+rc2)×(rs+rc1+rc2).

This implies that X23,
(
Z11 Z12

Z21 Z22

)
and Z22 are PR. Hence(

Z11 Z12

Z21 Z22

)−1
and Z−1

22 are PR and, since U13 and U23 are
tall matrices, we can guarantee by perturbation that

H1 := ( I 0 )

(
Z11 Z12

Z21 Z22

)−1(
U13

U23

)
and H2 := Z−1

22 U23

have full column rank such that (8) is satisfied for X1 � 0
and He(X2) � 0. Let us define Y21

V11

V21

 :=

X23 W13 W23

U13 Z11 Z12

U23 Z21 Z22

−1 Irs
0
0


and

(
Ỹ22

Ṽ22

)
:=

(
X23 W23

U23 Z22

)−1(
Irs
0

)
(A.1)

in order to infer for some suitable Ũ12 the relationX23 W13 W23

U13 Z11 Z12

U23 Z21 Z22

 Y21 Ỹ22 Irs
V11 0 0

V21 Ṽ22 0

 =

 Irs Irs X23

0 Ũ12 U13

0 0 U23

.
(A.2)

Since
(
X23 W23

U23 Z22

)
is PR, also X23 −W23Z

−1
22 U23 = Ỹ −1

22 is
PR; the latter equation follows from the block-inversion
formula and (A.1). Hence we infer that Ỹ22 is PR.

Let us solve Ỹ22X22 = Y22 for X22, Y22 carrying the
structure (10). By partitioning

Ỹ22 :=

(
Ȳ11 Ȳ12

Ȳ21 Ȳ22

)
∈ R(rs1+rs2)×(rs1+rs2)

we can indeed guarantee this relation by defining

X̂2 := Ȳ −1
11 , Ŷ2 := Ȳ22 − Ȳ21Ȳ

−1
11 Ȳ12,

Ẑ1 := Ȳ21Ȳ
−1
11 , Ẑ2 := −Ȳ −1

11 Ȳ12;

note that Ȳ11 is invertible since Ỹ22 is PR. Moreover, the
PR property of Ỹ22 implies that X̂2 and Ŷ2 are PR by
definition. By setting V22 := Ṽ22X22 and U12 := Ũ12X22,
a right-multiplication of (A.2) with X22 leads to

X2

 Y21 Y22 I
V11 0 0
V21 V22 0

 =

 I X22 X23

0 U12 U13

0 0 U23


which reads as the factorization (16) for i = 2 with(

X2

U2

)
:=

X22 X23

U12 U13

0 U23

 and

(
Y2

V2

)
:=

 Y21 Y22

V11 0
V21 V22

.
Further, it can be argued analogously to Scherer (2014)
that Y2 has full column rank.

Appendix B. FACTORIZATION 2

We use a second factorization for the proof of Theorem 8.

Lemma 9. For quadratic A, Y and invertible C, X let us
define the transformations

T1 :

(
X Z

Z̃ Y

)
7→
(
Q S

S̃ R

)
:=

(
X−1 X−1Z

−Z̃X−1 Y − Z̃X−1Z

)
,

T2 :

(
A B

B̃ C

)
7→
(
U V

Ṽ W

)
:=

(
A−BC−1B̃ BC−1

−C−1B̃ C−1

)
(B.1)

which map the set of PR matrices (positive definite ma-
trices) into the set of PR matrices (matrices which have
positive definite diagonal blocks). Further, both maps are
involutions, i.e. they are bijective with T−1

i = Ti for
i = 1, 2, and describe the factorizations(
Q 0

S̃ I

)(
X Z

Z̃ Y

)
=

(
I S
0 R

)
,

(
A B

B̃ C

)(
I 0

Ṽ W

)
=

(
U V
0 I

)
.

(B.2)

Proof. The involutions property and the factorizations in
(B.2) follow by a direct calculation. Let us show that T1

preserves the PR property. Now
(
X Z
Z̃ Y

)
is PR iff(

−X−1 −X−1Z
0 I

)T(
X Z

Z̃ Y

)(
−X−1 −X−1Z

0 I

)
=

=

(
X−T 0

(X−1Z)T − Z̃X−1 Y − Z̃X−1Z

)
is PR.

The latter is satisfied iff

He

(
X−T 0

(X−1Z)T − Z̃X−1 Y − Z̃X−1Z

)
=

= He

(
X−1 X−1Z

−Z̃X−1 Y − Z̃X−1Z

)
� 0

which is equivalent to
(

X−1 X−1Z
−Z̃X−1 Y−Z̃X−1Z

)
being PR. By

similar arguments, T2 preserves the PR property, too.
Moreover, standard Schur complement arguments show
that Ti bijectively map positive definite matrices to the
set of matrices with positive definite diagonal blocks.
Therefore, the maps Ti in (B.1) are well-defined. �


