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Preface

In recent years, linear matrix inequalities (LMI’s) have emerged as a powerful tool to approach con-
trol problems that appear hard if not impossible to solve in an analytic fashion. Although the history
of linear matrix inequalities goes back to the fourties with a major emphasis of their role in con-
trol in the sixties through the work of Kalman, Yakubovich, Popov and Willems, only during the
last decades powerful numerical interior point techniques have been developed to solve LMI’s in
a practically efficient manner (Nesterov, Nemirovskii 1994). Today, several commercial and non-
commercial software packages are available that allow for simple codings of general control prob-
lems into well defined classes of optimization problems. These optimization classes include, for
example, linear and quadratic programs, semi-definite programs, quadratic second order cone opti-
mizations, sum-of-squares programs and robust optimizations.

Boosted by the availability of fast and efficient LMI solvers, research in robust control theory has
experienced a significant paradigm shift. Instead of arriving at an analytical solution of an optimal
control problem and implementing such a solution in software so as to synthesize optimal controllers,
today a substantial body of research is devoted to reformulating a control problem to the question
whether a specific linear matrix inequality is solvable or, alternatively, to optimizing functionals over
linear matrix inequality constraints.

This book aims at providing a state of the art treatment of the theory and the usage and applications
of linear matrix inequalities in the general area of systems and control. The main emphasis of
this book is to reveal the basic principles and background for formulating desired properties of a
control system in the form of linear matrix inequalities, and to demonstrate the techniques to reduce
the corresponding controller synthesis problem to an LMI problem. The power of this approach is
illustrated by several fundamental robustness and performance problems in analysis and design of
linear control systems.

This book has been written as lecture material for a graduate course on the subject of LMI’s in
systems and control. Within the graduate program of the Dutch Institute of Systems and Control
(DISC), this course is intended to provide up-to-date information on the topic for students involved
in either the practical or theoretical aspects of control system design. DISC courses have the format
of two class hours that are taught once per week during a period of eight weeks. Within the DISC
graduate program, the first course on LMI’s in control has been given by the authors of this book
in 1997. The course has been part of the DISC graduate program since. In addition, the material

vii
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has been taught on a regular basis as part of the Hybrid Control (HYCON) graduate school in the
European Embedded Control Institute (EECI) in Paris.

Various draft versions of this book have been distributed on the internet as lecture notes to the
students following these courses and as a service to the international research community on systems
and control. The lecture notes have been slowly evaluating to the present book, thanks to the truly
many suggestions, fierce criticism, positive feedback, numerous corrections, encouragements and
help of many students and researchers who followed the courses or otherwise read the material. We
are very thankful for all the suggestions that helped to improve the manuscript.

Readers of this book are supposed to have an academic background in linear algebra, basic calculus,
and possibly in system and control theory.
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Chapter 1

Convex optimization and linear
matrix inequalities

1.1 Introduction

Optimization questions and decision making processes are abundant in daily life and invariably in-
volve the selection of the best decision from a number of options or a set of candidate decisions.
Many examples of this theme can be found in technical sciences such as electrical, mechanical and
chemical engineering, in architecture and in economics, but also in the social sciences, in biological
and ecological processes, politics and organizational questions. For example, production processes
in industry are becoming more and more market driven and require an ever increasing flexibility of
product changes and product specifications due to customer demands on quality, price and specifi-
cation. Products need to be manufactured within strict product specifications, with large variations
of component qualities, against competitive prices, with minimal waste of resources, energy and
valuable production time, with a minimal time-to-market, subject to safety and security regulations
and, of course, at the same time with maximal economical profit. Important economical benefits can
therefore only be realized by making proper decisions in the operating conditions of production pro-
cesses. Consequently, there is a constant need for further optimization, for increased efficiency and a
better control of processes. A proper combination of control system design and robust optimization
are among the key tools to resolve these questions. This is the main theme of the present book.

Casting an optimization problem in mathematics involves the specification of all candidate decisions
and, most importantly, the formalization of the concept of best or optimal decision. If the universum
of all possible decisions in an optimization problem is denoted by a set X , then the set of feasible
(or candidate) decisions is a subset S of X from which the best candidate decision needs to be
selected. One approach to quantify the quality of a feasible decision x ∈S is to express its value
in terms of a single real quantity f (x) where f is some real valued function f : S → R called

1



2 1.2. FACTS FROM CONVEX ANALYSIS

the objective function or cost function. The value of decision x ∈ S is then given by f (x) which
quantifies the quality or confidence in this particular decision. Depending on the interpretation of
the objective function, we may wish to minimize or maximize f over all feasible candidates in S .
An optimal decision is then simply an element of S that minimizes or maximizes f over all feasible
alternatives.

The optimization problem to minimize the objective function f over a set of feasible decisions S
involves various specific questions:

(a) What is the least possible cost? That is, determine the optimal value

Vopt := inf
x∈S

f (x) = inf{ f (x) | x ∈S }.

By convention, the optimal value Vopt = +∞ if S is empty, while the problem is said to be
unbounded if Vopt =−∞.

(b) How to determine an almost optimal solution, i.e., for arbitrary ε > 0, how to determine
xε ∈S such that

Vopt ≤ f (xε)≤Vopt + ε.

(c) Does there exist an optimal solution xopt ∈ S with f (xopt) = Vopt? If so, we say that the
minimum is attained and we write f (xopt) = minx∈S f (x).

(d) How to find one, or all, optimal solutions xopt ∈ S , if they exist. The set of all optimal
solutions is denoted by argminx∈S f (x).

We will address each of these questions as a recurrent theme in this book.

1.2 Facts from convex analysis

In view of the optimization problems just formulated, we are interested in finding conditions for
optimal solutions to exist. It is therefore natural to resort to a branch of analysis which provides such
conditions: convex analysis. The results and definitions in this subsection are mainly basic, but they
have very important implications and applications as we will see later.

We start with summarizing some definitions and elementary properties from linear algebra and func-
tional analysis. We assume the reader to be familiar with the basic concepts of vector spaces, norms
and normed linear spaces.
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1.2. FACTS FROM CONVEX ANALYSIS 3

1.2.1 Continuity and compactness

Suppose that X and Y are two normed linear spaces. A function f which maps X to Y is said to
be continuous at x0 ∈X if, for every ε > 0, there exists a δ = δ (x0,ε) such that

‖ f (x)− f (x0)‖< ε whenever ‖x− x0‖< δ . (1.2.1)

The function f is called continuous if it is continuous at all x0 ∈X . Finally, f is said to be uniformly
continuous if, for every ε > 0, there exists δ = δ (ε), not depending on x0, such that (1.2.1) holds.
Obviously, continuity depends on the definition of the norm in the normed spaces X and Y . We
remark that a function f : X →Y is continuous at x0 ∈X if and only if for every sequence {xn}∞

n=1,
xn ∈X , which converges to x0 as n→ ∞, there holds that f (xn)→ f (x0).

Now let S be a subset of the normed linear space X . Then S is called compact if for every
sequence {xn}∞

n=1 in S there exists a subsequence {xnm}∞
m=1 which converges to an element x0 ∈S .

Compact sets in finite dimensional vector spaces are easily characterized. Indeed, if X is finite
dimensional then a subset S of X is compact if and only if S is closed and bounded1.

The well-known Weierstrass theorem provides a useful tool to determine whether an optimization
problem admits a solution. It provides an answer to the third question raised in the previous subsec-
tion for special sets S and special performance functions f .

Proposition 1.1 (Weierstrass) If f : S → R is a continuous function defined on a compact subset
S of a normed linear space X , then there exists xmin,xmax ∈S such that

f (xmin) = inf
x∈S

f (x)≤ f (x)≤ sup
x∈S

f (x) = f (xmax)

for all x ∈S .

Proof. Define Vmin := infx∈S f (x). Then there exists a sequence {xn}∞
n=1 in S such that f (xn)→

Vmin as n→∞. As S is compact, there must exist a subsequence {xnm}∞
m=1 of {xn} which converges

to an element, say xmin, which lies in S . Obviously, f (xnm)→Vmin and the continuity of f implies
that f (xnm)→ f (xmin) as nm → ∞. We claim that Vmin = f (xmin). By definition of Vmin, we have
Vmin ≤ f (xmin). Now suppose that the latter inequality is strict, i.e., suppose that Vmin < f (xmin).
Then 0 < f (xmin)−Vmin = limnm→∞ f (xnm)− limnm→∞ f (xnm) = 0, which yields a contradiction.
The proof of the existence of a maximizing element is similar.

Following his father’s wishes, Karl Theodor Wilhelm Weierstrass (1815-1897) studied
law, finance and economics at the university of Bonn. His primary interest, however,
was in mathematics which led to a serious conflict with his father. He started his career
as a teacher of mathematics. After various positions and invitations, he accepted a chair
at the ‘Industry Institute’ in Berlin in 1855. Weierstrass contributed to the foundations
of analytic functions, elliptic functions, Abelian functions, converging infinite products,
and the calculus of variations. Hurwitz and Frobenius were among his students.

1A set S is bounded if there exists a number B such that for all x ∈S , ‖x‖ ≤ B; it is closed if xn→ x implies that x ∈S .
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4 1.2. FACTS FROM CONVEX ANALYSIS

1.2.2 Convex sets

Proposition 1.1 does not give a constructive method to find the extremal solutions xmin and xmax. It
only guarantees the existence of these elements for continuous functions defined on compact sets.
For many optimization problems these conditions (continuity and compactness) turn out to be overly
restrictive. We will therefore resort to more general feasibility sets.

Definition 1.2 (Convex sets) A set S in a linear vector space is said to be convex if

{x1,x2 ∈S } =⇒ {x := αx1 +(1−α)x2 ∈S for all α ∈ (0,1)}.

In geometric terms, this states that a convex set is characterized by the property that the line segment
connecting any two points of the set, belongs to the set. In general, the empty set and singletons (sets
that consist of one point only) are considered to be convex. The point αx1+(1−α)x2 with α ∈ (0,1)
is called a convex combination of the two points x1 and x2. More generally, convex combinations are
defined for any finite set of points as follows.

Definition 1.3 (Convex combinations) Let S be a subset of a vector space. The point

x :=
n

∑
i=1

αixi

is called a convex combination of x1, . . . ,xn ∈S if αi ≥ 0 for i = 1, . . . ,n and ∑
n
i=1 αi = 1.

It is easy to see that the set of all convex combinations of n points x1, . . . ,xn in S is itself convex,
i.e.,

C := {x | x is a convex combination of x1, . . . ,xn}
is convex.

We next define the notion of interior points and closure points of sets. Let S be a subset of a normed
space X . The point x ∈ S is called an interior point of S if there exists an ε > 0 such that all
points y ∈X with ‖x− y‖< ε also belong to S . The interior of S is the collection of all interior
points of S . S is said to be open if it is equal to its interior. The point x ∈X is called a closure
point of S if, for all ε > 0, there exists a point y ∈S with ‖x− y‖ < ε . The closure of S is the
collection of all closure points of S . S is said to be closed if it is equal to its closure.

We summarize some elementary properties pertaining to convex sets in the following proposition.

Proposition 1.4 Let S and T be convex sets in a normed vector space X . Then

(a) the set αS := {x | x = αs,s ∈S } is convex for any scalar α .

(b) the sum S +T := {x | x = s+ t,s ∈S , t ∈T } is convex.
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1.2. FACTS FROM CONVEX ANALYSIS 5

(c) for any α1 ≥ 0 and α2 ≥ 0, (α1 +α2)S = α1S +α2S .

(d) the closure and the interior of S (and T ) are convex.

(e) for any linear transformation T : X →X , the image TS := {x | x = T s,s ∈ S } and the
inverse image T−1S := {x | T x ∈S } are convex.

(f) the intersection S ∩T := {x | x ∈S and x ∈T } is convex.

The distributive property in the third item is non trivial and depends on the convexity of S . The
last property actually holds for the intersection of an arbitrary collection of convex sets, i.e., if Sα ,
with α ∈ A, A an arbitrary index set, is a family of convex sets then the intersection ∩α∈ASα is
also convex. This property turns out to be very useful in constructing the smallest convex set that
contains a given set.

To give some examples, let a be a non-zero vector in Rn and b ∈R. The hyperplane {x ∈Rn | a>x =
b} and the half-space {x ∈Rn | a>x≤ b} are convex. A polyhedron is, by definition, the intersection
of finitely many hyperplanes and half-spaces and is convex by the last item of Proposition 1.4. A
polytope is a compact polyhedron.

Definition 1.5 (Convex hull) The convex hull convS of any subset S ⊂X is the intersection of
all convex sets containing S . If S consists of a finite number of elements, then these elements are
referred to as the vertices or the generators of convS .

It is easily seen that the convex hull of a finite set of points is a polytope. Interestingly, the converse
is also true: any polytope is the convex hull of a finite set. Hence, any polytope can be generated
as the convex hull of a finite number of points. Since convexity is a property that is closed under
intersection, the following proposition is immediate.

Proposition 1.6 (Convex hulls) For any subset S of a linear vector space X , the convex hull
conv(S ) is convex and consists precisely of all convex combinations of the elements of S .

At a few occasions we will need the concept of a cone. A subset S of a vector space X is called
a cone if αx ∈S for all x ∈S and α > 0. A convex cone is a cone which is a convex set. Like in
Proposition 1.4, if S and T are convex cones then so are αS , S +T , S ∩T , TS and T−1S
for all scalars α and all linear transformations T . Likewise, the intersection of an arbitrary collection
of convex cones is a convex cone again. Important examples of convex cones are defined in terms
of inequalities as follows. If the normed space X is equipped with an inner product 〈·, ·〉, then for a
given collection of points x1, . . . ,xn ∈X the set

S := {x ∈X | 〈x,xi〉 ≤ 0 for i = 1, . . . ,n}

is a (closed) convex cone. Thus, solution sets of systems of linear inequalities define convex cones.
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6 1.2. FACTS FROM CONVEX ANALYSIS

1.2.3 Convex functions

In mathematics, inequalities are binary relations defined on a set with the purpose to order or se-
quence its elements. The symbol ≤ defines the familiar binary relation ‘smaller than or equal to’ on
the set R of real numbers which, in fact, makes R a totally ordered set. In considering cost functions
f : S → R the familiar ordering ≤ on R certainly suffices to introduce and analyze the convexity
of f . However, since vector and matrix valued functions play a vital role throughout this book, it is
useful to introduce a less common but much more general notion of convexity of functions.

It is for this reason that we start the discussion of convex functions with the introduction of the binary
relations≺, 4, � and < on the sets of symmetric and Hermitian matrices. A complex valued matrix
A is Hermitian if it is square and A = A∗ = Ā> where the bar denotes taking complex conjugate of
each entry in A. If A is real then this amounts to saying that A = A> in which case A is said to be
symmetric. The sets of all n× n Hermitian and symmetric matrices will be denoted by Hn and Sn,
respectively, and we will omit the superscript n if the dimension is not relevant for the context. With
n = 1, H1 and S1 simply coincide with the sets of complex and real numbers which, as usual, are
identified with the scalar fields C and R, respectively. The sets Hn and Sn naturally become vector
spaces when equipped with the usual notion of addition and scalar multiplication of matrices.

A Hermitian or symmetric matrix A is negative definite if x∗Ax < 0 for all non-zero complex vectors
x. It is negative semi-definite if the inequality is non-strict, that is, if x∗Ax ≤ 0 for all non-zero
complex vectors x. Similarly, A is positive definite or positive semi-definite if −A is negative or
negative semi-definite, respectively. The symbols ≺, 4, � and < now define binary relations on
both Hn and Sn (and certainly not on arbitrary matrices!) as follows

A≺ B if A−B is negative definite
A 4 B if A−B is negative semi-definite
A� B if A−B is positive definite
A < B if A−B is positive semi-definite.

With these definitions 4 and < are (non-strict) partial orderings on H and S. That is, these binary
relations satisfy the properties of reflexivity (A 4 A), anti-symmetry (A 4 B, B 4 A implies A = B)
and transitivity (A 4 B, B 4C implies A 4C), but not a total ordering. This means that it is not true
that for any A,B ∈Hn either A 4 B or A < B. Indeed, for the set H1 = C for example, the complex
numbers i and −i satisfy neither i 4−i nor −i 4 i.

Hermitian and symmetric matrices have real eigenvalues. Indeed, a scalar λ is an eigenvalue of
A ∈ Hn if the equation Ax = λx has a non-zero vector solution x. Pre-multiplying this equation by
x∗ gives λx∗x = x∗Ax = x∗A∗x = λ̄x∗x which shows that λ = λ̄ , i.e., λ must be real. We leave it as
an exercise to show that A≺ 0 if and only if all its eigenvalues are negative. Similarly, A 4 0 if and
only if A has non-positive eigenvalues.

Definition 1.7 (Convex functions) A (matrix valued) function F : S →H is convex if S is a non-
empty convex set and if for all x1,x2 ∈S and α ∈ (0,1) there holds that

F(αx1 +(1−α)x2)4 αF(x1)+(1−α)F(x2). (1.2.2)
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F is called strictly convex if the inequality (1.2.2) with 4 replaced by ≺ holds for all x1,x2 ∈S ,
x1 6= x2 and all α ∈ (0,1).

Everything that is said here about functions F : S →H also applies to symmetric valued functions
F : S → S and to real scalar valued functions f : S → R. For the latter, the binary relation 4
in (1.2.2) coincides with the usual ≤. It is important to note that the domain of a convex function
is by definition a convex set. Simple examples of real-valued convex functions are f (x) = x2 on
R, f (x) = sinx on [π,2π] and f (x) = − logx on x > 0. A (matrix valued) function F : S → H is
concave if −F is convex.

Many operations on convex functions naturally preserve convexity. For example, if F1 and F2 are
convex functions with domain S then linear combinations α1F1+α2F2 : x 7→α1F1(x)+α2F2(x) and
composite functions G(F1) are convex for any non-negative numbers α1, α2 and non-decreasing2

functions G :H→H.

There is an easy way to obtain convex sets from convex functions. Let Γ ∈ H. A sublevel set of a
function F : S →H is a set of the form

SΓ := {x ∈S | F(x)4 Γ}.

It is immediate that SΓ1 ⊆SΓ2 whenever Γ1 4Γ2; that is: sublevel sets are non-decreasing functions
(in a set theoretic sense) of Γ ∈ H (with the partial order 4 on H). The following proposition will
prove very useful.

Proposition 1.8 If F : S →H is convex then the sublevel set SΓ is convex for all Γ ∈H.

Proof. Suppose F is convex, let Γ ∈ H and consider SΓ. If SΓ is empty then the statement is
trivial. Suppose therefore that SΓ 6= /0 and let x1,x2 ∈SΓ, α ∈ (0,1). Then, F(x1)4 Γ, F(x2)4 Γ

and the convexity of S implies that αx1 +(1−α)x2 ∈S . Convexity of F now yields that

F(αx1 +(1−α)x2)4 αF(x1)+(1−α)F(x2)4 αΓ+(1−α)Γ = Γ

i.e., αx1 +(1−α)x2 ∈SΓ.

Sublevel sets are commonly used in specifying desired behavior of multi-objective control problems.
As an example, suppose that S denotes a class of (closed-loop) transfer functions and let, for k =
1, . . . ,K, fk : S → R be the kth objective function on S . A multi-objective specification amounts
to characterizing one or all transfer functions x ∈S for which the design objectives

f1(x)≤ γ1, f2(x)≤ γ2, . . . , fK(x)≤ γK

hold simultaneously. This multi-objective specification amounts to characterizing the sublevel set

SΓ := {x ∈S | F(x)4 Γ}
2A function G :H→H is non-decreasing if G(Y1)4 G(Y2) whenever Y1 4 Y2.
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where F := diag( f1, . . . , fK) is a mapping from S to SK and where Γ = diag(γ1, . . .γK) belongs to
SK . The design question will be to decide for which Γ this set is non-empty. Proposition 1.8 together
with Proposition 1.4 promises the convexity of SΓ whenever fk is convex for all k.

We emphasize that it is not true that convexity of the sublevel sets SΓ, Γ ∈ H implies convexity of
F . (See Exercise 2 and Exercise 6 in this Chapter). However, the class of functions for which all
sublevel sets are convex is that important that it deserves its own name.

Definition 1.9 (Quasi-convex functions) A function F : S →H is quasi-convex if its sublevel sets
SΓ are convex for all Γ ∈H.

It is easy to verify that F is quasi-convex if and only if for all α ∈ (0,1) and for all x1,x2 ∈S we
have

F(αx1 +(1−α)x2) 4 λmax(x1,x2)I

where λmax(x1,x2)=max[λmaxF(x1),λmaxF(x2)] is the maximum of the largest eigenvalues of F(x1)
and F(x2). In particular, every convex function is quasi-convex.

We conclude this section with the introduction of affine sets and affine functions. A subset S of a
linear vector space is called an affine set if the point x := αx1 +(1−α)x2 belongs to S for every
x1 ∈S , x2 ∈S and α ∈ R. The geometric idea is that for any two points of an affine set, also the
entire line through these points belongs to the set. From Definition 1.2 it is evident that every affine
set is convex. The empty set and singletons are generally considered to be affine. Each non-empty
affine set S in a finite dimensional vector space X can be written as

S = {x ∈X | x = x0 +m, m ∈M }

where x0 ∈X is a vector and M is a linear subspace of X . That is, affine sets are translates of
linear subspaces. For any such representation, the linear subspace M ⊆X is uniquely defined, but
the vector x0 is not.

Definition 1.10 (Affine functions) A (matrix valued) function F : S →T is affine if

F(αx1 +(1−α)x2) = αF(x1)+(1−α)F(x2)

for all x1,x2 ∈S and α ∈ R.

If S and T are finite dimensional then any affine function F : S → T can be represented as
F(x) = F0 +T (x) where F0 ∈ T and T : S → T is a linear map. Indeed, setting F0 = F(0) and
T (x) = F(x)−F0 establishes this representation. In particular, F : Rn→ Rm is affine if and only if
there exists x0 ∈ Rn such that F(x) = F(x0)+T (x− x0) where T is a matrix of dimension m× n.
Note that all affine functions are convex as well as concave.
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1.3. CONVEX OPTIMIZATION 9

1.3 Convex optimization

Well prepared with definitions and elementary properties of convex sets and convex functions, we
hope that this section will convince the most skeptical reader why convexity of sets and functions is
such a desirable property for optimization.

1.3.1 Local and global minima

Anyone who gained experience with numerical optimization methods got familiar with the pitfalls
of local minima and local maxima. One crucial reason for studying convex functions is related to
the absence of local minima.

Definition 1.11 (Local and global optimality) Let S be a subset of a normed space X . An ele-
ment x0 ∈S is said to be a local optimal solution of F : S →H if there exists ε > 0 such that

F(x0)4 F(x) (1.3.1)

for all x ∈S with ‖x− x0‖< ε . It is called a global optimal solution if (1.3.1) holds for all x ∈S .

In words, x0 ∈S is a local optimal solution if there exists a neighborhood of x0 such that F(x0) 4
F(x) for all feasible points nearby x0. Note that we defined the notion of local optima for matrix
valued functions here! According to this definition, a global optimal solution is also locally optimal.
Here is a simple and nice result which provides one of our main interests in convex functions.

Proposition 1.12 Suppose that F : S →H is convex. Every local optimal solution of F is a global
optimal solution. Moreover, if F is strictly convex, then the global optimal solution is unique.

Proof. Let F be convex and suppose that x0 ∈ S is a local optimal solution of F . Then for all
x ∈S and α ∈ (0,1) sufficiently small,

F(x0)4 F(x0 +α(x− x0)) = F((1−α)x0 +αx)4 (1−α)F(x0)+αF(x). (1.3.2)

This implies that
0 4 α(F(x)−F(x0)) (1.3.3)

or F(x0) 4 F(x). Since x ∈S is arbitrary, it follows that x0 is a global optimal solution of F . If F
is strictly convex, then the second inequality in (1.3.2) is strict (≺) so that (1.3.3) becomes strict for
all x ∈S . Hence, x0 must be unique.

It is very important to emphasize that Proposition 1.12 does not make any statement about the exis-
tence of optimal solutions x0 ∈S that minimize F . It merely says that all locally optimal solutions
are globally optimal.

Remark 1.13 Proposition 1.12 does not hold for quasi-convex functions.
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1.3.2 Uniform bounds

The second reason to investigate convex functions comes from the fact that uniform upperbounds of
convex functions can be verified on subsets of their domain. Here are the details: let S0 be a set and
suppose that F : S →H is a function with domain

S = conv(S0).

As we have seen in Proposition 1.6, S is convex and we have the following property which is both
simple and powerful.

Proposition 1.14 Let F : S →H be a convex function where S = conv(S0) and let Γ ∈H. Then
F(x)4 Γ for all x ∈S if and only if F(x)4 Γ for all x ∈S0.

Proof. The ‘only if’ part is trivial. To see the ‘if’ part, Proposition 1.6 implies that every x ∈S
can be written as a convex combination x = ∑

n
i=1 αixi where n > 0, αi ≥ 0, xi ∈S0, i = 1, . . . ,n and

∑
n
i=1 αi = 1. Using convexity of F and non-negativity of the αi’s, we infer

F(x) = F(
n

∑
i=1

αixi) 4
n

∑
i=1

αiF(xi) 4
n

∑
i=1

αiΓ = Γ,

which yields the result.

Proposition 1.14 states that the uniform bound F(x)4 Γ on S can equivalently be verified on the set
S0. This simple observation is of great practical relevance when S0 contains only a finite number
of elements, i.e., when S is a polytope. Proposition 1.14 then states that it requires a finite number
of tests to conclude whether or not F(x)4 Γ for all x ∈S .

1.3.3 Duality and convex programs

In many optimization problems, the set of all possible decisions is a real valued finite dimensional
vector space X = Rn and the space of feasible decisions typically consists of x ∈X that satisfy a
finite number of inequalities and equations of the form

gi(x)≤ 0, i = 1, . . . ,k
h j(x) = 0, j = 1, . . . , l

where gi and h j are real-valued functions on X . Indeed, saturation constraints, safety margins,
evolution constraints, and a large number of constitutive and balance equations can be written in this
way. The space of feasible decisions S ⊂X can then be expressed as

S := {x ∈X | G(x)4 0, H(x) = 0} (1.3.4)

where G : X →Sk and H : X →Sl are the symmetric matrix valued functions G(x)= diag(g1(x), . . . ,gk(x))
and H(x) = diag(h1(x), . . . ,hl(x)). We remark here that the space (1.3.4) is actually a much more

10 Compilation: January 2015



1.3. CONVEX OPTIMIZATION 11

general formalism to represent feasibility sets through the binary relations 4 (or possibly ≺) when
compared to the binary relations ≤ and <.

With constraints of the form (1.3.4), we consider the optimization problem to find the optimal value

Popt := inf{ f (x) | x ∈S }

and possibly optimal solutions xopt ∈ S such that f (xopt) = Popt. Here, f : X → R is a given
objective function. In this section, we will refer to this constrained optimization problem as a primal
optimization problem and to Popt as the primal optimal value. To make the problem non-trivial, we
will assume that Popt >−∞ and that S is non-empty.

Remark 1.15 If X , f and G are convex and H is affine, then S is convex, in which case this
problem is commonly referred to as a convex program. This is probably the only tractable instance of
this problem and its study certainly belongs to the most sophisticated area of nonlinear optimization
theory. The Karush-Kuhn-Tucker Theorem, presented below, is the key to understanding convex
programs. The special instance where f , G and H are all affine functions makes the problem to
determine Popt a semi-definite program. If f is quadratic (i.e., f is of the form

f (x) =
(

1
x

)>( q s
s> R

)(
1
x

)
for some q ∈R, s> ∈Rn and R = R> ∈ Sn) and G and H are affine, this is a quadratic programming
problem.

Obviously, for any x0 ∈S we have that Popt ≤ f (x0), i.e., an upperbound of Popt is obtained from
any feasible point x0 ∈S . On the other hand, to find a lower bound of Popt, let us first equip the set
S of symmetric matrices (of any dimension) with the inner product

〈A,B〉 := trace(AB), A,B ∈ S. (1.3.5)

This makes S an inner product space with corresponding norm ‖A‖=
√
〈A,A〉 that is usually referred

to as the Frobenius norm of a symmetric matrix A ∈ S.

Suppose that x ∈X satisfies G(x)4 0 and H(x) = 0. Then for arbitrary matrices Y ∈ Sk with Y < 0
and Z ∈ Sl we have that

L(x,Y,Z) := f (x)+ 〈Y,G(x)〉+ 〈Z,H(x)〉 ≤ f (x).

Here, L(·, ·, ·) is called a Lagrangian, which is a function on X ×Sk×Sl , and we used the fact that
〈A,B〉 ≤ 0 if A < 0 and B 4 0 (See exercise 14 in this chapter). It is immediate that for all Y ∈ Sk,
Y < 0 and Z ∈ Sl we have that

`(Y,Z) := inf
x∈X

L(x,Y,Z)≤ inf
x∈S

L(x,Y,Z)≤ inf
x∈S

f (x) = Popt.

The function `(·, ·) is the Lagrange dual cost. A key property of the Lagrange dual cost is that it is a
concave function of its arguments. Indeed, for any pair of symmetric matrices (Y1,Z1) and (Y2,Z2)
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12 1.3. CONVEX OPTIMIZATION

with Y1 < 0 and Y2 < 0 the convex combination α1(Y1,Z1)+α2(Y2,Z2) with α1 ≥ 0, α2 ≥ 0 and
α1 +α2 = 1 satisfies

`(α1Y1 +α2Y2,α1Z1 +α2Z2) = inf
x∈X

2

∑
i=1

[αi f (x)+αi〈Yi,G(x)〉+αi〈Zi,H(x)〉]

≥ inf
x∈X

α1[ f (x)+ 〈Y1,G(x)〉+ 〈Z1,H(x)〉]+ inf
x∈X

α2[F(x)+ 〈Y2,G(x)〉+ 〈Z2,H(x)〉]

= α1`(Y1,Z1)+α2`(Y2,Z2)

which shows that ` is concave, no matter whether or not the primal problem is a convex program. A
pair of symmetric matrices (Y,Z) with Y < 0 is said to be feasible for the dual problem if `(Y,Z)>
−∞. Suppose that there exists at least one such feasible pair (Y,Z). Since ` is independent of x, we
may conclude that

Dopt := sup
Y<0,Z

`(Y,Z) = sup
Y<0,Z

inf
x∈X

L(x,Y,Z)≤ Popt

provides a lower bound of Popt. Since ` is concave the dual optimization problem to determine Dopt
is therefore a concave optimization problem. The main reason to consider this problem is that the
constraints in the dual problem are much simpler to deal with than the ones in the primal problem.

Of course, the question arises when Dopt = Popt. To answer this question, suppose that X , f and
G are convex and H is affine. As noted before, this implies that S is convex. We will say that S
satisfies the constraint qualification if there exists a point x0 in the interior of X with G(x0) 4 0,
H(x0) = 0 such that g j(x0)< 0 for all component functions g j that are not affine3. In particular, S
satisfies the constraint qualification if G is affine. We have the following central result.

Theorem 1.16 (Karush-Kuhn-Tucker) Suppose that X , f and G are convex and H is affine. As-
sume that Popt >−∞ and S defined in (1.3.4) satisfies the constraint qualification. Then

Dopt = Popt.

and there exist symmetric matrices Yopt ∈ Sk, Yopt < 0 and Zopt ∈ Sl , such that Dopt = `(Yopt,Zopt),
i.e., the dual optimization problem admits an optimal solution. Moreover, xopt is an optimal solution
of the primal optimization problem and (Yopt,Zopt) is an optimal solution of the dual optimization
problem, if and only if

(a) G(xopt)4 0, H(xopt) = 0,

(b) Yopt < 0 and xopt minimizes L(x,Yopt,Zopt) over all x ∈X and

(c) 〈Yopt,G(xopt)〉 = 0.

The result of Theorem 1.16 is very general and provides a strong tool in convex optimization. This,
because the dual optimization problem is, in general, simpler and, under the stated assumptions, ad-
mits an optimal solution irrespective of whether the primal optimization problem admits an optimal

3Some authors call S superconsistent and the point x0 a Slater point in that case.
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solution. The optimal solutions (Yopt,Zopt) of the dual optimization problem are generally called
Kuhn-Tucker points. The conditions 1, 2 and 3 in Theorem 1.16 are called the primal feasibility, the
dual feasibility and the alignment (or complementary slackness) condition.

Theorem 1.16 provides a conceptual solution of the primal optimization problem as follows. First
construct the dual optimization problem to maximize `(Y,Z). Second, calculate a Kuhn-Tucker
point (Yopt,Zopt) which defines an optimal solution to the dual problem (existence is guaranteed).
Third, determine (if any) the set of optimal solutions P ′

opt which minimize L(x,Yopt,Zopt) over all
x ∈X . Fourth, let Popt be the set of points xopt ∈P ′

opt such that G(xopt) 4 0, H(xopt) = 0 and
〈Yopt,G(xopt)〉 = 0. Then Popt is the set of optimal solutions of the primal optimization problem.
We emphasize again that optimal solutions to the dual problem are guaranteed to exist, optimal
solutions of the primal problem may not exist.

Remark 1.17 In order that the triple (xopt,Yopt,Zopt) defined in Theorem 1.16 exists, it is necessary
and sufficient that (xopt,Yopt,Zopt) be a saddle point of the Lagrangian L in the sense that

L(xopt,Y,Z)≤ L(xopt,Yopt,Zopt)≤ L(x,Yopt,Zopt)

for all x ∈X , Y ∈ Sk, Y < 0 and Z ∈ Sl . In that case,

Popt = L(xopt,Yopt,Zopt) = inf
x

sup
Y<0,Z

L(x,Y,Z) = sup
Y<0,Z

inf
x

L(x,Y,Z) =

= Dopt.

That is, the optimal value of the primal and dual optimization problem coincide with the saddle
point value L(xopt,Yopt,Zopt). Under the given conditions, Theorem 1.16 therefore states that xopt is
an optimal solution of the primal optimization problem if and only if there exist (Yopt,Zopt) such that
Yopt < 0 and (xopt,Yopt,Zopt) is a saddle point of L.

Remark 1.18 A few generalizations of Theorem 1.16 are worth mentioning. The inequality con-
straints G(x) 4 0 in (1.3.4) can be replaced by the more general constraint G(x) ∈ K , where
K ⊂H is a closed convex cone in a Hilbert space H . In the definition of the Lagrangian L,
the matrices Y and Z define linear functionals 〈Y, ·〉 and 〈Z, ·〉 on the inner product spaces Sk and Sl ,
respectively. For more general Hilbert spaces (H ,〈·, ·〉), the constraint Y < 0 needs to be replaced
by the requirement that 〈Y,G(x)〉 ≤ 0 for all x∈X with G(x)∈K . This is equivalent to saying that
the linear functional 〈Y, ·〉 is non-positive on the closed and convex cone K . Although interesting,
we will not further exploit this more general structure in this book.

Joseph-Louis Lagrange (1736-1813) studied at the College of Turin and he became in-
terested in mathematics when he read a copy of Halley’s work on the use of algebra in
optics. Although he decided to devote himself to mathematics, he did not have the ben-
efit of studying under supervision of a leading mathematician. Before writing his first
paper, he sent his results to Euler, who at that time was working in Berlin. Lagrange
worked on the calculus of variations and regularly corresponded on this topic with Eu-
ler. Among many contributions in mathematics, Lagrange worked on the calculus of
differential equations and applications in fluid mechanics where he first introduced the
Lagrangian function.
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Figure 1.1: Joseph-Louis Lagrange

1.3.4 Subgradients

Our fourth reason of interest in convex functions comes from the geometric idea that through any
point on the graph of a convex function we can draw a line such that the entire graph lies above or on
the line. For functions f : S → R with S ⊆ R, this idea is pretty intuitive from a geometric point
of view. The general result is stated in the next Proposition and its proof is a surprisingly simple and
beautiful application of Theorem 1.16.

Proposition 1.19 Let S ⊆ Rn and let 〈·, ·〉 denote the standard inner product on Rn. If f : S → R
is convex then for all x0 in the interior of S there exists a vector g = g(x0) ∈ Rn, such that

f (x)≥ f (x0)+ 〈g,x− x0〉 (1.3.6)

for all x ∈S .

Proof. The set S ′ := {x ∈S | x−x0 = 0} has the form (1.3.4) and we note that the primal optimal
value Popt := infx∈S ′ f (x)− f (x0) = 0. Define the Lagrangian L(x,z) := f (x)− f (x0)+ 〈z,x− x0〉
and the corresponding dual optimization Dopt := supz∈S infx∈Rn L(x,z). (In contrast to the previous
subsection, the inner product 〈·, ·〉 is now defined on vectors rather than on symmetric matrices).
Then Dopt ≤ Popt = 0 and since S ′ trivially satisfies the constraint qualification, we infer from
Theorem 1.16 that there exists zopt ∈ Rn such that

Dopt = 0 = inf
x∈S

f (x)− f (x0)+ 〈zopt,x− x0〉.

Consequently, f (x)− f (x0)+ 〈zopt,x− x0〉 ≥ 0 for all x ∈ S which yields (1.3.6) by setting g :=
−zopt.
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A vector g satisfying (1.3.6) is called a subgradient of f at the point x0, and the affine function
defined by the right-hand side of (1.3.6) is called a support functional for f at x0. Inequality (1.3.6)
is generally referred to as the subgradient inequality. We emphasize that the subgradient of a convex
function f at a point is in general non-unique. Indeed, the real-valued function f (x) = |x| is convex
on R and has any real number g ∈ [−1,1] as its subgradient at x = 0. The set of all subgradients
of f at x0 is the subdifferential of f at x0 and is denoted by ∂ f (x0) (or ∂x f (x0) if the independent
variable need to be displayed explicitly). From the subgradient inequality (1.3.6) it is immediate that
∂ (α f )(x) = α∂ f (x) for all x and α > 0. Also, x0 ∈S is a global optimal solution of f if and only
if 0 ∈ ∂ f (x0). We remark that for a convex function f , ∂ f (x) is a closed convex set for any x in the
interior of its domain. As a more striking property, let f1 and f2 be convex functions with domains
S1 and S2, respectively, then

∂ ( f1 + f2)(x) = ∂ f1(x)+∂ f2(x)

for all x in the interior of S1 ∩S2. So, taking subdifferentials is a linear operation in the sense of
set additions.

Remark 1.20 Proposition 1.19 gives a necessary condition for convexity of a function f . It can be
shown that if the gradient

∇ f =
(

∂ f
∂x1

. . . ∂ f
∂xn

)>
exists and is continuous at x ∈S then ∂ f (x) = ∇ f (x). So, every gradient is a subgradient. Con-
versely, if f has a unique subgradient at x, then also the gradient of f exists at x and ∂ f (x) = ∇ f (x).
One calls f differentiable at x in that case.

The geometric interpretation of Proposition 1.19 is that the graphs of the affine functions x 7→ f (x0)+
〈g,x− x0〉, with g ∈ ∂ f (x0), range over the collection of all hyperplanes which are tangent to the
graph of f at the point (x0, f (x0). That is, the graph of f lies on or above these hyperplanes each of
which contains the point (x0, f (x0)). If we consider the right hand side of (1.3.6), then trivially 〈g,x−
x0〉> 0 implies that f (x)> f (x0). Thus all points in the half-space H+ := {x ∈S | 〈g,x−x0〉 > 0}
lead to larger values of f than f (x0). In particular, subgradients always point in the direction of
increasing function values and therefore, in searching for the global minimum of f we can disregard
half-spaces of the form H+.

This last observation is at the basis of the ellipsoid algorithm: a simple, numerically robust and
straightforward iterative algorithm for the computation of optimal values.

Algorithm 1.21 (Ellipsoid algorithm) Aim: determine the optimal value of a convex function f :
S → R.

Input: A convex function f : S → R with S ⊂ Rn. An ellipsoid

E0 := {x ∈ Rn | (x− x0)
>P−1

0 (x− x0)≤ 1}.
centered at x0 ∈ Rn and oriented by a positive definite matrix P0 = P>0 such that it
contains an optimal solution of the problem to minimize f . Let ε > 0 be an accuracy
level. Let k = 0.
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Step 1: Compute a subgradient gk ∈ ∂ f (xk) and set

Lk := max
`≤k

(
f (x`)−

√
g>` P̀ g`

)
Uk := min

`≤k
f (x`)

If gk = 0 or Uk−Lk < ε , then set x∗ = xk and stop. Otherwise proceed to Step 2.

Step 2: Put Hk := Ek ∩{x ∈ Rn | 〈gk,x− xk〉 ≤ 0}.

Step 3: Set

xk+1 := xk−
Pkgk

(n+1)
√

g>k Pkgk

Pk+1 :=
n2

n2−1

(
Pk−

2
(n+1)g>k Pkgk

Pkgkg>k Pk

)

and define the ellipsoid

Ek+1 := {x ∈ Rn | (x− xk+1)
>P−1

k+1(x− xk+1)≤ 1}

with center xk+1 and orientation Pk+1.

Step 4: Set k to k+1 and return to Step 1.

Output: The point x∗ with the property that | f (x∗)− infx∈S f (x)| ≤ ε .

The algorithm therefore determines the optimal value of f with arbitrary accuracy. We emphasize
that the point x∗ is generally not an optimal or almost optimal solution unless gk = 0 upon termi-
nation of the algorithm. Only in that case x∗ is an optimal solution. Hence, the algorithm does not
necessarily calculate a solution, but only the optimal value Vopt = infx∈S f (x).

The idea behind the algorithm is as follows. The algorithm is initialized by a ‘non-automated’ choice
of x0 and P0 such that there exists an optimal solution xopt in the ellipsoid E0. If S is bounded then
the safest choice would be such that S ⊆ E0. The subgradients gk ∈ ∂ f (xk) divide Rn in the two
half-spaces

{x | 〈gk,x− xk〉< 0} and {x | 〈gk,x− xk〉> 0}
while the cutting plane {x | 〈gk,x−xk〉= 0} passes through the center of the ellipsoid Ek for each k.
Since f (x)> f (xk) whenever 〈gk,x−xk〉> 0, the optimal solution xopt is guaranteed to be located in
Hk. The ellipsoid defined in Step 3 contains Hk and is the smallest volume ellipsoid with this
property. Iterating over k, the algorithm produces a sequence of ellipsoids E0,E1,E2, . . . whose
volumes decrease according to

vol(Ek+1) = det(Pk+1)≤ e−
1
2n det(Pk) = e−

1
2n vol(Ek)
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1.4. LINEAR MATRIX INEQUALITIES 17

and where each ellipsoid is guaranteed to contain xopt. The sequence of centers x0,x1,x2, . . . of the
ellipsoids generate a sequence of function evaluations f (xk) which converges to the optimal value
f (xopt). Convergence of the algorithm is in ‘polynomial time’ due to the fact that the volume of the
ellipsoids decreases geometrically. Since xopt ∈ Ek for all k, we have

f (xk)≥ f (xopt)≥ f (xk)+ 〈gk,xopt− xk〉 ≥

≥ f (xk)+ inf
ξ∈Ek
〈gk,ξ − xk〉= f (xk)−

√
g>k Pkgk

so that Lk ≤ f (xopt)≤Uk define an upper and lower bound on the optimal value.

The algorithm is easy to implement, is very robust from a numerical point of view and implies low
memory requirements in its performance. However, convergence may be rather slow which may be
a disadvantage for large optimization problems.

1.4 Linear matrix inequalities

1.4.1 What are they?

A linear matrix inequality is an expression of the form

F(x) := F0 + x1F1 + . . .+ xnFn ≺ 0 (1.4.1)

where

• x = (x1, . . . ,xn) is a vector of n real numbers called the decision variables.

• F0, . . . ,Fn are Hermitian matrices, i.e., Fj = F>j ∈H, for j = 0, . . . ,n.

• the inequality ≺ 0 in (1.4.1) means ‘negative definite’. That is, u∗F(x)u < 0 for all non-
zero complex vectors u. Because all eigenvalues of Hermitian matrices are real, (1.4.1) is
equivalent to saying that all eigenvalues λ (F(x)) are negative. Equivalently, the maximal
eigenvalue λmax(F(x))< 0.

Definition 1.22 (Linear Matrix Inequality) A linear matrix inequality (LMI) is an inequality

F(x)≺ 0 (1.4.2)

where F is an affine function mapping a finite dimensional vector space X to either the set H of
Hermitian or the set S of symmetric matrices.

Remark 1.23 Recall from Definition 1.10 that an affine mapping F : X →H necessarily takes the
form F(x)=F0+T (x) where F0 ∈H (i.e., F0 is Hermitian) and T : X →H is a linear transformation.
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18 1.4. LINEAR MATRIX INEQUALITIES

Thus if X is finite dimensional, say of dimension n, and {e1, . . . ,en} constitutes a basis for X , then
every x ∈X can be represented as x = ∑

n
j=1 x je j and we can write

T (x) = T

(
n

∑
j=1

x je j

)
=

n

∑
j=1

x jFj

where Fj = T (e j) ∈H. Hence we obtain the standard form (1.4.1) as a special case.

Remark 1.24 In most control applications, LMI’s arise as functions of matrix variables rather than
scalar valued decision variables. This means that we consider inequalities of the form (1.4.2) where
X is, for example, the set Rm1×m2 of real matrices of dimension m1×m2. A simple example with
m1 = m2 = m is the Lyapunov inequality F(X) = A>X +X>A+Q ≺ 0 where A,Q ∈ Rm×m are
assumed to be given and X is the unknown matrix variable of dimension m×m. Note that this
defines an LMI only if Q ∈ Sm (as otherwise F(X) 6∈ S). We can view LMI’s with matrix variables
as a special case of (1.4.1) by defining an arbitrary basis E1, . . . ,En of X and expanding X ∈X as
X = ∑

n
j=1 x jE j. Then

F(X) = F

(
n

∑
j=1

x jE j

)
= F0 +

n

∑
j=1

x jF(E j) = F0 +
n

∑
j=1

x jFj ≺ 0

which is of the form (1.4.1). The coefficients x j in the expansion of X then define the decision
variables. The number of (independent) decision variables n corresponds to the dimension of X .
The number n is at most m2 (or m1×m2 for non-square matrix variables) and will depend on the
structure imposed on the matrix variable X . For example, if the matrix variable X is required to be
symmetric, X = Sm which has a basis of n = m(m+1)/2 matrix-valued elements. If X is required
to be diagonal then n = m.

Remark 1.25 A non-strict LMI is a linear matrix inequality where ≺ in (1.4.1) and (1.4.2) is re-
placed by 4. The matrix inequalities F(x)� 0, and F(x)≺ G(x) with F and G affine functions are
obtained as special cases of Definition 1.22 as they can be rewritten as the linear matrix inequalities
−F(x)≺ 0 and F(x)−G(x)≺ 0. It is for this reason that we will refer to all of these inequalities as
linear matrix inequalities.

1.4.2 Why are they interesting?

The linear matrix inequality (1.4.2) defines a convex constraint on x. That is, the set

S := {x | F(x)≺ 0}

of solutions of the LMI F(x)≺ 0 is convex. This is an immediate consequence of Proposition 1.8 by
observing that affine functions F are convex and that S is, in fact, equal to the sublevel set S0.

Although the convex constraint F(x)≺ 0 on x may seem rather special, it turns out that many convex
sets can be represented in this way and that these sets have more attractive properties than general
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1.4. LINEAR MATRIX INEQUALITIES 19

convex sets. In this subsection we discuss some seemingly trivial properties of linear matrix inequal-
ities which turn out to be of eminent help to reduce multiple constraints on an unknown variable to
an equivalent constraint involving a single linear matrix inequality.

Definition 1.26 (System of LMI’s) A system of linear matrix inequalities is a finite set of linear
matrix inequalities

F1(x)≺ 0, . . . , FK(x)≺ 0. (1.4.3)

From Proposition 1.4 we infer that the intersection of the feasible sets of each of the inequalities
(1.4.3) is convex. In other words, it is no surprise that the set of all x that satisfy (1.4.3) is convex.
The question arises whether or not this set can be represented as the feasibility set of another LMI.
The answer is yes. Indeed, F1(x)≺ 0, . . . ,FK(x)≺ 0 if and only if

F(x) :=


F1(x) 0 . . . 0

0 F2(x) . . . 0
...

. . .
...

0 0 . . . FK(x)

≺ 0

where the last inequality indeed makes sense as F(x) is symmetric (or Hermitian) for any x. Further,
since the set of eigenvalues of F(x) is simply the union of the eigenvalues of F1(x), . . . ,FK(x), any
x that satisfies F(x) ≺ 0 also satisfies the system of LMI’s (1.4.3) and vice versa. Conclude that
multiple LMI constraints can always be converted into one single LMI constraint.

A second important property amounts to incorporating affine constraints in linear matrix inequalities.
By this, we mean that combined constraints (in the unknown x) of the form{

F(x)≺ 0
Ax = a

or

{
F(x)≺ 0
x = Bu+b for some u

where the affine function F :Rn→ S, matrices A and B and vectors a and b are given, can be lumped
in one linear matrix inequality G(y)≺ 0. More generally, the combined equations{

F(x)≺ 0
x ∈M

(1.4.4)

where M is an affine set in Rn can be rewritten in the form of one single linear matrix inequality
G(y)≺ 0 so as to eliminate the affine constraint. To do this, recall that affine sets M can be written
as

M = {x | x = x0 +m, m ∈M0}

with x0 ∈ Rn and M0 a linear subspace of Rn. Suppose that n0 = dim(M0) and let e1, . . . ,en0 ∈ Rn

be a basis of M0. Let F(x) = F0 +T (x) be decomposed as in Remark 1.23. Then (1.4.4) can be
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rewritten as

0� F(x) = F0 +T (x0 +
n0

∑
j=1

x je j) =

= F0 +T (x0)+
n0

∑
j=1

x jT (e j) = G0 + x1G1 + . . .+ xn0Gn0 =: G(y)

where G0 = F0+T (x0), G j = T (e j) and y = col(x1, . . . ,xn0) are the coefficients of x−x0 in the basis
of M0. This implies that x ∈ Rn satisfies (1.4.4) if and only if G(y) ≺ 0. With the elimination of
the affine constraint, the dimension n0 of y is generally smaller and actually at most equal to the
dimension n of x.

A third property of LMI’s is obtained from a simple algebraic observation. If M is a square matrix
and T is non-singular, then the product T ∗MT is called a congruence transformation of M. For
Hermitian and symmetric matrices M such a transformation does not change the number of positive
and negative eigenvalues of M (See Exercise 15). Indeed, if vectors u and v are related according to
u= T v with T non-singular, then u∗Mu< 0 for all nonzero u is equivalent to saying that v∗T ∗MT v<
0 for all nonzero v. Hence M ≺ 0 if and only if T ∗MT ≺ 0. Applying this insight to a partitioned
Hermitian matrix

M =

(
M11 M12
M21 M22

)
with M11 square and non-singular, we obtain for a special congruence transformation that

M ≺ 0 ⇐⇒
(

I −M−1
11 M12

0 I

)>(M11 M12
M21 M22

)(
I −M−1

11 M12
0 I

)
≺ 0

⇐⇒
(

M11 0
0 S

)
≺ 0

⇐⇒
{

M11 ≺ 0
S≺ 0

where
S := M22−M21M−1

11 M12

is the so called Schur complement of M11 in M. A similar result is obtained by computing the
congruence transformation of M with

T =

(
I 0

−M−1
22 M21 I

)
This observation can be exploited to derive a very powerful result to linearize some non-linear
inequalities to linear inequalities:

Proposition 1.27 (Schur complement) Let F : X → H be an affine function which is partitioned
according to

F(x) =
(

F11(x) F12(x)
F21(x) F22(x)

)
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where F11(x) is square. Then F(x)≺ 0 if and only if{
F11(x)≺ 0
F22(x)−F21(x) [F11(x)]

−1 F12(x)≺ 0.
(1.4.5)

if and only if {
F22(x)≺ 0
F11(x)−F12(x) [F22(x)]

−1 F21(x)≺ 0.
. (1.4.6)

The second inequalities in (1.4.5) and (1.4.6) are actually rational constraints in x. Using this result,
it follows that non-linear matrix inequalities of the form (1.4.5) or (1.4.6) can be converted to linear
matrix inequalities. In particular, the rational and non-linear inequalities of the form (1.4.5) or (1.4.6)
define convex constraints on the variable x in the sense that the solution set of these inequalities is
convex and can be expressed as a regular LMI.

1.4.3 What are they good for?

As we will see, many optimization problems in control, identification and signal processing can be
formulated (or reformulated) using linear matrix inequalities. Clearly, it only makes sense to cast
these problems in an LMI setting if these inequalities can be solved in an efficient and reliable way.
Since the linear matrix inequality F(x)≺ 0 defines a convex constraint on the variable x, optimization
problems involving the minimization (or maximization) of a performance function f : S → R with
S := {x | F(x)≺ 0} belong to the class of convex optimization problems. Casting this in the setting
of the previous section, it may be apparent that the full power of convex optimization theory can be
employed if the performance function f is known to be convex.

Suppose that F : X → S is affine. There are two generic problems related to the study of linear
matrix inequalities:

(a) Feasibility: The question whether or not there exist elements x ∈X such that F(x) ≺ 0 is
called a feasibility problem. The LMI F(x)≺ 0 is called feasible if such x exists, otherwise it
is said to be infeasible.

(b) Optimization: Let an objective function f : S →R where S = {x | F(x)≺ 0}. The problem
to determine

fopt = inf
x∈S

f (x)

is called an optimization problem with an LMI constraint. This problem involves the deter-
mination of fopt, the calculation of an almost optimal solution x (i.e., for arbitrary ε > 0 the
calculation of an x∈S such that fopt≤ f (x)≤ fopt+ε), or the calculation of optimal solutions
xopt (elements xopt ∈S such that fopt = f (xopt)).

Let us give some simple examples to motivate the study of these problems.
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22 1.4. LINEAR MATRIX INEQUALITIES

Example 1: stability

Consider the problem to determine exponential stability of the linear autonomous system

ẋ = Ax (1.4.7)

where A ∈ Rn×n. By this, we mean the problem to decide whether or not there exists positive
constants M and α > 0 such that for any initial condition x0 the solution x(t) of (1.4.7) with x(t0)= x0
satisfies the bound

‖x(t)‖ ≤ ‖x(t0)‖Me−α(t−t0), for all t ≥ t0. (1.4.8)

Lyapunov taught us that the system (1.4.7) is exponentially stable if and only if there exists X =
X> ∈ Sn such that X � 0 and A>X + XA ≺ 0. Indeed, in that case the function V (x) := x>Xx
qualifies as a Lyapunov function in that it is positive for all non-zero x and strictly decaying along
solutions x of (1.4.7). In Chapter 3 we show that (1.4.8) holds with M2 = λmax(X)/λmin(X) and
α > 0 where A>X +XA+αX 4−αI. Thus, exponential stability of the system (1.4.7) is equivalent
to the feasibility of the LMI (

−X 0
0 A>X +XA

)
≺ 0.

Example 2: µ-analysis

Experts in µ-analysis (but other people as well!) regularly face the problem to determine a diagonal
matrix D such that ‖DMD−1‖< 1 where M is some given matrix. Since

‖DMD−1‖< 1⇐⇒ D−>M>D>DMD−1 ≺ I

⇐⇒M>D>DM ≺ D>D

⇐⇒M>XM−X ≺ 0

where X := D>D� 0, we see that the existence of such a matrix is an LMI feasibility problem where
X needs to be taken as the set of diagonal matrices.

Example 3: singular value minimization

Let F : X → S be an affine function and let σmax(·) denote the maximal singular value of a matrix.
Consider the problem to minimize f (x) := σmax(F(x)) over x. Clearly,

f (x)< γ ⇐⇒ λmax

(
F(x)>F(x)

)
< γ

2 ⇐⇒ 1
γ

F(x)>F(x)− γI ≺ 0

⇐⇒
(
−γI F(x)

F(x)> −γI

)
≺ 0
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where the latter inequality is obtained by taking a Schur complement. If we define

y :=
(

γ

x

)
, G(y) :=

(
−γI F(x)

F(x)> −γI

)
, g(y) := γ

then G is an affine function of y and the problem to minimize f over x is equivalent to the problem
to minimize g over y subject to G(y) ≺ 0. Hence, this is an optimization problem with an LMI
constraint and a linear objective function g.

Example 4: simultaneous stabilization

Consider k linear time-invariant systems of the form

ẋ = Aix+Biu

where Ai ∈ Rn×n and Bi ∈ Rn×m, i = 1, . . . ,k. The question of simultaneous stabilization amounts
to finding a state feedback law u = Fx with F ∈ Rm×n such that each of the k autonomous systems
ẋ = (Ai+BiF)x, i = 1, . . . ,k is asymptotically stable. Using Example 1 above, this problem is solved
when we can find matrices F and Xi, i = 1, . . . ,k, such that for all of these i’s{

Xi � 0
(Ai +BiF)>Xi +Xi(Ai +BiF)≺ 0

. (1.4.9)

Since both Xi and F are unknown, this is not a system of LMI’s in the variables Xi and F . One
way out of this inconvenience is to require that X1 = . . .= Xk =: X . After introducing new decision
variables Y = X−1 and K = FY (1.4.9) reads{

Y � 0
AiY +YA>i +BiK +K>B>i ≺ 0

for i = 1, . . . ,k. The latter is a system of LMI’s in the variables Y and K. The joint stabilization
problem therefore has a solution F = KY−1 if the latter system of LMI’s is feasible. We will see
in Chapter 3 that the quadratic function V (x) := x>Xx serves as a joint Lyapunov function for the k
autonomous systems.

Example 5: evaluation of quadratic costs

Consider the linear autonomous system

ẋ = Ax, x(0) = x0 (1.4.10)

together with the criterion function J :=
∫

∞

0 x>(t)Qx(t)d t where Q = Q> < 0. Assume that the
system is asymptotically stable. Then all solutions x of (1.4.10) are square integrable so that J < ∞.
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Now consider the non-strict linear matrix inequalities X < 0 and A>X+XA+Q4 0. For any feasible
X = X> we can differentiate x>(t)Xx(t) along solutions x of (1.4.10) to obtain

d
dt
[x(t)>Xx(t)] = x(t)>[A>X +XA]x(t) ≤ −x(t)>Qx(t).

Integrating the latter inequality from t = 0 till ∞ yields the upper bound

J =
∫

∞

0
x>(t)Qx(t)d t ≤ x>0 Xx0.

where we used that limt→∞ x(t) = 0. Moreover, the smallest upperbound of J is obtained by mini-
mizing the function f (X) := x>0 Xx0 over all X = X> which satisfy X < 0 and A>X +XA+Q 4 0.
Again, this is an optimization problem with an LMI constraint.

Example 6: a Leontief economy

A manufacturer is able to produce n different products from m different resources. Assume that the
selling price of product j is p j and that it takes the manufacturer ai j units of resource i to produce
one unit of product j. Let x j denote the amount of product j that is to be produced and let ai denote
the amount of available units of resource i, i = 1, . . . ,m. A smart manager advised the manufacturer
to maximize her profit

p(x1, . . . ,xn) := p1x1 + p2x2 + . . .+ pnxn,

but the manager realized that she can do this only subject to the production constraints

a11x1 +a12x2 + . . .+a1nxn ≤ a1

a21x1 +a22x2 + . . .+a2nxn ≤ a2

...
am1x1 +am2x2 + . . .+amnxn ≤ am

and x j ≥ 0, j = 1, . . . ,n. Note that the manufacturer faces an optimization problem subject to a
system of non-strict linear matrix inequalities.

Wassily Leontief was born in 1906 in St. Petersburg and is winner of the 1973 Nobel
Prize of Economics. Among many things, he used input-output analysis to study the
characteristics of trade flow between the U.S. and other countries.

1.4.4 How are they solved?

The problems defined in the previous subsection can be solved with efficient numerical tools. In this
section we discuss the basic ideas behind the ‘LMI-solvers’.
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Ellipsoid method

We first give a solution which is based on the Ellipsoid Algorithm 1.21 discussed in Section 1.3. As
mentioned before, this algorithm is simple, numerically robust and easy to implement but may be
slow for larger optimization problems.

We will apply this algorithm to the feasibility problem defined in subsection 1.4.3. Let F : Rn→ S
be affine. Recall that F(x) ≺ 0 if and only if λmax(F(x)) < 0. Define, for x ∈ Rn, the function
f (x) := λmax(F(x)) and consider the optimal value Vopt := infx∈Rn f (x). Then the LMI F(x) ≺ 0 is
feasible if and only if Vopt < 0. It is infeasible if and only if Vopt ≥ 0.

There are a few observations to make to apply Proposition 1.19 and the ellipsoid algorithm for this
optimization problem. The first one is to establish that f is a convex function. Indeed, S is convex
and for all 0 < α < 1 and x1,x2 ∈S we have that

f (αx1 +(1−α)x2) = λmax(F(αx1 +(1−α)x2))

= λmax(αF(x1)+(1−α)F(x2))

≤ αλmax(F(x1))+(1−α)λmax(F(x2))

= α f (x1)+(1−α) f (x2)

which shows that f is convex. Second, to apply Step 1 of the algorithm, for any x0 we need to
determine a subgradient g of f at the point x0. To do this, we will use the fact that

f (x) = λmax(F(x)) = max
u>u=1

u>F(x)u.

This means that for an arbitrary x0 ∈ Rn we can determine a vector u0, depending on x0, with unit
norm u>0 u0 = 1 such that λmax(F(x0)) = u>0 F(x0)u0. But then

f (x)− f (x0) = max
u>u=1

u>F(x)u−u>0 F(x0)u0

≥ u>0 F(x)u0−u>0 F(x0)u0

= u>0 (F(x)−F(x0))u0.

The last expression is an affine functional which vanishes at x0. This means that the right-hand side
of this expression must be of the form 〈g,x− x0〉 for some vector g ∈ Rn. To obtain g, we can write

u>0 F(x)u0 = u>0 F0u0︸ ︷︷ ︸
g0

+
n

∑
j=1

x j u>0 Fju0︸ ︷︷ ︸
g j

= g0 + 〈g,x〉,

where g j are the components of g. In particular, we obtain that f (x)− f (x0) ≥ 〈g,x− x0〉. The
remaining steps of the ellipsoid algorithm can now be applied in a straightforward way.

25 Compilation: January 2015



26 1.4. LINEAR MATRIX INEQUALITIES

Interior point methods

Optimization problems over symmetric semi-definite matrix variables belong to the realm of semi-
definite programming or semi-definite optimization. In the last few decades this research field
has witnessed incredible breakthroughs in numerical tools, commercial and non-commercial soft-
ware developments and fast solution algorithms. In particular, the introduction of powerful interior
point methods allow us to effectively decide about the feasibility of semi-definite programs and
to determine their solutions. The main idea is as follows. Let F be an affine function and let
S := {x | F(x) ≺ 0} be the domain of a convex function f : S → R which we wish to minimize.
That is, we consider the convex optimization problem

Vopt = inf
x∈S

f (x).

The idea behind interior point methods is to solve this constrained optimization problem by a se-
quence of unconstrained optimization problems. For this purpose, a barrier function φ is introduced.
This is a function φ : Rn→ R which is required to

(a) be strictly convex on the interior of S and

(b) approach +∞ along each sequence of points {xn}∞
n=1 in the interior of S that converges to a

boundary point of S .

Given such a barrier function φ , the constraint optimization problem to minimize f (x) over all x∈S
is replaced by the unconstrained optimization problem to minimize the functional

ft(x) := f (x)+ tφ(x) (1.4.11)

where t > 0 is a so called penalty parameter. The main idea is to determine a curve t 7→ x(t)
that associates with any t > 0 a minimizer x(t) of ft . Subsequently, the behavior of this mapping
is considered as the penalty parameter t decreases to zero. In almost all interior point methods, the
unconstrained optimization problem is solved with the classical Newton-Raphson iteration technique
to approximately determine a local minimizer of ft . Since ft is strictly convex on Rn, every local
minimizer of ft is guaranteed to be the unique global minimizer. Under mild assumptions and for
a suitably defined sequence of penalty parameters tn, tn → 0 as n→ ∞, the sequence x(tn) will
converge to a point x∗. That is, the limit x∗ := limn→∞ x(tn) exists and Vopt = f (x∗). If, in addition,
x∗ belongs to the interior of S then Vopt = f (x∗) and x∗ is an optimal solution to the original convex
optimization problem; otherwise an almost optimal solution can be deduced from the sequence x(tn).

A small modification of this theme is obtained by replacing the original constraint optimization
problem by the unconstrained optimization problem to minimize

gt(x) := φ0(t− f (x))+φ(x) (1.4.12)

where t > t0 := Vopt and φ0 is a barrier function for the non-negative real half-axis. Again, the
idea is to determine, for every t > 0 a minimizer x(t) of gt (typically using the classical Newton-
Raphson algorithm) and to consider the ‘path’ t 7→ x(t) as function of the penalty parameter t. The
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curve t 7→ x(t) with t > t0 is called the path of centers for the optimization problem. Under suitable
conditions the solutions x(t) are analytic and has a limit as t ↓ t0, say xopt. The point xopt := limt↓t0 x(t)
is optimal in the sense that Vopt = f (xopt) since for t > t0, x(t) is feasible and satisfies f (x(t))< t.

Interior point methods can be applied to either of the two LMI problems defined in the previous
section. If we consider the feasibility problem associated with the LMI F(x) ≺ 0 then ( f does not
play a role and) one candidate barrier function is the logarithmic function

φ(x) :=

{
logdet(−F(x)−1) if x ∈S ,

∞ otherwise.

If S is bounded and non-empty, φ will be strictly convex. By invoking Proposition 1.12, we con-
clude that there exists a unique xopt such that φ(xopt) is the global minimum of φ . The point xopt
belongs to S and is called the analytic center of the feasibility set S . It is usually obtained in a
very efficient way from the classical Newton iteration

xk+1 = xk−
(
φ
′′(xk)

)−1
φ
′(xk). (1.4.13)

Here φ ′ and φ ′′ denote the gradient and the Hessian of φ , respectively. The convergence of this
algorithm can be analyzed as follows. Since φ is strongly convex and sufficiently smooth, there exist
numbers L and M such that for all vectors u with norm ‖u‖= 1 there holds

u>φ
′′(x)u≥M

‖φ ′′(x)u−φ
′′(y)u‖ ≤ L‖x− y‖.

In that case,

‖φ ′(xk+1)‖2 ≤ L
2M2 ‖φ

′(xk)‖2

so that whenever the initial value x0 is such that L
2M2 ‖φ ′(x0)‖ < 1 the method is guaranteed to

converge quadratically.

The idea will be to implement this algorithm in such a way that quadratic convergence can be guar-
anteed for the largest possible set of initial values x0. For this reason the iteration (1.4.13) is modified
as follows

xk+1 = xk−αk(λ (xk))
(
φ
′′(xk)

)−1
φ
′(xk)

where

αk(λ ) :=

{
1 if λ < 2−

√
3

1
1+λ

if λ ≥ 2−
√

3
.

and λ (x) :=
√

φ ′(x)>φ ′′(x)φ ′(x) is the so called Newton decrement associated with φ . It is this
damping factor that guarantees that xk will converge to the analytic center xopt, the unique minimizer
of φ . It is important to note that the step-size is variable in magnitude. The algorithm guarantees
that xk is always feasible in the sense that xk ∈S and that xk converges globally to a minimizer xopt
of φ . It can be shown that φ(xk)−φ(xopt)≤ ε whenever

k ≥ c1 + c2 log log(1/ε)+ c3
(
φ(x0)−φ(xopt)

)
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28 1.4. LINEAR MATRIX INEQUALITIES

where c1,c2 and c3 are constants. The first and second terms on the right-hand side do not depen-
dent on the optimization criterion and the specific LMI constraint. The second term can almost be
neglected for small values of ε .

The LMI optimization problem to minimize f (x) subject to the LMI F(x) ≺ 0 can be viewed as a
feasibility problem for the LMI

Gt(x) :=
(

f (x)− t 0
0 F(x)

)
≺ 0

where t > t0 := infx∈S f (x) is a penalty parameter. Using the same barrier function yields the
unconstrained optimization problem to minimize

gt(x) := logdet(−Gt(x)−1) = log
1

t− f (x)
+ logdet(−F(x)−1)

for a sequence of decreasing positive values of t. Due to the strict convexity of gt the minimizer x(t)
of gt is unique for all t > t0. Since closed form expressions for the gradient and Hessian of gt can
be obtained, a Newton iteration is an efficient numerical method to find minimizers of gt . Currently
much research is devoted to further exploiting the structure of LMI’s in order to tailor dedicated
solvers for specific semi-definite programs.

1.4.5 What are dual LMI problems?

Let X =Rn be a finite dimensional vector space and consider a linear objective function f : X →R
by setting f (x) = c>x = 〈x,c〉 where c is a vector in Rn. As in subsection 1.3.3, consider the primal
optimization problem to determine

Popt = inf
x∈S

f (x)

where S is defined, as in (1.3.4), by

S = {x ∈X | G(x)4 0,H(x) = 0}.

Here, G : X → Sk and H : X → Sl are affine functions. That is, G(x) = G0 +G1(x) and H(x) =
H0 +H1(x) where G0 ∈ Sk, H0 ∈ Sl are symmetric matrices and G1 and H1 are linear mappings
defined on Rn. Following the terminology of subsection 1.3.3, this is an example of a linear convex
program. The aim of this subsection is to establish a precise formulation of the dual optimization
problem and to characterize the solvability conditions of Theorem 1.16.

With reference to Remark 1.18, define the closed convex cone K := {Y ∈ Sk | Y 4 0} and note
that the inequality G(x) 4 0 is equivalent to G(x) ∈K . Obviously, every Y ∈ Sk defines a linear
functional a(·) := 〈Y, ·〉 on the set Sk of symmetric matrices. Conversely, every linear functional
a : Sk → R uniquely defines an element Y ∈ Sk such that a(·) = 〈Y, ·〉. In particular, for all K ∈K
the linear functional a(K) = 〈Y,K〉 is non-positive if and only if Y < 0. Hence, the Lagrangian
L : Rn×Sk×Sl → R defined by

L(x,Y,Z) := 〈x,c〉+ 〈Y,G(x)〉+ 〈Z,H(x)〉
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with inner products defined on Rn, Sk and Sl (respectively) satisfies

`(Y,Z) := inf
x∈X

L(x,Y,Z)≤ inf
x∈S
〈x,c〉= Popt.

for all Y ∈ Sk, Z ∈ Sl , Y < 0. The dual optimization problem therefore amounts to determining

Dopt := sup
Y<0,Z

`(Y,Z) = sup
Y<0,Z

inf
x∈X

L(x,Y,Z).

For this case, Theorem 1.16 specializes to the following result.

Theorem 1.28 Under the conditions given in this subsection, suppose there exists (x0,Y0,Z0) ∈
Rn×Sk×Sl such that G(x0) 4 0, H(x0) = 0, Y0 < 0 and c+G∗1(Y0)+H∗1 (Z0) = 0. Then both the
primal and the dual optimization problem admit optimal solutions and

Popt = min
G(x)40,H(x)=0

〈x,c〉= max
Y<0,c+G∗1(Y )+H∗1 (Z)=0

〈G0,Y 〉+ 〈H0,Z〉= Dopt.

Moreover, the triple (xopt,Yopt,Zopt) is optimal for both the primal and the dual problem if and only
if

(a) G(xopt)4 0, H(xopt) = 0,

(b) Yopt < 0, c+G∗1(Yopt)+H∗1 (Zopt) = 0 and

(c) 〈Yopt,G(xopt)〉= 0.

Proof. Under the given feasibility conditions, the dual optimal value

Dopt = max
Y<0,Z

inf
x
〈c,x〉+ 〈Y,G0〉+ 〈Z,H0〉+ 〈G∗1(Y ),x〉+ 〈H∗1 (Z),x〉

= max
Y<0,Z

inf
x
〈c+G∗1(Y )+H∗1 (Z),x〉+ 〈G0,Y 〉+ 〈H0,Z〉

= max
Y<0,c+G∗1(Y )+H∗1 (Z)=0

〈G0,Y 〉+ 〈H0,Z〉.

Here, G∗1 and H∗1 denote the adjoint operators of the linear mappings G1 and H1, respectively
and the last equality follows by dualization of the dual problem. Since the dual problem sat-
isfies the constraint qualification by assumption, the primal problem admits an optimal solution.
Let (xopt,Yopt,Zopt) be optimal for both the primal and the dual problem. Then items 1 and 2 are
immediate and item 1 implies that 〈xopt,c〉 ≤ L(x,Yopt,Zopt) for all x. With x = xopt this yields
〈Yopt,G(xopt)〉 ≥ 0. On the other hand, items 1 and 2 imply 〈Yopt,G(xopt)〉 ≤ 0 and we may con-
clude item 3. Conversely, if items 1, 2 and 3 hold, then it is easily verified that L satisfies the
saddle-point property

L(xopt,Y,Z)≤ L(xopt,Yopt,Zopt)≤ L(x,Yopt,Zopt), for all x,Y < 0,Z

The first inequality shows that (Yopt,Zopt) is an optimal solution for the dual problem. Likewise, the
second inequality shows that xopt is optimal for the primal problem.

29 Compilation: January 2015
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1.4.6 When were they invented?

Contrary to what many authors nowadays seem to suggest, the study of linear matrix inequalities in
the context of dynamical systems and control goes back a long way in history and probably starts
with the fundamental work of Aleksandr Mikhailovich Lyapunov on the stability of motion. Lya-
punov was a school friend of Markov (yes, the one of the Markov parameters) and later a student of
Chebyshev. Around 1890, Lyapunov made a systematic study of the local expansion and contraction
properties of motions of dynamical systems around an attractor. He worked out the idea that an
invariant set of a differential equation is stable in the sense that it attracts all solutions if one can find
a function that is bounded from below and decreases along all solutions outside the invariant set.

Figure 1.2: Aleksandr Mikhailovich Lyapunov

Aleksandr Mikhailovich Lyapunov was born on May 25, 1857 and published in 1892 his work
‘The General Problem of the Stability of Motion’ in which he analyzed the question of stability of
equilibrium motions of mechanical systems. This work served as his doctoral dissertation and was
defended on September 1892 in Moscow University. Put into modern jargon, he studied stability of
differential equations of the form

ẋ = A(x)

where A :Rn→Rn is some analytic function and x is a vector of positions and velocities of material
taking values in a finite dimensional state space X = Rn. As Theorem I in Chapter 1, section 16 it
contains the statement4 that

4Translation by A.T. Fuller as published in the special issue of the International Journal of Control in March 1992 and
in [25].
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if the differential equation of the disturbed motion is such that it is possible to find a
definite function V of which the derivative V ′ is a function of fixed sign which is opposite
to that of V , or reduces identically to zero, the undisturbed motion is stable.

The intuitive idea behind this result is that the so called Lyapunov function V can be viewed as a
generalized ‘energy function’ (in the context of mechanical systems the kinetic and potential energies
always served as typical Lyapunov functions). A system is then stable if it is ‘dissipative’ in the
sense that the Lyapunov function decreases. Actually, this intuitive idea turns out to be extremely
fruitful in understanding the role of linear matrix inequalities in many problems related to analysis
and synthesis of systems. This is why we devote the next chapter to dissipative dynamical systems.
We will consider stability issues in much more detail in a later chapter.

1.5 Further reading

Foundations on convex sets and convex functions have been developed around 1900, mainly by the
work of Minkowski in [30]. Detailed and classical treatments on the theory of convex functions and
convex set analysis can be found in many books. We just mention the work in [1, 35, 38, 55]. For
a more recent treatment we recommend the book by Boyd and Vandenberghe [4]. The theory of
convex programs and its relation to Lagrange multipliers and saddle points originates with the work
by Kuhn-Tucker in [23]. The constraint qualification assumption is due to Slater. For more details
on the theory of subgradients we refer to [1, 39]. A standard work on optimization methods with
applications in systems theory is the classical book by Luenberger [24]. Interior point methods were
developed in a series of papers [20] and have led to major breakthroughs in LMI-solvers in the work
of Nesterov and co-authors in [33]. For general resources on the theory of linear algebra we refer to
the classical work by Golub and van Loan in [10] and Horn and Johnson in [17]. For a translation of
parts of the thesis of Lyapunov we refer to [25].

1.6 Exercises

Exercise 1
Which of the following statements are true.

(a)
(

1 i
−i 1

)
�
(

0 1
1 0

)
.

(b) A� B implies that λmax(A)> λmax(B).

(c) λmax(A+B)≤ λmax(A)+λmax(B).

(d) Write A ∈H has A = X + iY with X and Y real. Then A < 0 if and only if
(

X Y
−Y X

)
< 0.
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(e) Let T ∈ Cn×m and A ∈Hn. If A < 0 then T ∗AT < 0.

(f) Let T ∈ Cn×m and A ∈Hn. If T ∗AT < 0 then A < 0.

Exercise 2
Give an example of a non-convex function f : S → H whose sublevel sets SΓ are convex for all
Γ ∈H.

Exercise 3
Let f : S →H be a convex function.

(a) Show the so called Jensen’s inequality which states that for a convex combination x=∑
n
i=1 αixi

of x1, . . .xn ∈S there holds that

f (
n

∑
i=1

αixi)4
n

∑
i=1

αi f (xi).

Hint: A proof by induction on n may be the easiest.

(b) Show that conv(S ) is equal to the set of all convex combinations of S .

Exercise 4
Let S be a subset of a finite dimensional vector space. The affine hull aff(S ) of S is the intersec-
tion of all affine sets containing S (cf. Definition 1.5). An affine combination of x1, . . . ,xn ∈S is a
point

x :=
n

∑
i=1

αixi

where ∑
n
i=1 αi = 1 (cf. Definition 1.3). Show that for any set S in Rn the affine hull aff(S ) is affine

and consists of all affine combinations of the elements of S . (cf. Proposition 1.6).

Exercise 5
Let S and T be finite dimensional vector spaces and let f : S → T be an affine function. Show
that

(a) f−1 is affine whenever the inverse function exists.

(b) the graph {(x,y) | x ∈S ,y = f (x)} of f is affine.

(c) f (S ′) is affine (as a subset of T ) for every affine subset S ′ ⊆S .

Exercise 6
It should not be surprising that the notion of a convex set and a convex function are related. Let
S ⊆ Rn. Show that a function f : S → R is convex if and only if its epigraph E f := {(x,y) | x ∈
S ,y ∈ R, f (x)≤ y} is a convex set.
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Exercise 7
Perform a feasibility test to verify the asymptotic stability of the system ẋ = Ax, where

A =

 0 1 0
0 0 1
−2 −3 −4

 .

Exercise 8
Show that

(a) the function f : Rn → R defined by the quadratic form f (x) = x>Rx+ 2s>x+ q is convex if
and only if the n×n matrix R = R> < 0.

(b) the intersection of the sets S j := {x ∈ Rn | x>R jx+ 2s>j x+ q j ≤ 0} where j = 1, . . . ,k and
R j < 0 is convex.

How does S j look like if R j = 0? And how if s j = 0?

Exercise 9
Let S denote the vector space of (closed-loop) single-input and single-output rational transfer func-
tions. Let fmin : R+→ R and fmax : R+→ R be two functions such that fmin(·)≤ fmax(·). Consider
the following rather typical time and frequency domain specifications:

(a) Frequency response shaping: For γ ≥ 0,

Sγ = { S ∈S | sup
ω≥0
| fmax(ω)−S(iω)| ≤ γ }.

(b) Bandwidth shaping: For γ ≥ 0,

Sγ = { S ∈S | fmin(ω)≤ |S(iω)| ≤ fmax(ω) for all 0≤ ω ≤ 1
γ
}.

(c) Step response shaping: For γ ≥ 0,

Sγ = { S ∈S | fmin(t)≤ s(t)≤ fmax(t) for all t ≥ 0 }.

Here, s(t) = 1
2π

∫
∞

−∞

S(iω)
iω eiωt dω is the step response of the system S ∈S .

(d) Over- and undershoot: For γ > 0,

Sγ = { S ∈S | sup
t≥0

max(s(t)− fmax(t), fmin(t)− s(t),0) ≤ γ }

with s the step response as defined in item 3.

33 Compilation: January 2015



34 1.6. EXERCISES

Verify for each of these specifications whether or not Sγ defines a convex subset of S .

Exercise 10
Consider the systems ẋ = Aix+Biu where i = 1, . . . ,4 and

A1 =

(
1 0
1 1

)
, B1 =

(
1
0

)
, A2 =

(
−1 2
1 2

)
, B2 =

(
1
1

)
,

A3 =

(
0 1
1 0

)
, B3 =

(
0
1

)
, A4 =

(
0 2
1 −1

)
, B4 =

(
2
1

)
.

Find a state feedback law u = Fx such that each of the 4 autonomous systems ẋ = (Ai +BiF)x,
i = 1, . . . ,4 is asymptotically stable.

Exercise 11
In this exercise we investigate the stability of the linear time-varying system

ẋ = A(t)x (1.6.1)

where for all t ∈ R+ the matrix A(t) is a convex combination of the triple

A1 :=
(
−1 1
−1 −0.2

)
, A2 :=

(
−1 1
−2 −0.7

)
, A3 :=

(
−2 1
−1.2 0.4

)
.

That is,
A(t) ∈ conv(A1,A2,A3)

for all values of t ∈ R+. This is a polytopic model. It is an interesting fact that the time-varying
system (1.6.1) is asymptotically stable in the sense that for any initial condition x0 ∈Rn, the solution
x(·) of (1.6.1) satisfies limt→∞ x(t) = 0 whenever there exists a matrix X = X> � 0 such that

A>1 X +XA1 ≺ 0

A>2 X +XA2 ≺ 0

A>3 X +XA3 ≺ 0.

(We will come to this fact later!) If such an X exists then (1.6.1) is asymptotically stable irrespective
of how fast the time variations of A(t) take place! Reformulate the question of asymptotic stability
of (1.6.1) as a feasibility problem and find, if possible, a feasible solution X to this problem.

Exercise 12
Consider the dynamical system

ẋ = Ax+Bu

where x is an n-dimensional state and u is a scalar-valued input which is supposed to belong to
U = {u :R→R | −1≤ u(t)≤ 1 for all t ≥ 0}. Define the null controllable subspace of this system
as the set

C := {x0 ∈ Rn | ∃T ≥ 0 and u ∈U such that x(T ) = 0}
i.e., the set of initial states that can be steered to the origin of the state space in finite time with
constrained inputs. Show that C is a convex set.
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Exercise 13
Let F : X → H be affine and suppose that the LMI F(x) ≺ 0 is feasible. Prove that there exists
ε > 0 such that the LMI F(x)+ εI ≺ 0 is also feasible. Does this statement hold for I replaced with
any Hermitian matrix?

Exercise 14
Let A,B ∈Hn and let 〈·, ·〉 :H×H→ R be the inner product defined by 〈A,B〉 := trace(AB). Prove,
or give a counterexample of the following statements

(a) A≺ 0 if and only if all its eigenvalues are negative.

(b) A≺ B implies A 4 B and A 6= B

(c) A 4 B and A 6= B implies A≺ B

(d) A 4 B and B 4C implies A 4C

(e) A < 0, B 4 0 implies 〈A,B〉 ≤ 0

Exercise 15
The signature of a Hermitian matrix A ∈ Hn is the triple sign(A) = (n−,n0,n+) with n−,n0,n+
the number of negative, zero and positive eigenvalues of A, respectively. Show that sign(A) =
sign(T ∗AT ) for any nonsingular matrix T ∈ Rn.
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Chapter 2

Dissipative dynamical systems

2.1 Introduction

The notion of dissipativity is a most important concept in systems theory both for theoretical consid-
erations as well as from a practical point of view. Especially in the physical sciences, dissipativity
is closely related to the notion of energy. Roughly speaking, a dissipative system is characterized
by the property that at any time the amount of energy which the system can conceivably supply to
its environment can not exceed the amount of energy that has been supplied to it. Stated otherwise,
when time evolves, a dissipative system absorbs a fraction of its supplied energy and transforms it for
example into heat, an increase of entropy, mass, electro-magnetic radiation, or other kinds of energy
losses. In many applications, the question whether a system is dissipative or not can be answered
from physical considerations on the way the system interacts with its environment. For example, by
observing that the system is an interconnection of dissipative components, or by considering systems
in which a loss of energy is inherent to the behavior of the system due to friction, optical dispersion,
evaporation losses, etc.

In this chapter we will formalize the notion of a dissipative dynamical system for a very general
class of systems. It will be shown that linear matrix inequalities occur in a very natural way in
the study of linear dissipative systems. Perhaps the most appealing setting for studying LMI’s in
system and control theory is within the framework of dissipative dynamical systems. It will be
shown that solutions of LMI’s have a natural interpretation as storage functions associated with a
dissipative system. This interpretation will play a key role in understanding the importance of LMI’s
in questions related to stability, performance, robustness, and a large variety of controller design
problems.
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2.2 Dissipative dynamical systems

2.2.1 Definitions and examples

Consider a continuous time, time-invariant dynamical system S described by the equations

ẋ = f (x,w), x(0) = x0 (2.2.1a)
z = g(x,w) (2.2.1b)

Here, x is the state which takes its values in a state space X , w is the input taking its values in an
input space W and z denotes the output of the system which assumes its values in the output space
Z. Throughout this section, the precise representation of the system will not be relevant. What we
need, though, is that for any initial condition x0 ∈ X and for any input w belonging to an input class
W , there exist unique and absolutely continuous signals x : R+→ X and z : R+→ Z which satisfy
(2.2.1). Here, R+ = [0,∞) is the time set. In addition, the output z is assumed to depend on w in
a causal way; that is, if w1 ∈ W and w2 ∈ W are two input signals that are identical on [0,T ] then
the outputs z1 and z2 of (2.2.1) corresponding to the inputs w1 and w2 and the same (but arbitrary)
initial condition x(0) = x0 are also identical on [0,T ]. The system (2.2.1) therefore generates outputs
from inputs and initial conditions while future values of the inputs do not have an effect on the past
outputs. Let

s : W ×Z→ R

be a mapping and assume that for all t0, t1 ∈ R and for all input-output pairs (w,z) satisfying (2.2.1)
the composite function s(w(t),z(t)) is locally absolutely integrable, i.e.,

∫ t1
t0 |s(w(t),z(t))|d t < ∞.

The mapping s will be referred to as the supply function.

Definition 2.1 (Dissipativity) The system S with supply function s is said to be dissipative if there
exists a function V : X → R such that

V (x(t1)) ≤ V (x(t0))+
∫ t1

t0
s(w(t),z(t))d t (2.2.2)

for all t0 ≤ t1 and all signals (w,x,z) which satisfy (2.2.1). The pair (S,s) is said to be conservative
if equality holds in (2.2.2) for all t0 ≤ t1 and all (w,x,z) satisfying (2.2.1).

Interpretation 2.2 The supply function (or supply rate) s should be interpreted as the supply deliv-
ered to the system. This means that s(w(·),z(·)) represents the rate at which supply flows into the
system if the system generates the input-output pair (w(·),z(·)). In other words, in the time interval
[0,T ] work has been done on the system whenever

∫ T
0 s(w(t),z(t))d t is positive, while work is done

by the system if this integral is negative. The function V is called a storage function and generalizes
the notion of an energy function for a dissipative system. With this interpretation, inequality (2.2.2)
formalizes the idea that a dissipative system is characterized by the property that the change of in-
ternal storage V (x(t1))−V (x(t0)) in any time interval [t0, t1] will never exceed the amount of supply
that flows into the system. Part of what is supplied to the system is stored, while the remaining part
is dissipated. Inequality (2.2.2) will be referred to as the dissipation inequality.
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We stress that, contrary to the definition in the classical papers [61,62], we do not require the storage
function V in (2.2.2) to be non-negative. This difference is an important one and stems mainly from
applications in mechanical and thermodynamical systems where energy or entropy functions are not
necessarily bounded from below. See Example 2.3.

If the composite function V (t) :=V (x(t)) is differentiable, then (2.2.2) is equivalent to

d
dt

V (t) = ∂xV (x(t)) f (x(t),w(t))≤ s(w(t),z(t))

for all t and all solutions (w,x,z) of (2.2.1). Here, ∂xV denotes the derivative (the transpose of the
gradient) of V and ∂xV (x(t)) is the row vector consisting of all partial derivatives of V at the point
x(t). This observation makes dissipativity of a dynamical system a local property in the sense that
(S,s) is dissipative if and only if

∂xV (x) f (x,w)≤ s(w,g(x,w)) (2.2.3)

holds for all points x ∈ Rn and w ∈ Rm. In words, (2.2.3) states that the rate of change of storage
along trajectories of the system will never exceed the rate of supply. We will refer to (2.2.3) as the
differential dissipation inequality.

The classical motivation for the study of dissipativity comes from circuit theory. In the analysis
of electrical networks the product of voltages and currents at the external branches of a network,
i.e. the power, is an obvious supply function. Similarly, the product of forces and velocities of
masses is a candidate supply function in mechanical systems. For those familiar with the theory of
port-Hamiltonian systems or the theory of bond-graphs, we remark that port-Hamiltonian systems
and bond-graphs can be viewed as representations of dissipative dynamical systems where inputs
and outputs are taken to be effort and flow variables and the supply function is the product of these
two variables. Bond-graphs and port-Hamiltonian systems are therefore special cases of dissipative
systems.

Example 2.3 Consider a thermodynamic system at uniform temperature T on which mechanical
work is being done at rate W and which is being heated at rate Q. Let (T,Q,W ) be the external
variables of such a system and assume that –either by physical or chemical principles or through
experimentation– the mathematical model of the thermodynamic system has been decided upon and
is given by the time invariant system (2.2.1). The first and second law of thermodynamics may then
be formulated in the sense of Definition 2.1 by saying that the system S is conservative with respect
to the supply function s1 := (W +Q) and dissipative with respect to the supply function s2 :=−Q/T .
Indeed, the first law of thermodynamics states that for all system trajectories (T,Q,W ) and all time
instants t0 ≤ t1,

E(x(t1)) = E(x(t0))+
∫ t1

t0
(Q(t)+W (t))d t

(conservation of thermodynamic energy). The second law of thermodynamics states that all system
trajectories satisfy

S(x(t1)) ≤ S(x(t0))+
∫ t1

t0
−Q(t)

T (t)
d t
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for all t0 ≤ t1. Here, E is called the internal energy and S the entropy. The first law promises
that the change of internal energy is equal to the heat absorbed by the system and the mechanical
work which is done on the system. The second law states that the entropy decreases at a higher
rate than the quotient of absorbed heat and temperature. It follows that thermodynamic systems are
dissipative with respect to two supply functions. Nernst’s third law of thermodynamics –the entropy
of any object of zero temperature is zero– is only a matter of scaling of the entropy function S and
actually does not constrain the trajectories of the system.

Example 2.4 Other examples of supply functions s : W ×Z→ R are the quadratic forms

s(w,z) = w>z, s(w,z) = ‖w‖2−‖z‖2,

s(w,z) = ‖w‖2 +‖z‖2, s(w,z) = ‖w‖2

which arise in network theory, bondgraph theory, scattering theory, H∞ theory, game theory and LQ-
optimal control and H2-optimal control theory. We will come across these examples in considerable
more detail later.

There are a few refinements to Definition 2.1 which are worth mentioning. Definition 2.1 can be
generalized to time-varying systems by letting the supply rate s explicitly depend on time. Many
authors have proposed a definition of dissipativity for discrete time systems, but since we can not
think of any physical example of such a system, there seems little practical point in doing this. We
will call a system anti-dissipative if the inequality (2.2.2) with ≥ replaced by ≤ holds. Another
refinement consists of the idea that a system may be dissipative with respect to more than one supply
function. See, for instance, Example 2.3. Also, a notion of robust dissipativity may be developed
in which the system description (2.2.1) is not assumed to be perfectly known, but uncertain to some
well defined extend. An uncertain system is then called robustly dissipative if (2.2.2) holds for
all t0 ≤ t1 and all trajectories (w,x,z) that can conceivably be generated by the uncertain system.
See Section 5.3 in Chapter 5 for more details. The notion of strict dissipativity is a refinement of
Definition 2.1 which will prove useful in the sequel. It is defined as follows.

Definition 2.5 (Strict dissipativity) The system S with supply function s is said to be strictly dissi-
pative if there exists a storage function V : X → R and an ε > 0 such that

V (x(t1)) ≤ V (x(t0))+
∫ t1

t0
s(w(t),z(t))d t− ε

2
∫ t1

t0
‖w(t)‖2d t (2.2.4)

for all t0 ≤ t1 and all trajectories (w,x,z) which satisfy (2.2.1).

A strictly dissipative system satisfies (2.2.2) with strict inequality, which justifies its name. As a
final comment we mention the notion of cyclo dissipativity which has been introduced in [59]. For
T > 0, the function w :R→W is said to be T -periodic if for all t ∈R we have that w(t) = w(t +T ).
A system S with supply function s is called cyclo dissipative if for all T > 0 there holds∫ T

0
s(w(t),z(t))d t ≥ 0
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for all T -periodic trajectories (w(·),z(·)) which satisfy (2.2.1). Cyclo dissipativity is therefore a
system property defined in terms of T -periodic trajectories only. The importance of this notion lies
in the fact that it avoids reference to the internal state space structure of the system and requires
a condition on signals in the external (input-output) behavior of the system only. It is easily seen
that a dissipative system is cyclo dissipative whenever the state x is observable from (w,z), that is,
whenever x is uniquely defined by any (w,z) which satisfies (2.2.1). Conversely, under some mild
minimality and connectability conditions on the state X , a cyclo dissipative system is dissipative.

2.2.2 A classification of storage functions

Suppose that (S,s) is dissipative and let x∗ ∈ X be a fixed reference point in the state space of S.
Instead of considering the set of all possible storage functions associated with (S,s), we will restrict
attention to the set of normalized storage functions defined by

V (x∗) := {V : X → R |V (x∗) = 0 and (2.2.2) holds}.

Hence, x∗ is a reference point of neutral storage. Clearly, if V is a storage function satisfying (2.2.2),
then Ṽ (x) :=V (x)−V (x∗) also satisfies (2.2.2) and Ṽ ∈ V (x∗).

Two mappings Vav : X → R∪{+∞} and Vreq : X → R∪{−∞} will play a crucial role in the sequel.
They are defined by

Vav(x0) := sup
{
−
∫ t1

0
s(w(t),z(t))d t | t1 ≥ 0; (w,x,z) satisfies (2.2.1) with (2.2.5a)

x(0) = x0 and x(t1) = x∗}

Vreq(x0) := inf
{∫ 0

t−1

s(w(t),z(t))d t | t−1 ≤ 0; (w,x,z) satisfies (2.2.1) with (2.2.5b)

x(0) = x0 and x(t−1) = x∗}

Here, Vav(x) denotes the maximal amount of internal storage that may be recovered from the system
over all state trajectories starting in x and eventually ending in x∗. Similarly, Vreq(x) reflects the
minimal supply which needs to be delivered to the system in order to steer the state to x via any
trajectory originating in x∗. We refer to Vav and Vreq as the available storage and the required supply,
(measured with respect to x∗). In (2.2.5) it is silently assumed that for x0 ∈ X there exists an input
w ∈ W which steers the state from x∗ at some time instant t−1 < 0 to x0 at time t = 0 and back to
x∗ at time t1 > 0. We call x0 connectable with x∗ if this property holds. If such a loop can be run
in finite time for any x0 ∈ X , then we say that every state is connectable with x∗. The following
characterization is the main result of this section.

Proposition 2.6 Let the system S be represented by (2.2.1) and let s be a supply function. Suppose
that every state is connectable with x∗ for some x∗ ∈ X. Then the following statements are equivalent

(a) (S,s) is dissipative.
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(b) −∞ <Vav(x)< ∞ for all x ∈ X.

(c) −∞ <Vreq(x)< ∞ for all x ∈ X.

Moreover, if one of these equivalent statements hold, then

(a) Vav,Vreq ∈ V (x∗).

(b) {V ∈ V (x∗)} ⇒ {for all x ∈ X there holds Vav(x)≤V (x)≤Vreq(x)}.

(c) V (x∗) is a convex set. In particular, Vα := αVav +(1−α)Vreq ∈ V (x∗) for all α ∈ (0,1).

Interpretation 2.7 Proposition 2.6 confirms the intuitive idea that a dissipative system can neither
supply nor store an infinite amount of energy during any experiment that starts or ends in a state of
neutral storage. Proposition 2.6 shows that a system is dissipative if and only if the available storage
and the required supply are real (finite) valued functions. Moreover, both the available storage
and the required supply are possible storage functions of a dissipative system, these functions are
normalized and define extremal storage functions in V (x∗) in the sense that Vav is the smallest and
Vreq is the largest element in V (x∗). In particular, for any state of a dissipative system, the available
storage can not exceed its required supply. In addition, convex combinations of storage functions
are storage functions.

Proof. Let (S,s) be dissipative, and let V be a storage function. Since Ṽ (x) :=V (x)−V (x∗)∈V (x∗)
it follows that V (x∗) 6= /0 so that we may equally assume that V ∈ V (x∗). Let x0 ∈ X , t−1 ≤ 0 ≤ t1
and (w,x,z) satisfy (2.2.1) with x(t−1) = x(t1) = x∗ and x(0) = x0. Since S is x∗-connectable such
trajectories exist. From (2.2.2) we then infer that

−∞ <−
∫ t1

0
s(w(t),z(t))d t ≤

∫ 0

t−1

s(w(t),z(t))d t <+∞.

First take in this inequality the supremum over all t1 ≥ 0 and (w,x,z)|[0,t1] which satisfy (2.2.1) with
x(0) = x0 and x(t1) = x∗. This yields that −∞ < Vav(x0) < ∞. Second, by taking the infimum over
all t−1 ≤ 0 and (w,x,z)|[t−1,0] with x(t−1) = x∗ and x(0) = x0 we infer that−∞ <Vreq(x0)< ∞. Since
x0 is arbitrary, we obtain 2 and 3. To prove the converse implication, it suffices to show that Vav and
Vreq define storage functions. To see this, let t0 ≤ t1 ≤ t2 and (w,x,z) satisfy (2.2.1) with x(t2) = x∗.
Then

Vav(x(t0))≥−
∫ t1

t0
s(w(t),z(t))d t−

∫ t2

t1
s(w(t),z(t))d t.

Since the second term in the right hand side of this inequality holds for arbitrary t2 ≥ t1 and arbitrary
(w,x,z)|[t1,t2] (with x(t1) fixed and x(t2) = x∗), we can take the supremum over all such trajectories
to conclude that

Vav(x(t0))≥−
∫ t1

t0
s(w(t),z(t))d t +Vav(x(t1))

which shows that Vav satisfies (2.2.2). In a similar manner it is seen that Vreq satisfies (2.2.2).
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We next prove the remaining claims.

1. We already proved that Vav and Vreq are storage functions. It thus remains to show that Vav(x∗) =
Vreq(x∗) = 0. Obviously, Vav(x∗) ≥ 0 and Vreq(x∗) ≤ 0 (take t1 = t−1 = 0 in (2.2.5)). Suppose that
the latter inequalities are strict. Then, since the system is x∗-connectable, there exists t−1 ≤ 0 ≤ t1
and a state trajectory x with x(t−1) = x(0) = x(t1) = x∗ such that−∫ t1

0 s(t)d t > 0 and
∫ 0

t−1
s(t)d t < 0.

But this contradicts the dissipation inequality (2.2.2) as both
∫ t1

0 s(t)d t ≥ 0 and
∫ 0

t−1
s(t)d t ≥ 0. Thus,

Vav(x∗) =Vreq(x∗) = 0.

2. If V ∈ V (x∗) then

−
∫ t1

0
s(w(t),z(t))d t ≤V (x0)≤

∫ 0

t−1

s(w(t),z(t))d t

for all t−1 ≤ 0≤ t1 and (w,x,z) satisfying (2.2.1) with x(t−1) = x∗ = x(t1) and x(0) = x0. Now take
the supremum and infimum over all such trajectories to obtain that Vav(x0)≤V (x0)≤Vreq(x0).

3. Follows trivially from the dissipation inequality (2.2.2).

2.3 Linear dissipative systems with quadratic supply rates

In the previous section we analyzed the notion of dissipativity at a fairly high level of generality. In
this section we will apply the above theory to linear input-output systems S described by

ẋ = Ax+Bw, x(0) = x0 (2.3.1a)
z =Cx+Dw (2.3.1b)

with state space X = Rn, input space W = Rm and output space Z = Rp. Let x∗ = 0 be the point
of neutral storage and consider supply functions that are general quadratic functions s : W ×Z→ R
defined by

s(w,z) =
(

w
z

)>(Q S
S> R

)(
w
z

)
= w>Qw+w>Sz+ z>S>w+ z>Rz. (2.3.2)

Here, the matrix

P :=
(

Q S
S> R

)
is a real symmetric matrix (that is, P∈ Sm+p) which is partitioned conform with w and z. No a priori
definiteness assumptions are made on P.

Substituting the output equation (2.3.1b) in (2.3.2) shows that (2.3.2) can equivalently be viewed as
a quadratic function in the variables x and w. Indeed,

s(w,z) = s(w,Cx+Dw) =
(

x
w

)>(0 I
C D

)>(Q S
S> R

)(
0 I
C D

)(
x
w

)
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2.3.1 Main results

The following theorem is the main result of this chapter. It provides necessary and sufficient condi-
tions for the pair (S,s) to be dissipative. In addition, it provides a complete parametrization of all
normalized and quadratic storage functions, together with a useful frequency domain characteriza-
tion of dissipativity.

Theorem 2.8 Suppose that the system S described by (2.3.1) is controllable and let s be a quadratic
supply function of the form (2.3.2). Then the following statements are equivalent.

(a) (S,s) is dissipative.

(b) (S,s) admits a quadratic storage function V (x) := x>Kx with K = K> ∈ Sn.

(c) There exists K = K> such that

F(K) :=
(

I 0
A B

)>(0 K
K 0

)(
I 0
A B

)
−
(

0 I
C D

)>(Q S
S> R

)(
0 I
C D

)
4 0. (2.3.3)

(d) There exists K− = K>− such that Vav(x) = x>K−x.

(e) There exists K+ = K>+ such that Vreq(x) = x>K+x.

(f) For all ω ∈ R∪{∞} with det(iωI−A) 6= 0, the transfer function T (s) := C(Is−A)−1B+D
satisfies (

I
T (iω)

)∗(Q S
S> R

)(
I

T (iω)

)
< 0. (2.3.4)

Moreover, if one of the above equivalent statements holds, then V (x) := x>Kx is a quadratic storage
function in V (0) if and only if F(K)4 0.

Proof. (1⇔4,5). If (S,s) is dissipative and S is controllable then by Proposition 2.6 Vav and Vreq
are storage functions. We claim that both Vav(x) and Vreq are quadratic functions of x. This follows
from [32, 60] upon noting that both Vav and Vreq are defined as optimal values corresponding to an
optimization problem with a quadratic cost subject to linear dynamics. Hence, if x∗ = 0, Vav(x) is of
the form x>K−x and Vreq(x) takes the form x>K+x for some matrices K− = K>− and K+ = K>+ . The
converse implication is obvious from Proposition 2.6.

(1⇔2). Using the previous argument, item 1 implies item 4. But item 4 implies item 2 by Proposi-
tion 2.6. Hence, 1⇒ 2. The reverse implication is trivial.

(2⇒3). If V (x) = x>Kx with K ∈ Sn is a storage function then the differential dissipation inequality
(2.2.3) reads

2x>K(Ax+Bw)≤ s(w,Cx+Dw)
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for all x ∈ X and all w ∈W . This is equivalent to the algebraic condition(
x
w

)>{( I 0
A B

)>(0 K
K 0

)(
I 0
A B

)
−
(

0 I
C D

)>(Q S
S> R

)(
0 I
C D

)}
︸ ︷︷ ︸

F(K)

(
x
w

)
≤ 0 (2.3.5)

for all x ∈ X and all w ∈W . By definition, this is equivalent to saying that F(K) is negative semi-
definite, i.e., there exists K ∈ S such that F(K)4 0.

(3⇒2). If K ∈ Sn satisfies F(K) 4 0 then (2.3.5) holds for all (x,w) which coincides with the
differential dissipation inequality for V (x) = x>Kx, i.e., (S,s) admits a quadratic storage function.

The equivalence (1⇔6) is an application of Lemma 2.11, which we present below. An alternative
proof for the implication (1⇒6) can be given as follows. Let ω > 0 be such that det(iωI−A) 6= 0
and consider the (complex) harmonic input w(t) = exp(iωt)w0 with w0 ∈ Rm. Define x(t) :=
exp(iωt)(iωI−A)−1Bw0 and z(t) := Cx(t)+Dw(t). Then z(t) = exp(iωt)T (iω)w0 and the (com-
plex valued) triple (w,x,z) is a τ-periodic harmonic solution of (2.3.1) with τ = 2π/ω . Moreover,

s(w(t),z(t)) = w∗0

(
I

T (iω)

)∗(Q S
S> R

)(
I

T (iω)

)
w0

which is constant for all t ∈ R. Now suppose that (S,s) is dissipative. Then for all k ∈ Z, x(t0) =
x(t0 + kτ) and hence V (x(t0)) = V (x(t0 + kτ)). For t1 = t0 + kτ , the dissipation inequality (2.2.2)
thus reads ∫ t1

t0
s(w(t),z(t))d t =

∫ t1

t0
w∗0

(
I

T (iω)

)∗(Q S
S> R

)(
I

T (iω)

)
w0 d t

= kτw∗0

(
I

T (iω)I

)∗(Q S
S> R

)(
I

T (iω)

)
w0 ≥ 0

Since kτ > 0 and w0 is arbitrary, this yields 6.

We recognize in (2.3.3) a non-strict linear matrix inequality. The matrix F(K) is usually called the
dissipation matrix. Observe that in the above theorem the set of quadratic storage functions in V (0)
is completely characterized by the linear matrix inequality F(K) 4 0. In other words, the set of
normalized quadratic storage functions associated with (S,s) coincides with the feasibility set of the
system of LMI F(K) 4 0. In particular, the available storage and the required supply are quadratic
storage functions and hence K− and K+ satisfy F(K−) 4 0 and F(K+) 4 0. Using Proposition 2.6,
it moreover follows that any solution K ∈ S of F(K)4 0 has the property that

K− 4 K 4 K+.

In other words, the set of symmetric solutions K of the LMI F(K) 4 0 is partially ordered and
admits two extremal elements. The inequality (2.3.4) is called the frequency domain inequality.
The equivalence between statements 1 and the frequency domain characterization in statement 6 has
a long history in system theory. The result goes back to Popov (1962), V.A. Yakubovich (1962)
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and R. Kalman (1963) and is an application of the ‘Kalman-Yakubovich-Popov Lemma’, which we
present and prove in subsection 2.3.2 below.

For conservative systems with quadratic supply functions a similar characterization can be given.
The precise formulation is evident from Theorem 2.8 and is left to the reader. Strictly dissipative
systems are characterized in a similar fashion (but under slightly different hypothesis) as follows.

Theorem 2.9 Suppose that the system S is described by (2.3.1) where A has no eigenvalues on the
imaginary axis. Let s be the quadratic supply function (2.3.2). Then the following statements are
equivalent.

(a) (S,s) is strictly dissipative.

(b) There exists K = K> such that

F(K) :=
(

I 0
A B

)>(0 K
K 0

)(
I 0
A B

)
−
(

0 I
C D

)>(Q S
S> R

)(
0 I
C D

)
≺ 0 (2.3.6)

(c) The transfer function T (s) :=C(Is−A)−1B+D satisfies(
I

T (iω)

)∗(Q S
S> R

)(
I

T (iω)

)
� 0 for all ω ∈ R∪{∞} (2.3.7)

Moreover, if one of the above equivalent statements holds, then V (x) := x>Kx is a quadratic storage
function satisfying (2.2.4) for some ε > 0 if and only if F(K)≺ 0.

Proof. (1⇒3). By definition, item 1 implies that for some ε > 0 the pair (S,s′) is dissipative
with s′(w,z) := s(w,z)− ε2‖w‖2. If S is controllable, Theorem 2.8 yields that for all ω ∈ R with
det(iωI−A) 6= 0,(

I
T (iω)

)∗(Q− ε2I S
S> R

)(
I

T (iω)

)
=

(
I

T (iω)

)∗(Q S
S> R

)(
I

T (iω)

)
− ε

2I < 0 (2.3.8)

The strict inequality (2.3.7) then follows. If S is not controllable, we use a perturbation argument to
arrive at the inequality (2.3.7). Indeed, for δ > 0 let Bδ be such that Bδ → B as δ → 0 and (A,Bδ )
controllable. Obviously, such Bδ exist. Define Tδ (s) :=C(Is−A)−1Bδ +D and let (w,xδ ,zδ ) satisfy
ẋδ = Axδ + Bδ w, zδ = Cxδ + Dw. It follows that Bδ → B implies that for every w(t) which is
bounded on the interval [t0, t1], xδ (t)→ x(t) and zδ (t)→ z(t) pointwise in t as δ → 0. Here, (w,x,z)
satisfy (2.3.1) and (2.2.4). Since V and s are continuous functions, the dissipation inequality (2.2.4)
also holds for the perturbed system trajectories (w,xδ ,zδ ). This means that the perturbed system
is strictly dissipative which, by Theorem 2.8, implies that (2.3.8) holds with T (iω) replaced by
Tδ (iω) := C(Iiω −A)−1Bδ +D. Since for every ω ∈ R, det(Iiω −A) 6= 0, we have that T (iω) =
limδ→0 Tδ (iω), T (iω) satisfies (2.3.8) which, in turn, yields (2.3.7).

(3⇒2) is a consequence of Lemma 2.11, presented below.
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(2⇒1). If K = K> satisfies F(K)≺ 0, then there exists ε > 0 such that

F ′(K) := F(K)+

(
0 0
0 ε2I

)
= F(K)+

(
0 I
C D

)>(
ε2I 0
0 0

)(
0 I
C D

)
4 0

By Theorem 2.8, this implies that (S,s′) is dissipative with s′(w,z) = s(w,z)− ε2‖w‖2. Inequality
(2.2.4) therefore holds and we conclude that (S,s) is strictly dissipative.

Remark 2.10 Contrary to Theorem 2.8, the system S is not assumed to be controllable in Theo-
rem 2.9.

The dissipation matrix F(K) in (2.3.3) and (2.3.6) can be written in various equivalent and sometimes
more convenient forms. Indeed:

F(K) =

(
I 0
A B

)>(0 K
K 0

)(
I 0
A B

)
−
(

0 I
C D

)>(Q S
S> R

)(
0 I
C D

)
=

=

(
A>K +KA KB

B>K 0

)
−
(

0 I
C D

)>(Q S
S> R

)(
0 I
C D

)
=

=


I 0
A B
0 I
C D


>

0 K 0 0
K 0 0 0
0 0 −Q −S
0 0 −S> −R




I 0
A B
0 I
C D


=

(
A>K +KA−C>RC KB− (SC)>−C>RD
B>K−SC−D>RC −Q−SD− (SD)>−D>RD

)
.

If we set W := Q+ SD+(SD)>+D>RD and use a Schur complement, then the LMI F(K) ≺ 0 is
equivalent to

W � 0

A>K +KA−C>RC+
(

KB− (SC)>−C>RD
)

W−1
(

B>K−SC−D>RC
)
≺ 0.

The latter is a quadratic inequality in the unknown K.

2.3.2 The Kalman-Yakubovich-Popov lemma

As mentioned in the proofs of Theorem 2.8 and Theorem 2.9, the Kalman-Yakubovich-Popov lemma
is at the basis of the relation between frequency dependent matrix inequalities and an algebraic fea-
sibility property of a linear matrix inequality. We will use this important result at various instances.
The Lemma originates from a stability criterion of nonlinear feedback systems given by Popov in
1962 ( [?]). Yakubovich and Kalman introduced the lemma by showing that the frequency condition
of Popov is equivalent to the existence of a Lyapunov function.
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We present a very general statement of the lemma which is free of any hypothesis on the system
parameters. The proof which we present here is an elegant exercise in duality of semi-definite
programming and largely based on the result that we stated in Theorem 1.16 of Chapter 1. The proof
is inspired by [3].

Lemma 2.11 (Kalman-Yakubovich-Popov) For any triple of matrices A ∈ Rn×n, B ∈ Rn×m and
M ∈ S(n+m)×(n+m) =

(
M11 M12
M21 M22

)
, the following statements are equivalent:

(a) There exists a symmetric matrix K = K> such that(
I 0
A B

)>(0 K
K 0

)(
I 0
A B

)
+M ≺ 0 (2.3.9)

(b) M22 ≺ 0 and for all ω ∈ R and complex vectors col(x,w) 6= 0

(
A− iωI B

)(x
w

)
= 0 implies

(
x
w

)∗
M
(

x
w

)
< 0. (2.3.10)

If (A,B) is controllable, the corresponding equivalence also holds for the non-strict inequalities.

With

M =−
(

0 I
C D

)>(Q S
S> R

)(
0 I
C D

)
statement 2 of Lemma 2.11 is equivalent to the condition that for all ω ∈ R with det(iωI−A) 6= 0,(

I
C(iωI−A)−1B+D

)∗(Q S
S> R

)(
I

C(iωI−A)−1B+D

)
≺ 0.

Lemma 2.11 therefore reduces to the equivalence between the linear matrix inequality and the fre-
quency domain inequality in Theorem 2.8 and Theorem 2.9. The Kalman-Yakubovich-Popov lemma
therefore completes the proofs of these theorems.

Proof. (1⇒2). Let w ∈ Cm and (iωI−A)x = Bw, ω ∈ R. The implication then follows from(
x
w

)∗( I 0
A B

)>(0 K
K 0

)(
I 0
A B

)(
x
w

)
+

(
x
w

)∗
M
(

x
w

)
=

(
x
w

)∗
M
(

x
w

)
.

(1⇐2). Suppose that (2.3.9) has no solution K ∈ Sn. Then either M22⊀ 0 or M22≺ 0. If M22⊀ 0 then
the statement at item 2 is trivially false and the proof is complete. Suppose therefore that M22 ≺ 0
and (2.3.9) is not feasible. This means that the optimal value

Popt := inf
{

γ | ∃K = K> such that G(K,γ) :=
(

A>K +KA KB
B>K 0

)
+M− γI 4 0

}
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is non-negative. Note that this is a convex optimization problem with a linear objective function. As
in subsection 1.4.5, let 〈Y,X〉 := trace(Y X) be the natural inner product associated with the space
Sn+m and infer from Theorem 1.28 of Chapter 1 that

Dopt := max
Y<0

inf
K∈S,γ∈R

γ + 〈Y,G(K,γ)〉=

= max
Y<0

inf
K∈S,γ∈R

{
〈Y,M〉+ 〈Y,

(
A B

)>K
(
I 0

)
+
(
I 0

)>K
(
A B

)
− γI〉

}
=

= max
{
〈Y,M〉 | Y < 0,

(
A B

)
Y
(
I 0

)>
+
(
I 0

)
Y
(
A B

)>
= 0
}
=

= Popt

is also non-negative. Moreover, by Theorem 1.16, there exists a nonzero Y = Y> such that

〈Y,M〉= trace(Y M)≥ 0,
(
A B

)
Y
(
I 0

)>
+
(
I 0

)
Y
(
A B

)>
= 0, Y < 0. (2.3.11)

Partition Y as the (n+m)× (n+m) matrix Y =
(

Y11 Y12
Y21 Y22

)
. We first claim that Y11 6= 0. Indeed, for

any x ∈ kerY11, w ∈ Rm and α ∈ R, the inequality Y < 0 implies

col(αx,w)∗Y col(αx,w) = αx>Y12w+w>Y21αx+w>Y22w≥ 0.

Since α is arbitrary, this means that x ∈ kerY21 so that kerY11 ⊆ kerY21. In particular, if Y11 = 0,
this implies that Y21 = 0, Y12 = Y>21 = 0 and, as 0 ≤ trace(Y M) = trace(Y22M22) with M22 ≺ 0, also
Y22 = 0. This yields a contradiction as Y 6= 0. Hence, there exists a factorization Y11 = VV ∗ with
V ∈ Rn×r a full rank matrix of positive rank rankY11 = rankV = r ≥ 1. A Cholesky factorization of
Y is then given by

Y =

(
V 0
W U

)(
V 0
W U

)∗
where W ∈ Rm×r and U has rankY − r columns. The second expression in (2.3.11) now reads

0 = AY11 +BY21 +Y12B∗+Y11A∗ = AVV ∗+BWV ∗+(AVV ∗+BWV ∗)∗,

showing that AVV ∗+BWV ∗ is a skew-symmetric matrix, i.e., AVV ∗+BWV ∗ = V JV ∗ where J ∈
Rr×r satisfies J + J∗ = 0. Since V has full rank this implies that also AV +BW = V J. The first
condition in (2.3.11) now states that

0≤ trace(Y M) = trace(
(

V 0
W U

)∗(M11 M12
M21 M22

)(
V 0
W U

)
= trace(

(
V
W

)∗
M
(

V
W

)
)+ trace(U∗M22U)

≤ trace(
(

V
W

)∗
M
(

V
W

)
)

where the last inequality follows from the fact that M22 ≺ 0. Now let J = QSQ−1 be a Schur de-
composition of J. Then Q is an r× r unitary matrix (Q−1 = Q∗) and, since J is skew-symmetric, the
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Schur matrix S is a diagonal matrix with the purely imaginary eigenvalues of J on its diagonal. But
then, with qk denoting the kth column of Q,

0≤ trace(
(

V
W

)∗
M
(

V
W

)
) = trace(Q∗

(
V ∗ W ∗

)
M
(

V
W

)
Q) =

=
r

∑
k=1

q∗k

(
V
W

)∗
M
(

V
W

)
qk

which shows that for at least one index k ∈ [1,r] the corresponding term in the last summation must
be non-negative. Let k be this index and define xk =V qk, wk =Wqk and let iωk = e∗kSek the kth entry
on the diagonal of S. Then, since V has full column rank, col(xk,wk) 6= 0. Moreover, AV +BW =V J
with J = QSQ∗ implies that AV Q+BWQ−V QS = 0 whose kth column reads

0 = AV qk +BWqk− iωkV qk = Axk +Bwk− iωkxk =
(
A− iωkI B

)(xk
wk

)
.

Hence, we found an ωk ∈ R and a non-zero vector col(xk,wk) in the kernel of
(
A− iωkI B

)
for

which (
xk
wk

)∗
M
(

xk
wk

)
= q∗k

(
V
W

)∗
M
(

V
W

)
qk ≥ 0.

This falsifies statement 2 and therefore completes the proof.

2.3.3 Dissipation functions and spectral factors

If the system S is dissipative with respect to the supply function s then for any storage function V ,
the inequality (2.2.3) implies that

d(x,w) := s(w,g(x,w))−∂xV (x) f (x,w) (2.3.12)

is non-negative for all x and w. Conversely, if there exists a non-negative function d and a differen-
tiable V : X→R for which (2.3.12) holds, then the pair (S,s) is dissipative. The function d quantifies
the amount of supply that is dissipated in the system when it finds itself in state x while the input w
is exerted. We will call d : X ×W → R a dissipation function for (S,s) if (2.3.12) is satisfied for a
differentiable storage function V : X → R.

For linear systems with quadratic supply functions, (2.3.12) reads

d(x,w) =
(

x
w

)>[(0 I
C D

)>(Q S
S> R

)(
0 I
C D

)
−
(

I 0
A B

)>(0 K
K 0

)(
I 0
A B

)](
x
w

)

=−
(

x
w

)>
F(K)

(
x
w

)
.
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If K = K> is such that F(K)4 0 (or F(K)≺ 0) then the dissipation matrix can be factorized as

−F(K) =
(
MK NK

)> (MK NK
)
. (2.3.13)

where
(
MK NK

)
is a real partitioned matrix with n+m columns and at least rK := rank(F(K))

rows. For any such factorization, the function

d(x,w) := (MKx+NKw)>(MKx+NKw) = ‖MKx+NKw‖2

is therefore a dissipation function. If we extend the system equations (2.3.1) with the output equation
v=MKx+NKw, then the output v incorporates the dissipated supply at each time instant and we infer
from (2.3.12) that the extended system

ẋ = Ax+Bw, x(0) = x0

z =Cx+Dw
v = MKx+NKw

(2.3.14)

becomes conservative with respect to the quadratic supply function s′(w,z,v) := s(w,z)− v>v.

This observation leads to an interesting connection between dissipation functions and spectral fac-
torizations of rational functions. A complex valued rational function Φ : C→H is called a spectral
density if Φ(s) = Φ∗(s) and Φ is analytic on the imaginary axis. A rational function V is a spectral
factor of Φ if Φ(s) =V ∗(s)V (s) for all but finitely many s ∈ C.

Theorem 2.12 Consider the spectral density

Φ(s) =
(

I
T (s)

)∗(Q S
S> R

)(
I

T (s)

)
where T (s) = C(Is−A)−1B+D, A has no eigenvalues on the imaginary axis and where (A,B) is
controllable. Then there exists a spectral factor of Φ if and only if there exists K = K> such that
F(K) 4 0. In that case, V (s) := MK(Is−A)−1B+NK is a spectral factor of Φ where MK and NK
are defined by the factorization (2.3.13).

Proof. If F(K)4 0 then F(K) can be factorized as (2.3.13) and for any such factorization the system
(2.3.14) is conservative with respect to the supply function s′(w,z,v) := s(w,z)− v>v. Applying
Theorem 2.8 for conservative systems, this means that I

T (iω)
V (iω)

∗Q S 0
S> R 0
0 0 −I

 I
T (iω)
V (iω)

= Φ(iω)−V ∗(iω)V (iω) = 0

for all ω ∈ R. But a rational function that vanishes identically on the imaginary axis, vanishes for
all s ∈ C. Hence, we infer that Φ(s) = V ∗(s)V (s) for all but finitely many s ∈ C. Conversely, if no
K = K> exists with F(K)4 0, it follows from Theorem 2.8 that Φ(iω)� 0 and hence Φ admits no
factorization on C0.
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2.3.4 The positive real lemma

Consider the system (2.3.1) together with the quadratic supply function

s(w,z) = z>w+w>z.

Then the following result is worth mentioning as a special case of Theorem 2.8.

Corollary 2.13 Suppose that the system S described by (2.3.1) is controllable and has transfer
function T . Let s(w,z) = z>w+w>z be a supply function. Then equivalent statements are

(a) (S,s) is dissipative.

(b) the LMI 
I 0
A B
0 I
C D


>

0 K 0 0
K 0 0 0
0 0 0 −I
0 0 −I 0




I 0
A B
0 I
C D

 4 0

is feasible

(c) For all ω ∈ R∪{∞} with det(iωI−A) 6= 0 one has T (iω)∗+T (iω)< 0.

Moreover, V (x) = x>Kx defines a quadratic storage function if and only if K satisfies the above LMI.

Corollary 2.13 is known as the positive real lemma and has played a crucial role in questions related
to the stability of control systems and the synthesis of passive electrical networks. Transfer functions
which satisfy the third statement are generally called positive real. Note that for single-input and
single-output transfer function, positive realness is graphically verified by the condition that the
Nyquist plot of the system lies entirely in the right-half complex plane.

2.3.5 The bounded real lemma

Consider the quadratic supply function

s(w,z) = γ
2w>w− z>z (2.3.15)

where γ ≥ 0. We obtain the following result as an immediate consequence of Theorem 2.8.

Corollary 2.14 Suppose that the system S described by (2.3.1) is controllable and has transfer
function T . Let s(w,z) = γ2w>w−z>z be a supply function where γ ≥ 0. Then equivalent statements
are

(a) (S,s) is dissipative.
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(b) The LMI 
I 0
A B
0 I
C D


>

0 K 0 0
K 0 0 0
0 0 −γ2I 0
0 0 0 I




I 0
A B
0 I
C D

 4 0

is feasible.

(c) For all ω ∈ R with det(iωI−A) 6= 0 one has T (iω)∗T (iω)4 γ2I.

Moreover, V (x) = x>Kx defines a quadratic storage function if and only if K satisfies the above LMI.

Let us analyze the importance of this result. If the transfer function T of a system satisfies item 3 of
Corollary 2.14 then for all frequencies ω ∈R for which iω is not an eigenvalue of A and all complex
vectors ŵ(ω) ∈ Cm we have

ŵ(ω)∗T (iω)∗T (iω)ŵ(ω)≤ γ
2‖ŵ(ω)‖2.

Now suppose that ŵ, viewed as a function of ω ∈ R is square integrable in the sense that

‖ŵ‖2
2 :=

1
2π

∫
∞

−∞

ŵ(ω)∗ŵ(ω)dω < ∞.

Using Parseval’s theorem, ŵ is the Fourier transform of a function w : R → W in that ŵ(ω) =∫ +∞

−∞
w(t)e−iωtd t and we have that ‖ŵ‖2 = ‖w‖2 provided that the latter norm is defined as

‖w‖2
2 =

∫
∞

−∞

w(t)>w(t)d t

Let ẑ(ω) = T (iω)ŵ(ω). Then, similarly, ẑ is the Fourier transform of a function z that happens to
satisfy (2.3.1) where x is a square integrable function (i.e., ‖x‖2 < ∞) defined as the inverse Fourier
transform of x̂(ω) := (iωI−A)−1Bŵ(ω). Consequently, item 3 is equivalent to saying that

‖z‖2
2 ≤ γ

2‖w‖2

for all inputs w for which ‖w‖2 <∞. That is, the 2-norm of the output of (2.3.1) is uniformly bounded
by γ2 times the 2-norm of the input. When restricted to stable systems and signals (w,x,z) defined on
the non-negative time axis R+, this crucial observation is at the basis of H∞ optimal control theory
as will be further exploited in the next chapter.

2.4 Interconnections of dissipative systems

In this section we consider the question whether the interconnection of a number of dissipative
systems is again dissipative. To answer this question, we restrict attention to the case where two
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dynamical systems are interconnected. Generalizations to interconnections of more than two dy-
namical systems follow immediately from these ideas and are left to the reader. Consider therefore
two dynamical systems in state space form

S1 :


ẋ1 = f1(x1,w1,u1)

z1 = g1(x1,w1,u1)

y1 = h1(x1,w1,u1)

, S2 :


ẋ2 = f2(x2,w2,u2)

z2 = g2(x2,w2,u2)

y2 = h2(x2,w2,u2)

. (2.4.1)

with the decomposed inputs (w1,u1) and (w2,u2), respectively, and with outputs decomposed as
(z1,y1) and (z2,y2) respectively. We will first need to formalize what we mean by an interconnection
of these systems. The idea will be to distinguish a number of common terminals among the input
and output variables of either of the two systems S1 and S2 and to declare an algebraic constraint (the
interconnection constraint) on these variables. Here, we will assume that these common terminals are
labeled with u and y. In more rigorous terms: the input and the output space of system Si is assumed
to be a Cartesian set product Wi×Ui and Zi×Yi, respectively. We will think of the variables (wi,zi)
as the external variables and as the variables (ui,yi) as the interconnection or internal variables of
the interconnected system. That is, the variables (ui,yi), i = 1,2, will serve to interconnect the two
systems. Assume that

dimY1 = dimU2 and dimU1 = dimY2.

The interconnection constraint is then defined by the algebraic relations

y1 = u2, u1 = y2 (2.4.2)

and the interconnected system is defined by the laws (2.4.1) of S1 and S2 combined with the inter-
connection constraint (2.4.2). The idea behind this concept is visualized in Figure 2.1.

S1 S2
-
-

�
�z1

w1

� �

y1

y2

- -

u2

u1

-
-

�
� w2

z2

Figure 2.1: System interconnections

It is not evident that the joint equations (2.4.1)-(2.4.2) will have a unique solution for every pair of
input variables (w1,w2) and for any pair of initial conditions in (2.4.1). Stated differently, it is not
immediate that (w1,w2) serve as inputs and (z1,z2) as outputs of the interconnected system. When
it does, this property is referred to as well posedness of the interconnection. We decided to heavily
disappoint the reader and avoid a thorough discussion on this issue here. For the time being, we will
assume that the interconnected system is well defined, takes (w1,w2) as its input variable and (z1,z2)
as its output. Whenever well defined, the interconnected system will be denoted by S= S1uS2.

We now get to discuss the question whether or not the interconnection is dissipative. Suppose that
both (S1,s1) and (S2,s2) are dissipative. Assume that the supply function si of the ith system admits
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an additive structure in the sense that there exists functions si,ext : Wi×Zi→R and si,int : Ui×Yi→R
such that

si(wi,ui,zi,yi) = si,ext(wi,zi)+ si,int(ui,yi)

for all (wi,ui,zi,yi) ∈Wi×Ui×Zi×Yi. Now, consider the interconnection S= S1uS2 of S1 and S2.
This interconnection is said to be neutral if

s1,int(u1,y1)+ s2,int(u2,y2) = 0 for all (u1,u2,y1,y2) ∈U1×U2×Y1×Y2.

In words, this means that there is no dissipation in the interconnection variables. In physical terms:
all power that flows out of system 1 through its ports that interconnect with system 2, flows into sys-
tem 2 and vice versa. In mathematical terms: the interconnected system is conservative with respect
to the supply function s : U1×U2→R defined as s(u1,u2) := s1,int(u1,u2)+ s2,int(u2,u1). Neutrality
therefore seems a rather natural requirement for many interconnected systems. The following result
confirms our intuition that a neutral interconnection of dissipative systems is dissipative again. It
moreover shows that one candidate storage function of the interconnected system is simply the sum
of the storage functions of the interconnectants.

Theorem 2.15 Let (Si,si), i = 1,2, be dissipative dynamical systems and suppose that the intercon-
nection S = S1 u S2 is well defined and neutral. Then S is dissipative with respect to the supply
function s : W1×Z1×W2×Z2 defined as

s(w1,z1,w2,z2) := s1,ext(w1,z1)+ s2,ext(w2,z2).

Moreover, if Vi : Xi→R is a storage function of (Si,si) then V : X1×X2→R defined by V (x1,x2) :=
V1(x1)+V2(x2) is a storage function of the interconnection (S,s).

Proof. Since (Si,si), i = 1,2 is dissipative, there exists V1 : X1→ R, V2 : X2→ R such that for all
t0 ≤ t1,

V1(x1(t0))+
∫ t1

t0
s1,ext(w1,z1)+ s1,int(u1,y1)d t ≥V1(x1(t1))

V2(x2(t0))+
∫ t1

t0
s2,ext(w2,z2)+ s2,int(u2,y2)d t ≥V2(x2(t1))

Adding these two equations and applying the neutrality condition of the interconnection yields that

V (x(t0)+
∫ t1

t0
s1,ext(w1,z1)+ s2,ext(w2,z2)d t ≥V (x(t1))

i.e., (S,s) is dissipative with V as its storage function.

Theorem 2.15 and its proof are rather intuitive, but the result is at the basis of many things that we
will have to say about robust stability of uncertain systems in later chapters.

An interesting special case of Theorem 2.15 amounts to considering full interconnections. In a
full interconnection, all variables are used as interconnection (or internal) variables and no external
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variables are left in the interconnected system. That is, for i= 1,2 we have that dim(Wi) = dim(Zi) =
0. and the supply function si = si,int for i = 1,2. Theorem 2.15 then states that a full interconnection
of the dissipative systems (S1,s1) and (S2,s2) with s1 = −s2 yields a neutral interconnection S =
S1uS2 that is dissipative with respect to the supply function s = 0. With x = col(x1,x2) denoting the
state variable of S, this means that the storage function V (x) :=V (x1,x2) =V1(x1)+V2(x2) satisfies

V (x(t)) ≤ V (x(t0)) for all t ≥ t0

i.e., there exists a non-increasing storage function in a full interconnection of dissipative systems. We
will heavily exploit this property in investigating the stability and the robust stability of dynamical
systems. For the time being, we summarize this discussion in the following corollary.

Corollary 2.16 Let S = S1 uS2 be a well defined full interconnection of the dissipative dynamical
systems (S1,s) and (S2,−s). Then the interconnection is neutral and there exists a function V defined
on the state x of S with the property that for all system trajectories

V (x(t)) ≤ V (x(t0)) for all t ≥ t0.

We finally remark that the above ideas can be easily generalized to interconnections of any finite
number of dynamical systems.

2.5 Further reading

Many of the ideas on dissipative dynamical systems originate from the work of Willems in [61, 62].
The definitions on dissipative dynamical systems and their characterizations have been reported
in [58, 59] and originate from the behavioral approach of dynamical systems. Details on the notion
of cyclo-dissipativity can be found in [59] See also similar work in [54]. Extensions to nonlinear
systems are discussed in [8]. A thorough system theoretic treatment of thermodynamical systems has
been published in [12]. The result that linear systems that are dissipative with respect to quadratic
supply functions admit quadratic storage functions is a special case of a result by Molinari who gave
a rigorous proof in [32]. See also [31]. Many proofs of the Kalman-Yakubovich-Popov lemma can
be found in the literature. The very general version that is presented in this chapter is very much
based on a semidefinite programming duality argument that was first presented in [56] and worked
out in its full generality on the basis of theorems of alternatives in [3]. For alternative proofs of this
important lemma, see [6, 36, 37, 60]. For specific applications of the KYP lemma in semi-definite
programming see, e.g., [5, 6, 36, 57].

2.6 Exercises

Exercise 1
Show that for conservative controllable systems the set of normalized storage functions V (x∗) con-
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sist of one element only.
Conclude that storage functions of conservative systems are unique up to normalization!.

Exercise 2
Show that the set of dissipation functions associated with a dissipative system is convex.

Exercise 3
Consider the suspension system S of one wheel of a transport vehicle as depicted in Figure 2.2. The

Figure 2.2: Model for suspension system

system is modeled by the equations

m2q̈2 +b2(q̇2− q̇1)+ k2(q2−q1)− f = 0
m1q̈1 +b2(q̇1− q̇2)+ k2(q1−q2)+ k1(q1−q0)+ f = 0

where f (resp. − f ) is a force acting on the chassis mass m2 (the axle mass m1). Here, q2− q1 is
the distance between chassis and axle, and q̈2 denotes the acceleration of the chassis mass m2. b2
is a damping coefficient and k1 and k2 are tire and air spring coefficients. (b1 = 0). The variable q0

m1 [kg] m2 [kg] k1 [N/m] k2 [N/m] b2 [Ns/m]
5.0×101 4.0×102 3.1×105 3.0×104 1.45×103

Table 2.1: Physical parameters

represents the road profile. The physical parameters for one wheel of an average economy car are
given in Table 2.1.

(a) Derive a state space model of the form 2.3.1 of the system which assumes w = col(q0,F) and
z = col(q1, q̇1,q2, q̇2) as its input and output, respectively.

(b) Define a supply function s : W ×Z→ R such that (S,s) is dissipative. (Base your definition
on physical insight).

(c) Characterize the set of all quadratic storage functions of the system as the feasibility set of a
linear matrix inequality.
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(d) Compute a quadratic storage function V (x) = x>Kx for this system.

(e) Determine a dissipation function d : X×W → R for this system.

Exercise 4
Consider the transfer functions

(a) T1(s) = 1/(s+1)

(b) T2(s) = (s−1)/(s+1)

(c) T3(s) =
(
(s+2)(s−1)/(s+1)2 (s+3)/(s+4)

(s−1)/(s+0.5) (s+1)/(s+2)

)
.

Determine for each of these transfer functions

(a) whether or not they are positive real and

(b) the smallest value of γ > 0 for which T ∗(iω)T (iω)4 γ2I.

Reformulate these problems as a feasibility test involving a suitably defined LMI. (See Corollar-
ies 2.13 and 2.14).

Exercise 5
Consider the electrical circuit of Figure 2.3.

RC RL

C L
V

I

�
�� iiiiii

Figure 2.3: An electrical circuit

We will be interested in modeling the relation between the external voltage V and the current I
through the circuit. Assume that the resistors RC = 1 and RL = 1, the capacitor C = 2 and the
inductance L = 1.

(a) Derive a linear, time-invariant system S that models the relation between the voltage V and
the current I.

(b) Find a state space representation of the form (2.3.1) which represents S. Is the choice of input
and output variable unique?
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(c) Define a supply function s : W ×Z→ R such that (S,s) is dissipative.

(d) Characterize the set of all quadratic storage functions of the system as the feasibility set of a
linear matrix inequality.

(e) Compute a quadratic storage function V (x) = x>Kx of this system.

(f) Does dissipativity of (S,s) depend on whether the voltage V or the current I is taken as input
of your system?

Exercise 6
Consider a first-order unstable system P(s) = 1/(−3s+ 1). It is desirable to design a feedback
compensator C, so that the feedback system is dissipative. Assume that the compensator C is a
simple gain C(s) = k, k ∈ R. Find the range of gains k that will make the system depicted in
Figure 2.4 dissipative with respect to the supply function s(w,z) = wz.

-w f
6

-
−

+
C - P - z

Figure 2.4: Feedback configuration

Exercise 7
The solar system is the perfect example of an autonomous system that is governed by Newton’s
inverse-square law. It states that the gravitational attractive force between two masses is proportional
to the product of their masses and inverse proportional to the square of their distance. The orbit of
a mass m moving under the influence of a Newtonian gravitational field of a second mass m is
described by the inverse-square law:

mz̈+
mMG
‖z‖3 z = 0. (2.6.1)

Here, G denotes the constant of universal gravitation, z(t) ∈ R3 denotes the position of mass m at
time t, where we assume that M is located in the origin. Let p = mż denote the momentum of mass
m and let x = col(z, p) be a state vector.

(a) Represent this (autonomous) system in the form ẋ = f (x), z = g(x).

(b) Consider the function

V (z, p) :=
1

2m
‖p‖2− mMG

‖z‖
and show that V is a storage function of the system with supply function s(z) = 0.
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(c) Prove that the orbit of the mass m is a hyperbola, parabola or ellipse depending on whether
V > 0, V = 0 or V < 0 along solutions z of (2.6.1).

Conclude from the last item that Kepler’s first law of planetary motions tells us that the solar system
can be viewed an autonomous dissipative system with a negative storage function.

Exercise 8
A Hamiltonian system is a nonlinear dynamical system of the form

S :

{
ẋ = (J(x)−R(x))∇H(x)+B(x)w
z = B(x)>∇H(x)

(2.6.2)

where H : Rn→ R is a differentiable function, B : Rn→ Rn×m, ∇H(x) denotes the gradient vector
of H at x and where, for every x ∈Rn, J(x) is a real skew-symmetric matrix in that J(x)+J(x)> = 0
and R(x) ∈ Sn is positive semi-definite.

(a) Prove that a Hamiltonian system is conservative with respect to the supply function s(w,z) =
z>w if and only if R(x) = 0 for all x ∈ Rn.

(b) Prove that every Hamiltonian system is dissipative with respect to the supply function s(w,z)=
z>w.

(c) Prove that every linear time-invariant system (2.3.1) with D = 0 that is dissipative with respect
to the supply function s(w,z) = z>w can be written as a Hamiltonian system (2.6.2).

Exercise 9
Is it true that every first order single-input single-output stable system with input w and output z is
dissipative with respect to the supply function s(w,z) = wz ?
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Chapter 3

Nominal stability and nominal
performance

3.1 Lyapunov stability

As mentioned in Chapter 1, Aleksandr Mikhailovich Lyapunov studied contraction and expansion
phenomena of the motions of a mechanical system around an equilibrium. Translated in modern jar-
gon, the study of Lyapunov stability concerns the asymptotic behavior of the state of an autonomous
dynamical system. The main contribution of Lyapunov has been to define the concept of stability,
asymptotic stability and instability of such systems and to give a method of verification of these con-
cepts in terms of the existence of functions, called Lyapunov functions. Both his definition and his
verification method characterize, in a local way, the stability properties of an autonomous dynamical
system. Unfortunately, for the general class of nonlinear systems there are no systematic procedures
for finding Lyapunov functions. However, we will see that for linear systems the problem of finding
Lyapunov functions can be solved adequately as a feasibility test of a linear matrix inequality.

3.1.1 Nominal stability of nonlinear systems

Let X be a set and T ⊆ R. A flow is a mapping φ : T ×T ×X → X which satisfies the

(a) consistency property: φ(t, t,x) = x for all t ∈ T and x ∈ X and the

(b) semi-group property: φ(t1, t−1,x0) = φ(t1, t0,φ(t0, t−1,x0)) for all t−1 ≤ t0 ≤ t1 and x0 ∈ X .
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The set X is called the state space (or the phase space) and we will think of a flow as a state evolution
map. A flow defines an unforced or autonomous dynamical system in the sense that the evolution of
a flow is completely determined by an initial state and not by any kind of external input. A typical
example of a flow is the solution of a differential equation of the form

ẋ(t) = f (x(t), t) (3.1.1)

with finite dimensional state space X = Rn and where f : X ×T → X is a function. By a solution of
(3.1.1) over a (finite) time interval T ⊂ R we will mean a function x : T → X which is differentiable
everywhere and which satisfies (3.1.1) for all t ∈ T . By a solution over the unbounded intervals R+,
R− or R we will mean a solution over all finite intervals T contained in either of these sets. Let us
denote by φ(t, t0,x0) the solution of (3.1.1) at time t with initial condition x(t0) = x0. If for all pairs
(t0,x0) ∈ T ×X one can guarantee existence and uniqueness of a solution φ(t, t0,x0) of (3.1.1) with
t ∈ T , then the mapping φ satisfies the consistency and semi-group property, and therefore defines a
flow. In that case, φ is said to be the flow associated with the differential equation (3.1.1). This flow
is called time-invariant if

φ(t + τ, t0 + τ,x0) = φ(t, t0,x0)

for any τ ∈ T . It is said to be linear if X is a vector space and φ(t, t0, ·) is a linear mapping for all
time instances t and t0. For time-invariant flows we usually take (without loss of generality) t0 = 0
as initial time. Existence and uniqueness of solutions of (3.1.1) is guaranteed whenever f satisfies a
global Lipschitz condition. That is, if X has the structure of a normed vector space with norm ‖ · ‖,
and if for some L > 0, the inequality

‖ f (x, t)− f (y, t)‖ ≤ L‖x− y‖

holds for all x,y ∈ X and t ∈ T .

An element x∗ ∈ X is a fixed point or an equilibrium point of (3.1.1) if f (x∗, t) = 0 for all t ∈ T . It is
easy to see that x∗ is a fixed point if and only if φ(t, t0,x∗) = x∗ is a solution of (3.1.1) for all t and
t0. In other words, fixed points define solutions of (3.1.1) that remain in x∗ once they started there
–this explains the name.

There exists a wealth of concepts to define the stability of a flow φ . The various notions of Lyapunov
stability pertain to a distinguished fixed point x∗ of a flow φ and express to what extend an other
trajectory φ(t, t0,x0), whose initial state x0 lies in the neighborhood of x∗ at time t0, remains or gets
close to φ(t, t0,x∗) for all time t ≥ t0.

Definition 3.1 (Lyapunov stability) Let φ : T ×T ×X be a flow and suppose that T = R and X is
a normed vector space. The fixed point x∗ is said to be

(a) stable (in the sense of Lyapunov) if given any ε > 0 and t0 ∈ T , there exists δ = δ (ε, t0)> 0
(not depending on t) such that

‖x0− x∗‖ ≤ δ =⇒ ‖φ(t, t0,x0)− x∗‖ ≤ ε for all t ≥ t0. (3.1.2)

62 Compilation: January 2015



3.1. LYAPUNOV STABILITY 63

(b) attractive if for all t0 ∈ T there exists δ = δ (t0)> 0 with the property that

‖x0− x∗‖ ≤ δ =⇒ lim
t→∞
‖φ(t, t0,x0)− x∗‖= 0. (3.1.3)

(c) exponentially stable if for all t0 ∈ T there exists δ = δ (t0), α = α(t0)> 0 and β = β (t0)> 0
such that

‖x0− x∗‖ ≤ δ =⇒ ‖φ(t, t0,x0)− x∗‖ ≤ β‖x0− x∗‖e−α(t−t0) for all t ≥ t0. (3.1.4)

(d) asymptotically stable (in the sense of Lyapunov) if it is both stable (in the sense of Lyapunov)
and attractive.

(e) unstable if it is not stable (in the sense of Lyapunov).

(f) uniformly stable (in the sense of Lyapunov) if given any ε > 0 there exists δ = δ (ε)> 0 (not
depending on t0) such that (3.1.2) holds for all t0 ∈ T .

(g) uniformly attractive if there exists δ > 0 (not depending on t0) such that (3.1.3) holds for all
t0 ∈ T .

(h) uniformly exponentially stable if there exists δ > 0 (not depending on t0) such that (3.1.3)
holds for all t0 ∈ T .

(i) uniformly asymptotically stable (in the sense of Lyapunov) if it is both uniformly stable (in
the sense of Lyapunov) and uniformly attractive.

In words, a fixed point is stable if the graphs of all flows that initiate sufficiently close to x∗ at time
t0, remain as close as desired to x∗ for all time t ≥ t0. Stated otherwise, a fixed point is stable if the
mapping φ(t, t0, ·) is continuous at x∗, uniformly in t ≥ t0. The region of attraction associated with a
fixed point x∗ is defined to be the set of all initial states x0 ∈ X for which φ(t, t0,x0)→ x∗ as t→ ∞.
If this region does not depend on t0, it is said to be uniform, if it coincides with X then x∗ is globally
attractive. Similarly, we can define the region of stability, the region of asymptotic stability and the
region of exponential stability associated with x∗. Again, these regions are said to be uniform if they
do not depend on t0. If these regions cover the entire state space X , then the fixed point is called
globally stable, globally asymptotically stable, or globally exponentially stable, respectively.

There exist examples of stable fixed points that are not attractive. Likewise, there exist examples of
attractive fixed points that are not stable. The notion of exponential stability is the strongest in the
sense that an exponentially stable fixed point is also asymptotically stable (i.e., a stable attractor).
Similarly, it is easily seen that uniform exponential stability implies uniform asymptotic stability.

A set S ⊂ X is called positive invariant for a flow φ if x0 ∈S implies that there exists a t0 ∈ T
such that φ(t, t0,x0) ∈S for all t ≥ t0. It is called a negative invariant set if this condition holds for
t ≤ t0 and it is said to be an invariant set if it is both positive and negative invariant. The idea of
(positive, negative) invariance simply expresses the idea that a flow remains in the set once it started
there at time t0. Naturally, S ⊆ X is said to be an invariant set of the differential equation (3.1.1), if
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64 3.1. LYAPUNOV STABILITY

it is an invariant set of its associated flow. Also, any point x0 ∈ X naturally generates the invariant
set S = {φ(t, t0,x0) | t ≥ t0} consisting of all points through which the flow φ(t, t0,x0) passes when
time evolves. In particular, every fixed point x∗ of (3.1.1) defines the singleton S = {x∗} as invariant
set.

The following proposition gives a first good reason to avoid distinguishing all of the above notions
of stability.

Proposition 3.2 Let φ : T ×T ×X be a flow with T = R and suppose that x∗ is a fixed point. If φ is
linear then

(a) x∗ is attractive if and only if x∗ is globally attractive.

(b) x∗ is asymptotically stable if and only if x∗ is globally asymptotically stable.

(c) x∗ is exponentially stable if and only if x∗ is globally exponentially stable.

If φ is time-invariant then

(a) x∗ is stable if and only if x∗ is uniformly stable.

(b) x∗ is asymptotically stable if and only if x∗ is uniformly asymptotically stable.

(c) x∗ is exponentially stable if and only if x∗ is uniformly exponentially stable.

Proof. All if parts are trivial. To prove the only if parts, let φ be linear, and suppose that x∗

is attractive. Without loss of generality we will assume that x∗ = 0. Take x0 ∈ X and δ > 0
as in Definition 3.1. Then there exists α > 0 such that ‖αx0‖ < δ and by linearity of the flow,
limt→∞ ‖φ(t, t0,x0)‖ = α−1 limt→∞ ‖φ(t, t0,αx0)‖ = 0, i.e., 0 is a global attractor. The second and
third claim for linear flows is now obvious. Next, let φ be time-invariant and x∗ = 0 stable. Then for
ε > 0 and t0 ∈ T there exists δ > 0 such that ‖x0‖≤ δ implies ‖φ(t+τ, t0+τ,x0)‖= ‖φ(t, t0,x0)‖≤
ε for all t ≥ t0 and τ ∈ T . Set t ′= t+τ and t ′0 = t0+τ to infer that ‖x0‖≤ δ implies ‖φ(t ′, t ′0,x0)‖≤ ε

for all t ′ ≥ t ′0. But these are the trajectories passing through x0 at time t ′0 with t ′0 arbitrary. Hence 0 is
uniformly stable. The last claims follow with a similar reasoning.

Definition 3.3 (Definite functions) Let S ⊆ Rn have the point x∗ in its interior and let T ⊆ R. A
function V : S ×T → R is said to be

(a) positive definite (with respect to x∗) if there exists a continuous, strictly increasing function
a : R+→ R+ with a(0) = 0 such that V (x, t)≥ a(‖x− x∗‖) for all (x, t) ∈S ×T .

(b) positive semi-definite if V (x, t)≥ 0 for all (x, t) ∈S ×T .

(c) decrescent (with respect to x∗) if there exists a continuous, strictly increasing function b :
R+→ R+ with b(0) = 0 such that V (x, t)≤ b(‖x− x∗‖) for all (x, t) ∈S ×T .
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3.1. LYAPUNOV STABILITY 65

(d) negative definite (around x∗) or negative semi-definite if −V is positive definite or positive
semi-definite, respectively.

The terminology in Definition 3.3 is consistent with the notions of definite matrices that we intro-
duced in Chapter 1. Indeed, if K is a real symmetric matrix then for all vectors x we have that

λmin(K)‖x‖2 ≤ x>Kx ≤ λmax(K)‖x‖2.

Hence, the function V (x) := x>Kx is positive definite with respect to the origin if, and only if, the
smallest eigenvalue λmin(K) is positive. In turn, this is equivalent to saying that K is positive definite
as a matrix (denoted K � 0). Similarly, V is negative definite with respect to the origin if and only if
λmax(K)< 0 which is equivalent to K ≺ 0.

Consider the system (3.1.1) and suppose that x∗ is an equilibrium point. Let S be a set which
has x∗ in its interior and suppose that V : S ×T → R has continuous partial derivatives (i.e., V is
continuously differentiable). Consider, for (x0, t0) ∈S ×T , the function V : T → X defined by the
composition

V (t) :=V (φ(t, t0,x0), t).

This function is differentiable and its derivative reads

dV
dt

(t) = ∂xV (φ(t, t0,x0), t) f (φ(t, t0,x0), t)+∂tV (φ(t, t0,x0), t).

Now introduce the mapping V ′ : S ×T → R by setting

V ′(x, t) := ∂xV (x, t) f (x, t)+∂tV (x, t). (3.1.5)

V ′ is called the derivative of V along trajectories of (3.1.1) and, by construction, V̇ (t)=V ′(φ(t, t0,x0), t)
for all t ∈ T . It is very important to observe that V ′ not only depends on V but also on the differential
equation (3.1.1). It is rather common to write V̇ for V ′ and even more common to confuse V̇ with
V ′. Formally, these objects are truly different as V is a function of time, whereas V ′ is a function of
state and time.

The main stability results for autonomous systems of the form (3.1.1) are summarized in the follow-
ing result.

Theorem 3.4 (Lyapunov theorem) Consider the differential equation (3.1.1) and let x∗ ∈ X be an
equilibrium point which belongs to the interior of a set S .

(a) If there exists a positive definite, continuously differentiable function V : S × T → R with
V (x∗, t) = 0 and V ′ negative semi-definite, then x∗ is stable. If, in addition, V is decrescent,
then x∗ is uniformly stable.

(b) If there exists a positive definite decrescent and continuously differentiable function V : S ×
T → R with V (x∗, t) = 0 and V ′ negative definite, then x∗ is uniformly asymptotically stable.
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Proof. 1. Let t0 ∈ T and ε > 0. Since V (·, t0) is continuous at x∗ and V (x∗, t0) = 0, there exists
δ > 0 such that V (x0, t0)≤ a(ε) for every x0 ∈S with ‖x0− x∗‖< δ . Since V is a positive definite
and dV (x(t), t)/dt ≤ 0, we have that for every x0 ∈S with ‖x0− x∗‖< δ and t ≥ t0:

a(‖x(t)− x∗‖)≤V (x(t), t)≤V (x0, t0)≤ a(ε).

where we denoted x(t) = φ(t, t0,x0). Since a is strictly increasing, this implies (3.1.2), i.e., x∗ is
stable. If, in addition, V is decrescent, then V (x, t) ≤ b(‖x− x∗‖) for all (x, t) ∈S ×T . Apply the
previous argument with δ such that b(δ )≤ a(ε). Then δ is independent of t0 and V (x0, t0)≤ b(δ )≤
a(ε) for every (x0, t0) ∈S ×T such that ‖x0− x∗‖< δ . Hence, (3.1.2) holds for all t0.

2. By item 1, x∗ is uniformly stable. It thus suffices to show that x∗ is uniformly attractive. Let
δ > 0 be such that all x0 with ‖x0− x∗‖< δ belong to S . Since x∗ is an interior point of S such δ

obviously exists. Let x0 satisfy ‖x0−x∗‖< δ and let t0 ∈ T . Under the given hypothesis, there exist
continuous, strictly increasing functions a,b and c such that a(‖x− x∗‖) ≤ V (x, t) ≤ b(‖x− x∗‖)
and V̇ (x, t) ≥ −c(‖x− x∗‖) for all (x, t) ∈ S × T . Let ε > 0, γ > 0 such that b(γ) < a(ε), and
t1 > t0 + b(δ )/c(γ). We claim that there exists τ ∈ [t0, t1] such that x(τ) := φ(τ, t0,x0) satisfies
‖x(τ)− x∗‖ ≤ γ . Indeed, if no such τ exists, integration of both sides of the inequality V̇ (x(t), t) ≤
−c(‖x(t)− x∗‖) yields that

V (x(t1), t1)≤V (x0, t0)−
∫ t1

t0
c(‖x(t)− x∗‖)d t

< b(‖x0− x∗‖)− (t1− t0)c(γ) < b(δ )− b(δ )
c(γ)

c(γ) = 0,

which contradicts the assumption that V (x(t1), t1)≥ 0. Consequently, it follows from the hypothesis
that for all t ≥ τ:

a(‖x(t)− x∗‖)≤V (x(t), t)≤V (x(τ),τ)≤ b(‖x(τ)− x∗‖)≤ b(γ)≤ a(ε).

Since a is strictly increasing, this yields that ‖x(t)− x∗‖ ≤ ε for all t ≥ τ . As ε is arbitrary, this
proves (3.1.3) for all t0.

Functions V that satisfy either of the properties of Theorem 3.4 are generally referred to as Lyapunov
functions. The main implication of Theorem 3.4 is that stability of equilibrium points of differential
equations of the form (3.1.1) can be verified by searching for suitable Lyapunov functions.

3.1.2 Stability of interconnected systems

The class of autonomous systems that is studied in this section may seem rather restricted at first
sight. However, also for applications in control, the importance of autonomous systems becomes
apparent when considering interconnections of non-autonomous dynamical systems. A full inter-
connection of two time-invariant non-autonomous and possibly nonlinear systems S1 and S2 of the
form (2.4.1) is autonomous (when well-posed). In addition, the following result is immediate from
Corollary 2.16 of Chapter 2.
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Theorem 3.5 Let S1 and S2 be dynamical systems of the form (2.4.1) with dim(Wi) = dim(Zi) = 0,
i = 1,2. Suppose that both (S1,s) and (S2,−s) are dissipative for some supply function s and
suppose that each system Si, i = 1,2, admits a storage function Vi : Xi → R that is continuous and
positive definite with respect to an equilibrium point x∗i of Si. Then (x∗1,x

∗
2) is a stable equilibrium

point of the full interconnection S1uS2. Moreover, the function V : X1×X2→ R defined by

V (x1,x2) :=V1(x1)+V2(x2)

is a Lyapunov function for the equilibrium point in the sense that V is positive definite and V ′ negative
semi-definite.

Proof. Obviously, V is positive definite at x∗ = (x∗1,x
∗
2). By Corollary 2.16 of Chapter 2, V ′ is

negative semi-definite at x∗. The stability of the equilibrium point x∗ follows from Theorem 3.4.

Hence, storage functions, introduced in Chapter 2, and Lyapunov functions are closely related. Also
compare (3.1.5) with the differential dissipation inequality (2.2.3) from Chapter 2. Understanding
this relation is worthwhile, as it often helps to construct Lyapunov functions on the basis of phys-
ical properties of the system, or to decide about the stability of a system, simply by inspecting the
interconnection structure of components. For us, Theorem 3.5 will be at the basis of many robust
stabilization results that are yet to come. See Chapter 7.

As an example, a damped pendulum described by the nonlinear differential equations

ẋ1 = x2, ẋ2 =−sin(x1)−bx2

has all points (kπ,0) with k ∈ Z, corresponding to the vertical positions of the pendulum, as its fixed
points. The function V (x1,x2) := 1

2 x2
2 +(1− cos(x1)), representing the sum of kinetic and potential

mechanical energy in the system, vanishes at the fixed points (kπ,0) with k even and is a Lyapunov
function with V ′(x1,x2) := Ṽ (x1,x2) =−bx2

2 negative definite provided that the damping coefficient
b > 0. Hence, the fixed points (kπ,0) with k even are stable equilibria for any b > 0. In fact, these
points are uniformly asymptotically stable. Moreover, V satisfies the dissipation inequality (2.2.2)
with supply function s = 0.

3.1.3 Nominal stability of linear systems

Let us consider the linear autonomous system

ẋ = Ax (3.1.6)

where A ∈ Rn×n. Then (3.1.6) defines a linear flow. Suppose that (3.1.6) is obtained as the lin-
earization of f : X → X around an equilibrium point x∗ ∈ X of (3.1.1). Precisely, the first order
approximation of f at the equilibrium point x∗ ∈ X is given by

f (x)≈ f (x∗)+


∂ f1
∂x1

(x∗) · · · ∂ f1
∂xn

(x∗)
...

...
∂ fn
∂x1

(x∗) · · · ∂ fn
∂xn

(x∗)

(x− x∗)
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where we assume that f is at least once differentiable and where fk denotes the kth component of f .
Assuming (without loss of generality) that x∗ = 0, the linearization of f around x∗ = 0 is defined by
the system (3.1.6) with

A :=


∂ f1
∂x1

(x∗) · · · ∂ f1
∂xn

(x∗)
...

...
∂ fn
∂x1

(x∗) · · · ∂ fn
∂xn

(x∗)

 .

In more compact notation, A = ∂x f (x∗), which is usually referred to as the Jacobian of f at x∗. As
we will see, the stability of the equilibrium point x∗ of the nonlinear flow (3.1.1) can be inferred
from the stability of the origin in the linearized system (3.1.6). Define the quadratic form V : X →R
by setting

V (x) = x>Kx

with K � 0. This function serves as a quadratic Lyapunov function for the linear flow (3.1.6). Indeed,
V is continuous at x∗ = 0, it assumes a strong local minimum at x = 0 (actually this is a strong global
minimum of V ), while the derivative of V (·) in the direction of the vector field Ax is given by

V ′(x) = ∂xV (x)Ax = 2x>KAx = x>[A>K +KA]x.

If A>K +KA≺ 0 we infer that V ′ is negative definite which, using Theorem 3.4, guarantees that the
origin is an asymptotically stable equilibrium point of (3.1.6). In fact, many more conclusions can
be drawn:

Proposition 3.6 Let the system (3.1.6) be a linearization of (3.1.1) at the equilibrium x∗ of (3.1.1).
The following statements are equivalent.

(a) The origin is an asymptotically stable equilibrium for (3.1.6).

(b) The origin is a globally asymptotically stable equilibrium for (3.1.6).

(c) All eigenvalues λ (A) of A have strictly negative real part (i.e., A is Hurwitz).

(d) The linear matrix inequalities

A>K +KA≺ 0, K � 0

are feasible.

Moreover, if one of these statements hold, then the equilibrium x∗ of the flow (3.1.1) is asymptotically
stable.

As the most important implication of Proposition 3.6, asymptotic stability of the equilibrium x∗ of
the nonlinear system (3.1.1) can be concluded from the asymptotic stability of its linearization at x∗.
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3.2 Generalized stability regions for LTI systems

As we have seen, the autonomous linear system

ẋ = Ax

is asymptotically stable if and only if all eigenvalues of A lie in C−, the open left half complex plane.
For many applications in control and engineering we may be interested in more general stability
regions. Let us define a stability region as a subset Cstab ⊆ C with the following two properties{

Property 1: λ ∈ Cstab =⇒ λ̄ ∈ Cstab

Property 2: Cstab is convex .

Typical examples of common stability sets include

Cstab 1 = C− open left half complex plane
Cstab 2 = C no stability requirement
Cstab 3 = {s ∈ C | Re(s)<−α} guaranteed damping
Cstab 4 = {s ∈ C | |s|< r} circle centered at origin
Cstab 5 = {s ∈ C | α1 < Re(s)< α2} vertical strip
Cstab 6 = {s ∈ C | Re(s) tan(θ)<−| Im(s)|} conic stability region.

Here, θ ∈ (0,π/2) and r,α,α1,α2 are real numbers. We consider the question whether we can derive
a feasibility test to verify whether the eigen-modes of the system ẋ = Ax belong to either of these
sets. This can indeed be done in the case of the given examples. To see this, let us introduce the
notion of an LMI-region as follows:

Definition 3.7 For a real symmetric matrix P ∈ S2m×2m, the set of complex numbers

LP :=
{

s ∈ C |
(

I
sI

)∗
P
(

I
sI

)
≺ 0
}

is called an LMI region.

If P is partitioned according to P =
(

Q S
S> R

)
, then an LMI region is defined by those points s ∈C for

which
Q+ sS+ s̄S>+ s̄Rs≺ 0.

All of the above examples fit in this definition. Indeed, by setting

P1 =

(
0 1
1 0

)
, P2 =

(
−1 0
0 0

)
, P3 =

(
2α 1
1 0

)

P4 =

(
−r2 0

0 1

)
, P5 =


2α1 0 −1 0

0 −2α2 0 1
−1 0 0 0
0 1 0 0

 , P6 =


0 0 sin(θ) cos(θ)
0 0 −cos(θ) sin(θ)

sin(θ) −cos(θ) 0 0
cos(θ) sin(θ) 0 0


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we obtain that Cstab i = LPi . More specifically, LMI regions include regions bounded by circles,
ellipses, strips, parabolas and hyperbolas. Since any finite intersection of LMI regions is again an
LMI region one can virtually approximate any convex region in the complex plane.

To present the main result of this section, we will need to introduce the notation for Kronecker
products. Given two matrices A ∈Cm×n, B ∈Ck×`, the Kronecker product of A and B is the mk×n`
matrix

A⊗B =

A11B . . . A1nB
...

...
Am1B . . . AmnB


Some properties pertaining to the Kronecker product are as follows

• 1⊗A = A = A⊗1.

• (A+B)⊗C = (A⊗C)+(B⊗C).

• (A⊗B)(C⊗D) = (AC)⊗ (BD).

• (A⊗B)∗ = A∗⊗B∗.

• (A⊗B)−1 = A−1⊗B−1.

• in general A⊗B 6= B⊗A.

These properties are easily verified and we will not prove them here. Stability regions described by
LMI regions lead to the following interesting generalization of the Lyapunov inequality.

Theorem 3.8 All eigenvalues of A ∈ Rn×n are contained in the LMI region{
s ∈ C |

(
I
sI

)∗(Q S
S> R

)(
I
sI

)
≺ 0
}

if and only if there exists K � 0 such that(
I

A⊗ I

)∗( K⊗Q K⊗S
K⊗S> K⊗R

)(
I

A⊗ I

)
≺ 0

Note that the latter is an LMI in K and that the Lyapunov theorem (Theorem 3.4) corresponds to
taking Q = 0, S = I and R = 0. Among the many interesting special cases of LMI regions that are
covered by Theorem 3.8, we mention the stability set Cstab 4 with r = 1 used for the characterization
of stability of the discrete time system x(t + 1) = Ax(t). This system is stable if and only if the
eigenvalues of A are inside the unit circle. Equivalently, λ (A) ∈ LP with P =

(−1 0
0 1

)
, which by

Theorem 3.8 is equivalent to saying that there exist K � 0 such that(
I
A

)∗(−K 0
0 K

)(
I
A

)
= A∗KA−K ≺ 0.
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3.3 Nominal performance and LMI’s

In this section we will use the results on dissipative systems of Chapter 2 to characterize a number of
relevant performance criteria for dynamical systems. In view of forthcoming chapters we consider
the system

S :

{
ẋ = Ax+Bw x(0) = x0

z =Cx+Dw
(3.3.1)

where x(t) ∈ X = Rn is the state, w(t) ∈W = Rm the input and z(t) ∈ Z = Rp the output. Here, t ∈
R+. Let T (s) =C(Is−A)−1B+D denote the corresponding transfer function and assume throughout
this section that the system is asymptotically stable (i.e., the eigenvalues of A are in the open left-half
complex plane). We will view w as an input variable (a ‘disturbance’) whose effect on the output
z (an ’error indicator’) we wish to minimize. There are various ways to quantify the effect of w on
z. For example, for a given input w, and for suitable signal norms, the quotient ‖z‖/‖w‖ indicates
the relative gain which the input w has on the output z. More generally, the worst case gain of the
system is the quantity

‖T‖ := sup
0<‖w‖<∞

‖z‖
‖w‖ (3.3.2)

which, of course, depends on the chosen signal norms. Other indicators for nominal performance
could be the energy in the impulse response of the system, the (asymptotic) variance of the output
when the system is fed with inputs with a prescribed stochastic nature, percentage overshoot in step
responses, etc.

3.3.1 Quadratic nominal performance

We start this section by reconsidering Theorem 2.9 from Chapter 2. The following proposition is
obtained by rephrasing Theorem 2.9 with a sign-changed quadratic storage function.

Proposition 3.9 Consider the system (3.3.1) with transfer function T and let

P :=
(

Q S
S> R

)
be a real symmetric matrix in Sm+n. Suppose that A is Hurwitz. Then the following statements are
equivalent.

(a) there exists ε > 0 such that for x(0) = 0 and for all w ∈L2

∫
∞

0

(
w(t)
z(t)

)>(Q S
S> R

)(
w(t)
z(t)

)
dt ≤ −ε

2
∫

∞

0
w(t)>w(t)dt (3.3.3)
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(b) for all ω ∈ R∪{±∞} there holds(
I

T (iω)

)∗(Q S
S> R

)(
I

T (iω)

)
≺ 0.

(c) there exists K = K> such that

F(K) =


I 0
A B
0 I
C D


>

0 K 0 0
K 0 0 0
0 0 Q S
0 0 S> R




I 0
A B
0 I
C D

 ≺ 0.

Proof. We run the circle (1)⇒ (2)⇒ (3)⇒ (1). Suppose that item 1 holds. Since the system is
stable, any w ∈L2 defines a unique state trajectory x(t) =

∫ t
0 exp(A(t− τ))Bw(τ)dτ , t ∈ R+, that

satisfies (3.3.1) with x(0) = 0, and belongs to L2. Consequently, also z ∈L2 which shows that the
indefinite integrals in (3.3.3) are well defined and can be rewritten as

∫
∞

0

(
w(t)
z(t)

)>(Q+ ε2I S
S> R

)(
w(t)
z(t)

)
d t ≤ 0 for all w ∈L2.

Using Parseval, this is equivalent to saying that∫
∞

−∞

ŵ(iω)∗
(

I
T (iω)

)∗(Q+ ε2I S
S> R

)(
I

T (iω)

)
ŵ(iω)dω ≤ 0, for all ŵ ∈L2.

Since ŵ is arbitrary, this yields(
I

T (iω)

)∗(Q+ ε2I S
S> R

)(
I

T (iω)

)
4 0 for all ω ∈ R∪{±∞}

which, in turn, implies the strict inequality of item (2).

The implication (2)⇒ (3) is a consequence of the Kalman-Yakubovich-Popov Lemma 2.11 and has
been established in Theorem 2.9.

Remains to show that (3) implies (1). By Theorem 2.9, F(K) ≺ 0 implies that the strict dissipation
inequality (2.2.4) holds with V (x) := x>Kx and some ε > 0. In (2.2.4), let t0 = 0, x(0) = 0, t1→ ∞

and observe that the indefinite integral remains well defined as A is Hurwitz. This yields item (1) as
desired.

This result characterizes quadratic performance of stable systems (3.3.1) in the sense that it provides
necessary and sufficient conditions for the quadratic performance function J :=

∫
∞

0 s(w(t),z(t))d t to
be strictly negative for all square integrable trajectories of a stable system. Proposition (3.9) provides
a frequency domain inequality and a linear matrix inequality to characterize quadratic performance.
This very general result proves useful in quite a number of important special cases, which we de-
scribe below.
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Remark 3.10 Proposition 3.9 does not characterize quadratic performance and stability of the sys-
tem. By Proposition 3.6, A is Hurwitz if and only if there exists K � 0 with A>K+KA≺ 0. In many
practical cases the performance criterion in item 3 implicitly involves the inequality A>K+KA≺ 0,
for example if R < 0. Indeed, if R < 0 then F(K) ≺ 0 implies A>K +KA ≺ 0 so that A is Hurwitz
if and only if K � 0 in the LMI of item (3). Therefore, as long as C>RC < 0 we can characterize
quadratic performance and stability with the same LMI by just including the extra condition K � 0
in item (3).

3.3.2 H∞ nominal performance

A popular performance measure of a stable linear time-invariant system is the H∞ norm of its transfer
function. It is defined as follows. Consider the system (3.3.1) together with its transfer function T .
Assume the system to be asymptotically stable. In that case, T (s) is bounded for all s ∈ C with
positive real part. By this, we mean that the largest singular value σmax(T (s)) is finite for all s ∈ C
with Res > 0. This is an example of an H∞ function. To be slightly more formal on this class of
functions, let C+ denote the set of complex numbers with positive real part. The Hardy space H∞

consists of all complex valued functions T : C+→ Cp×m which are analytic and for which

‖T‖∞ := sup
s∈C+

σmax(T (s)) < ∞.

The left-hand side of this expression satisfies the axioms of a norm and defines the H∞ norm of T .
Although H∞ functions are defined on the right-half complex plane, it can be shown that each such
function has a unique extension to the imaginary axis (which is usually also denoted by T ) and that
the H∞ norm of T satisfies

‖T‖∞ = sup
ω∈R

σmax(T (iω)).

In words, the H∞ norm of a transfer function is the supremum of the maximum singular value of the
frequency response of the system.

Remark 3.11 Various graphical representations of frequency responses are illustrative to investigate
system properties like bandwidth, gains, etc. Probably the most important one is a plot of the singular
values σ j(T (iω)) ( j = 1, . . . ,min(m, p)) viewed as function of the frequency ω ∈R. For single-input
single-output systems there is only one singular value and σ(T (iω)) = |T (iω)|. A Bode diagram of
the system is a plot of the mapping ω 7→ |T (iω)| and provides useful information to what extent the
system amplifies purely harmonic input signals with frequencies ω ∈ R. In order to interpret these
diagrams one usually takes logarithmic scales on the ω axis and plots 20log10(T ( jω)) to get units
in decibels dB. The H∞ norm of a transfer function is then nothing else than the highest peak value
which occurs in the Bode plot. In other words it is the largest gain if the system is fed with harmonic
input signals.

The H∞ norm of a stable linear system admits an interpretation in terms of dissipativity of the system
with respect to a specific quadratic supply function. Alternatively, the H∞ norm of a transfer function
allows an important interpretation as the induced norm (3.3.2) with respect to square integrable
signal norms. The relevant properties are summarized in the following result.

73 Compilation: January 2015
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Proposition 3.12 Suppose that A in (3.3.1) is Hurwitz and let γ > 0. Then the following statements
are equivalent.

(a) ‖T‖∞ < γ .

(b) the induced system norm

‖T‖2,2 := sup
0<‖w‖2<∞

‖z‖2

‖w‖2
< γ

where z is the output of (3.3.1) subject to input w and initial condition x(0) = 0.

(c) The system (3.3.1) is strictly dissipative with respect to the supply function s(w,z) = γ‖w‖2−
1
γ
‖z‖2.

(d) there exists a solution K = K> to the LMI
I 0
A B
0 I
C D


>

0 K 0 0
K 0 0 0
0 0 −γI 0
0 0 0 1

γ
I




I 0
A B
0 I
C D

 ≺ 0 (3.3.4)

(e) For all ω ∈ R∪{∞} one has T (iω)∗T (iω)≺ γ2I.

Proof. Apply Proposition 3.9 with (
Q S
S> R

)
=

(−γI 0
0 1

γ
I

)
.

The last item is obtained by recalling that σ2
max(T (iω)) = λmax(T (ω)∗T (iω)).

For a stable system, the H∞ norm of the transfer function therefore coincides with the L2-induced
norm of the input-output operator associated with the system. In view of (3.3.2) we therefore have
that ‖T‖∞ = ‖T‖2,2, i.e., the H∞ norm of a transfer function equals the L2 induced norm of the
input-output mapping that the system defines. Using the Kalman-Yakubovich-Popov lemma, this
yields a practical LMI feasibility test to verify whether or not the H∞ norm of the transfer function T
is bounded by γ . The LMI (3.3.4) can be written in various equivalent forms. In view of forthcoming
chapters, we list a few equivalent feasibility tests here. That is, (3.3.4) is feasible as an LMI in the
unknown K if and only if either of the following inequalities is feasible(

A>K +KA+C>C KB+C>D
B>K +D>C D>D− γ2I

)
≺ 0

A>K +KA+C>C+(KB+C>D)(γ2I−D>D)−1(B>K +D>C)≺ 0A>K +KA KB C>

B>K −γI D>

C D −γI

≺ 0.

74 Compilation: January 2015



3.3. NOMINAL PERFORMANCE AND LMI’S 75

3.3.3 H2 nominal performance

The Hardy space H2 consists of all complex valued functions which are analytic inC+ and for which

‖T‖H2 :=

√
1

2π
sup
σ>0

trace
∫

∞

−∞

T (σ + iω)[T (σ + iω)]∗ dω

is finite. This defines the H2 norm of T . This ‘cold-blooded’ definition may seem little appealing at
first sight but, in fact, it has nice and important system theoretic interpretations. As in H∞, it can be
shown that each function in H2 has a unique extension to the imaginary axis, which we also denote
by T , and that, in fact, the H2 norm satisfies

‖T‖2
H2

=
1

2π
trace

∫
∞

−∞

T (iω)T (iω)∗ dω. (3.3.5)

We will first give an interpretation of the H2 norm of a system in terms of its impulsive behavior.
Consider the system (3.3.1) and suppose that we are interested only in the impulse responses of this
system. This means, that we take impulsive inputs1 of the form

w(t) = δ (t)e j

where e j is the jth basis vector in the standard basis of the input spaceRm, ( j = 1, . . . ,m). The output
z j which corresponds to the input w and initial condition x(0) = 0 is uniquely defined and given by

z j(t) =


C exp(At)Be j for t > 0
De jδ (t) for t = 0
0 for t < 0

.

Since the system is assumed to be stable, the outputs z j are square integrable for all j = 1, . . . ,m,
provided that D = 0. Hence, ‖z j‖2 is well defined provided that D = 0. Summing up the norms of
the outputs gives

m

∑
j=1
‖z j‖2

2 = trace
∫

∞

0
B> exp(A>t)C>C exp(At)Bd t

= trace
∫

∞

0
C exp(At)BB> exp(A>t)C> d t.

Long ago, Parseval taught us that the latter expression is equal to

1
2π

trace
∫

∞

−∞

T (iω)T (iω)∗ dω

which is ‖T‖2
H2

. Therefore, we reach the conclusion that the squared H2 norm of a transfer function
T coincides with the total ‘output energy’ in the impulse responses of the system. What is more,

1Formally, the impulse δ is not a function and for this reason it is neither a signal. It requires a complete introduction to
distribution theory to make these statements more precise, but we will not do this at this place.
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this observation provides a straightforward algorithm to determine the H2 norm of a stable rational
transfer function. Indeed, associate with the system (3.3.1) the positive semi-definite matrices

W :=
∫

∞

0
exp(At)BB> exp(A>t)d t

M :=
∫

∞

0
exp(A>t)C>C exp(At)d t.

Then W is usually referred to as the controllability gramian and M as the observability gramian of
the system (3.3.1). The gramians satisfy the matrix equations

AW +WA>+BB> = 0, A>M+MA+C>C = 0

and are, in fact, the unique solutions to these equations whenever A has its eigenvalues in C− (as is
assumed here). Consequently,

‖T‖2
H2

= trace(CWC>) = trace(B>MB).

A second interpretation of the H2 norm makes use of stochastic assumptions on the input. Consider
the system (3.3.1) and assume that the components of the input w are independent zero-mean, white
noise processes. If we take the initial condition x0 a zero mean random variable, independent of w,
and with variance E (x0x>0 ) =W0, then the state variance matrix

W (t) := E (x(t)x(t)>)

is the solution of the matrix differential equation

Ẇ = AW +WA>+BB>, W (0) =W0.

Consequently, with D = 0, the output variance

E (z(t)>z(t)) = E (x(t)>C>Cx(t)) = E trace(Cx(t)x(t)>C>) =

= traceCE (x(t)x(t)>)C> = trace(CW (t)C>).

Since A is Hurwitz, the limit W := limt→∞ W (t) exists and is equal to the controllability gramian of
the system (3.3.1) whenever W0 = 0. Consequently, the asymptotic output variance

lim
t→∞

E (z(t)z>(t)) = trace(CWC>)

is the square of the H2 norm of the system. The H2 norm therefore has an interpretation in terms of
the asymptotic output variance of the system when the system is excited by white noise input signals.

The following theorem characterizes the H2 norm in terms of linear matrix inequalities.

Proposition 3.13 Suppose A in (3.3.1) is Hurwitz and let T (s) = C(Is−A)−1B+D be the corre-
sponding transfer function. Then
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(a) ‖T‖2 < ∞ if and only if D = 0.

(b) If D = 0 then the following statements are equivalent

(i) ‖T‖2 < γ

(ii) there exists X � 0 such that

AX +XA>+BB> ≺ 0, trace(CXC>)< γ
2.

(iii) there exists Y � 0 such that

A>Y +YA+C>C ≺ 0, trace(B>Y B)< γ
2.

(iv) there exist K = K> � 0 and Z such that(
A>K +KA KB

B>K −γI

)
≺ 0;

(
K C>

C Z

)
� 0; trace(Z)< γ (3.3.6)

(v) there exist K = K> � 0 and Z such that(
AK +KA> KC>

CK −γI

)
≺ 0;

(
K B

B> Z

)
� 0; trace(Z)< γ. (3.3.7)

Proof. The first claim is immediate from the definition of the H2 norm. We prove the second part
by showing the equivalences (i)⇔(iii) and (iii)⇔(v), respectively. The remaining implications then
follow from the observation that ‖T‖2 = ‖T ∗‖2 where T ∗(s) = B>(Is−A>)−1C>.

To prove that (i)⇔(iii), first infer from the discussion preceding this theorem that ‖T‖2 < γ is equiv-
alent to saying that there exists M such that

A>M+MA+C>C = 0, trace(B>MB)< γ
2. (3.3.8)

Here, the observability gramian M = M> � 0 is, in fact, uniquely determined by the Lyapunov
equation. To see that (3.3.8) implies (iii), first apply Proposition 3.6 to infer from the Hurwitz
property of A that there exists P � 0 with A>P+PA ≺ 0. If trace(B>MB) < γ2 there exists ε > 0
such that Y := M+ εP satisfies trace(B>Y B)< γ2. Obviously, Y � 0 and

A>Y +YA+C>C = A>M+MA+C>C+ ε(A>P+PA)≺ 0,

which is (iii). Conversely, if (iii) holds, there exists a matrix C0 such that

A>Y +YA+C>C+C>0 C0 = 0, trace(B>Y B)< γ
2

which, by (3.3.8), shows that ‖Te‖2 < γ where Te = col(T,T0) with T0(s) =C0(Is−A)−1B. But then
‖T‖2 < γ which gives (i).
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To prove that (iii)⇔(v), define K = γY−1 and let ε > 0 be such that Z := 1
γ
B>Y B+ εI satisfies

trace(Z)< γ . Since (iii) is equivalent to trace( 1
γ
B>Y B)< γ , such ε exists. Then K � 0 and we infer

that (iii) is equivalent to saying that there exists K � 0 such that

AK +KA>+
1
γ

KC>CK =
√

γY−1
[
A>Y +YA+C>C

]
Y−1√

γ ≺ 0

Z � 1
γ

B>Y B = B>K−1B

trace(Z)< γ.

Now, use Schur complements for the first two inequalities to see that the latter is equivalent to (3.3.7)
for some K � 0 which is (v).

Interpretation 3.14 The smallest possible upperbound of the H2-norm of the transfer function can
be calculated by minimizing the criterion trace(Z) over the variables K � 0 and Z that satisfy the
LMI’s defined by the first two inequalities in (3.3.6) or (3.3.7).

3.3.4 Generalized H2 nominal performance

Consider again the system (3.3.1) and suppose that x(0) = 0 and that A is Hurwitz. Recall that
‖T‖H2 < ∞ if and only if D = 0. The system then defines a bounded operator from L2 inputs to L∞

outputs. That is, for any input w for which ‖w‖2
2 :=

∫
∞

0 ‖w(t)‖2d t < ∞ the corresponding output z
belongs to L∞, the space of signals z : R+→ Rp of finite amplitude2

‖z‖∞ := sup
t≥0

√
〈z(t),z(t)〉.

With reference to (3.3.2), the L2-L∞ induced norm (or ‘energy to peak’ norm) of the system is
defined as

‖T‖2,∞ := sup
0<‖w‖2<∞

‖z‖∞

‖w‖2

and satisfies

‖T‖2
2,∞ =

1
2π

λmax

(∫
∞

−∞

T (iω)T (iω)∗ dω

)
(3.3.9)

where λmax(·) denotes maximum eigenvalue. Note that when z is scalar valued, the latter expression
reduces to the H2 norm, i.e, for systems with scalar valued output variables

‖T‖2,∞ = ‖T‖H2 ,

which is the reason why we refer to (3.3.9) as a generalized H2 norm. The following result charac-
terizes an upperbound on this quantity.

2An alternative and more common definition for the L∞ norm of a signal z :R→Rp is ‖z‖∞ := max j=1,...,p supt≥0 |z j(t)|.
For scalar valued signals this coincides with the given definition, but for non-scalar signals this is a different signal norm.
When equipped with this alternative amplitude norm of output signals, the characterization (3.3.9) still holds with λmax(·)
redefined as the maximal entry on the diagonal of its argument. See [40] for details.
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Proposition 3.15 Suppose A in (3.3.1) is Hurwitz and that D = 0. Then ‖T‖2,∞ < γ if and only if
there exists a solution K � 0 to the LMI’s(

A>K +KA KB
B>K −γI

)
≺ 0;

(
K C>

C γI

)
� 0 (3.3.10)

Proof. Firstly, infer from Theorem 2.9 that the existence of K � 0 with(
A>K +KA KB

B>K −I

)
≺ 0

is equivalent to the dissipativity of the system (3.3.1) with respect to the supply function s(w,z) =
w>w. Equivalently, for all w ∈L2 and t ≥ 0 there holds

x(t)>Kx(t)≤
∫ t

0
w(τ)>w(τ)dτ.

Secondly, using Schur complements, the LMI(
K C>

C γ2I

)
� 0

is equivalent to the existence of an ε > 0 such that C>C ≺ (γ2− ε2)K. Together, this yields that for
all t ≥ 0

〈z(t),z(t)〉= x(t)>C>Cx(t)≤ (γ2− ε
2)x(t)>Kx(t)

≤ (γ2− ε
2)
∫ t

0
w(τ)>w(τ)dτ.

≤ (γ2− ε
2)
∫

∞

0
w(τ)>w(τ)dτ.

Take the supremum over t ≥ 0. This yields the existence of ε > 0 such that for all w ∈L2

‖z‖2
∞ ≤ (γ2− ε

2)‖w‖2
2.

Dividing the latter expression by ‖w‖2
2 and taking the supremum over all w ∈ L2 then yields the

result.

3.3.5 L1 or peak-to-peak nominal performance

Consider the system (3.3.1) and assume again that the system is stable. For fixed initial condition
x(0) = 0 this system defines a mapping from bounded amplitude inputs w ∈L∞ to bounded ampli-
tude outputs z ∈L∞ and a relevant performance criterion is the ‘peak-to-peak’ or L∞-induced norm
of this mapping

‖T‖∞,∞ := sup
0<‖w‖∞<∞

‖z‖∞

‖w‖∞

.

The following result gives a sufficient condition for an upperbound γ of the peak-to-peak gain of the
system.
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Proposition 3.16 If there exists K � 0, λ > 0 and µ > 0 such that

(
A>K +KA+λK KB

B>K −µI

)
≺ 0;

λK 0 C>

0 (γ−µ)I D>

C D γI

� 0 (3.3.11)

then the peak-to-peak (or L∞ induced) norm of the system is smaller than γ , i.e., ‖T‖∞,∞ < γ .

Proof. The first inequality in (3.3.11) implies that

d
dt

x(t)>Kx(t)+λx(t)Kx(t)−µw(t)>w(t) < 0.

for all w and x for which ẋ = Ax+Bw. Now assume that x(0) = 0 and w∈L∞ with ‖w‖∞ ≤ 1. Then,
since K � 0, we obtain (pointwise in t ≥ 0) that

x(t)>Kx(t)≤ µ

λ
.

Taking a Schur complement of the second inequality in (3.3.11) yields that(
λK 0
0 (γ−µ)I

)
− 1

γ− ε

(
C D

)> (C D
)
� 0

so that, pointwise in t ≥ 0 and for all ‖w‖∞ ≤ 1, we can write

〈z(t),z(t)〉 ≤ (γ− ε)[λx(t)>Kx(t)+(γ−µ)w(t)>w(t)]

≤ γ(γ− ε)

Consequently, the peak-to-peak gain of the system is smaller than γ .

Remark 3.17 We emphasize that Proposition 3.16 gives only a sufficient condition for an upper-
bound γ of the peak-to-peak gain of the system. The minimal γ ≥ 0 for which the there exist K � 0,
λ > 0 and µ ≥ 0 such that (3.3.11) is satisfied is usually only an upperbound of the real peak-to-peak
gain of the system.

3.4 Further reading

The amount of literature on Lyapunov theory is quite vast. We refer to [13, 25, 41, 63] for a number
of standard works. Classical and extensive treatments of Lyapunov stability results can be found
in [9] and [11]. For more details on the generalized H2 norm we refer to [40]. A first variation of
Theorem 3.8 appeared in [7].
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3.5 Exercises

Exercise 1
Consider the 2 dimensional non-linear system

ẋ = x− y− x(x2 + y2)+
xy√

x2 + y2

ẏ = x+ y− y(x2 + y2)− x2√
x2 + y2

(a) Verify that (1,0) is a fixed point of this system

(b) Simulate a number of trajectories of the system with initial condition nearby the fixed point
(1,0).

(c) Try to make conclusions on the stability of the fixed point. Is it attractive, Lyapunov stable,
asymptotically stable, unstable?

Exercise 2
Show that

(a) the quadratic function V (x) := x>Kx is positive definite if and only if K is a positive definite
matrix.

(b) the function V :R×R+→R defined as V (x, t) := e−tx2 is decrescent but not positive definite.

Exercise 3
A pendulum of mass m is connected to a servo motor which is driven by a voltage u. The angle
which the pendulum makes with respect to the upright vertical axis through the center of rotation is
denoted by θ (that is, θ = 0 means that the pendulum is in upright position). The system is described
by the equations {

J d2θ

dt2 = mlgsin(θ)+u
y = θ

where l denotes the distance from the axis of the servo motor to the center of mass of the pendulum,
J is the inertia and g is the gravitation constant. The system is specified by the constants J = 0.03,
m = 1, l = 0.15 and g = 10.

(a) Determine the equilibrium points of this system.

(b) Are the equilibrium points Lyapunov stable? If so, determine a Lyapunov function.

(c) Linearize the system around the equilibrium points and provide a state space representation of
the linearized systems.
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(d) Verify whether the linearized systems are stable, unstable or asymptotically stable.

(e) A proportional feedback controller is a controller of the form u = ky where k ∈R. Does there
exists a proportional feedback controller such that the unstable equilibrium point of the system
becomes asymptotically stable?

Exercise 4
Let a stability region Cstab be defined as those complex numbers s ∈ C which satisfy

Re(s)<−α and
|s− c|< r and
| Im(s)|< |Re(s)|.

where α > 0, c > 0 and r > 0. Specify a real symmetric matrix P ∈ S2m×2m such that Cstab coincides
with the LMI region LP as specified in Definition (3.7).

Exercise 5
Let 0≤ α ≤ π and consider the Lyapunov equation A>X +XA+ I = 0 where

A =

(
sin(α) cos(α)
−cos(α) sin(α)

)
Show that the solution X of the Lyapunov equation diverges in the sense that det(X)−→∞ whenever
α −→ 0.

Exercise 6
Consider the suspension system in Exercise 3 of Chapter 2. Recall that the variable q0 represents the
road profile.

(a) Consider the case where f = 0 and q0 = 0 (thus no active force between chassis and axle and
a ‘flat’ road characteristic). Verify whether this system is asymptotically stable.

(b) Again with f = 0and q0 = 0, determine a Lyapunov function V : X → R of this system and
show that its derivative is negative along solutions of the autonomous behavior of the system.

(c) Design your favorite road profile q0 in MATLAB and simulate the response of the system to this
road profile (the force f is kept 0). Plot the variables q1 and q2. What are your conclusions?

(d) Consider, with f = 0, the transfer function T mapping the road profile q0 to the output
col(q1,q2) of the system. Determine the norms ‖T‖H∞

and ‖T‖H2 .

Exercise 7
Consider the system ẋ = Ax+Bw, z =Cx+Dw with

A =


−1 0 0 1
0 −1 4 −3
1 −3 −1 −3
0 4 2 −1

 , B =


0 1
0 0
−1 0
0 0

 , C =

(
−1 0 1 0
0 1 0 1

)
, D =

(
0 1
0 0

)
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(a) Write a program to compute the H∞ norm of this system.

(b) Write a program to compute the H2 norm of this system.

(c) Write a program to compute the generalized H2 norm of this system.

Exercise 8
Consider a batch chemical reactor with a constant volume V of liquids. Inside the reactor the series
reaction

A
k1−−−−→ B

k2−−−−→ C
takes place. Here k1 and k2 represent the kinetic rate constants (1/sec.) for the conversions A→ B
and B→C, respectively. The conversions are assumed to be irreversible which leads to the model
equations

ĊA =−k1CA

ĊB = k1CA− k2CB

ĊC = k2CB

where CA, CB and CC denote the concentrations of the components A, B and C, respectively, and
k1 and k2 are positive constants. Reactant B is the desired product and we will be interested in the
evolution of its concentration.

(a) Show that the system which describes the evolution of CB is asymptotically stable.

(b) Determine a Lyapunov function for this system.

(c) Suppose that at time t = 0 the reactor is injected with an initial concentration CA(0) = 10
(mol/liter) of reactant A and that CB(0) =CC(0) = 0. Plot the time evolution of the concentra-
tion CB of reactant B if (k1,k2) = (0.2,0.4) and if (k1,k2) = (0.3,0.3).

Exercise 9
Consider the nonlinear scalar differential equation

ẋ =
√

x.

with initial condition x(0) = 0.

(a) Show that this differential equation does not satisfy the Lipschitz condition to guarantee
uniqueness of solutions x : R+→ R.

(b) Show that the differential equation has at least two solutions x(t), t ≥ 0, with x(0) = 0.

Exercise 10
Consider the discrete time system

x(t +1) = f (x(t)). (3.5.1)

83 Compilation: January 2015



84 3.5. EXERCISES

(a) Show that x∗ is an equilibrium point of (3.5.1) if and only if f (x∗) = x∗.

(b) Let x(t +1) = Ax(t) be the linearization of (3.5.1) around the equilibrium point x∗. Derive an
LMI feasibility test which is necessary and sufficient for A to have its eigenvalues in {z ∈ C |
|z|< 1}.

Exercise 11
Let T (s) =C(Is−A)−1B+D with A Hurwitz and C ∈R1×n (i.e., T is a single output stable transfer
function). Let ‖T‖H2 and ‖T‖2,∞ denote the H2 and the generalized H2 norm of T , respectively.
Show that

‖T‖H2 = ‖T‖2,∞.

Exercise 12
Given is the transfer function

T (s) =
3(s−1)(s+0.5)

(s+0.2)(s2 +0.8s+1.16)
.

Perform an LMI feasibility test to determine the smallest possible γ > 0 that bounds the generalized
H2 norm of T in the sense that

‖T‖2,∞ := sup
0<‖w‖2<∞

‖z‖∞

‖w‖2
≤ γ.

Exercise 13
In chemical process industry, distillation columns play a key role to split an input stream of chemical
species into two or more output streams of desired chemical species. Distillation is usually the
most economical method for separating liquids, and consists of a process of multi-stage equilibrium
separations. Figure 3.1 illustrates a typical distillation column.

Separation of input components, the feed, is achieved by controlling the transfer of components
between the various stages (also called trays or plates), within the column, so as to produce output
products at the bottom and at the top of the column. In a typical distillation system, two recycle
streams are returned to the column. A condenser is added at the top of the column and a fraction
of the overhead vapor V is condensed to form a liquid recycle L. The liquid recycle provides the
liquid stream needed in the tower. The remaining fraction of V , is the distillate- or top product. A
vaporizer or reboiler is added to the bottom of the column and a portion of the bottom liquid, Lb, is
vaporized and recycled to the tower as a vapor stream Vb. This provides the vapor stream needed in
the tower, while the remaining portion of Lb is the bottom product.

The column consists of n stages, numbered from top to bottom. The feed enters the column at stage
nf, with 1 < nf < n. The feed flow, F [kmol/hr], is a saturated liquid with composition zF [mole
fraction]. L [kmole/hr] denotes the reflux flow rate of the condenser, Vb [kmole/hr] is the boilup
flow rate of the reboiler. The variable w = col(L,Vb,F) is taken as input of the plant. The top
product consists of a distillate stream D [kmol/hr], with composition Xd [mole fraction]. Likewise,
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Figure 3.1: Binary distillation column

the bottom product consists of a bottom stream B, with composition XB [mole fraction]. The output
of the system is taken to be z = col(Xd,Xb) and therefore consists of the distillate composition and
bottom composition, respectively.

A model for this type of reactors is obtained as follows. The stages above the feed stage (index i< nf)
define the enriching section and those below the feed stage (index i > nf) the stripping section of the
column. The liquid flow rate in the stripping section is defined as Lb = L+qF where 0≤ q≤ 1 is a
constant. The vapor flow rate in the enriching section is given by V = Vb +(1−q)F . The distillate
and bottom product flow rates are D = V −L and B = Lb−Vb, respectively. Denote by Xi and Yi
[mole fraction] the liquid and vapor compositions of stage i, respectively. For constant liquid holdup
conditions, the material balances of the column are given as follows.

Md
dX1

dt
=VY2− (L+D)X1 Condenser stage

M
dXi

dt
= L(Xi−1−Xi)+V (Yi+1−Yi) 1 < i < nf

M
dXf

dt
= LXf−1−LbXf +VbYf+1−VYf +Fzf Feed stage

M
dXi

dt
= Lb(Xi−1−Xi)+Vb(Yi+1−Yi) nf < i < n

Mb
dXn

dt
= LbXn−1−VbYn−BXn. Reboiler stage

Here, M, Md and Mb [kmol] denote the nominal stage hold-up of material at the trays, the condenser
and the bottom, respectively. The vapor-liquid equilibrium describes the relation between the vapor
and liquid compositions Yi and Xi on each stage i of the column and is given by the non-linear
expression:

Yi =
aXi

1+(a−1)Xi
, i = 1, . . . ,n.
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where a is the so called relative volatility (dependent on the product). With x denoting the vector of
components Xi, these equations yield a nonlinear model of the form

ẋ = f (x,w), z = g(x,w)

of state dimension n (equal to the number of stages).

We consider a medium-sized propane-butane distillation column whose physical parameters are
given in Table 3.1. The last three entries in this table define w∗.

n Number of stages 20
nf Feed stage 6
Md Condenser holdup 200 [kmol]
Mb Reboiler holdup 400 [kmol]
M Stage holdup 50 [kmol]
zf Feed composition 0.5 [mole fraction]
q Feed liquid fraction 1
a Relative volatility 2.46
L∗ Reflux flow 1090 [kmol/hr]
V ∗b Boilup vapor flow 1575 [kmol/hr]
F∗ Feed flow 1000 [kmol/hr]

Table 3.1: Operating point data

(a) Calculate an equilibrium state x∗ of the model if the input is set to w∗. The equilibrium point
(w∗,x∗,z∗) represents a steady-state or nominal operating point of the column.

(b) Construct (or compute) a linear model of the column when linearized around the equilibrium
point (w∗,x∗,z∗).

(c) Is the linear model stable?

(d) Is the linear model asymptotically stable?

(e) Make a Bode diagram of the 2×3 transfer function of this system.

(f) Determine the responses of the system if the set-points of, respectively, L, Vb and F undergo
a +10% step-change with respect to their nominal values L∗, V ∗b and F∗. Can you draw any
conclusion on the (relative) sensitivity of the system with respect to its inputs w? Are there
any major differences in the settling times?
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Chapter 4

Controller synthesis

4.1 Introduction

In the previous chapter we have seen how various specifications such as stability and nominal perfor-
mance can be analytically expressed as feasibility conditions on a suitable linear matrix inequality.
This chapter is dedicated to the question how these specifications can actually be achieved by the
design of a suitable feedback controller that is interconnected to a given plant as illustrated in Fig-
ure 4.1

In this chapter we provide a very powerful result that allows to step in a straightforward manner from
performance analysis conditions, derived in the previous chapter as feasibility conditions of matrix
inequalities, to the corresponding matrix inequalities for controller synthesis. This is achieved by
a nonlinear and essentially bijective transformation of the controller parameters. We will introduce
this transformation and discuss its consequences in the first section on single-objective controller
synthesis. In fact, the main results of this section immediately provide a computational tool for

Plant

Controller

� �

�

-

w

uy

z

Figure 4.1: Closed-loop system
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the synthesis of controllers that render closed loop systems asymptotically stable while achieving a
quadratic performance specification on the controlled system. Some important special cases such as
state feedback synthesis, full information control configurations and observer synthesis are obtained
as special cases. In the remaining sections of this chapter we apply the synthesis results for multi-
objective and mixed-objective controller synthesis problems.

4.2 Single-objective synthesis

4.2.1 The setup

With reference to Figure 4.1 we suppose that a linear time-invariant system (the plant) is given and
described as  ẋ

z
y

=

 A B1 B
C1 D1 E
C F 0

 x
w
u

 (4.2.1)

where u is the control input, y the measured output available for control, w is a disturbance input
and z is the controlled output. A controller is any finite dimensional linear time-invariant system
described as (

ẋc
u

)
=

(
Ac Bc
Cc Dc

)(
xc
y

)
(4.2.2)

that has y as its input and produces the control u as its output. Controllers are hence simply param-
eterized by the matrices Ac, Bc, Cc and Dc in which the dimensions of the matrices are compatible
with the dimensions of u and y. In particular, the dimension of the state vector xc of the controller is
not decided upon in advance.

The controlled or closed-loop system then admits the description(
ξ̇

z

)
=

(
A B
C D

)(
ξ

w

)
(4.2.3)

where, after some straightforward algebra, one derives that(
A B
C D

)
=

 A+BDcC BCc B1 +BDcF
BcC Ac BcF

C1 +EDcC ECc D1 +EDcF

 .

We further denote by
T = C (Is−A )−1B+D

the transfer function matrix of the controlled system. Throughout this chapter, all matrices and func-
tions associated with the controlled system will be denoted with calligraphic symbols. Occasionally,
it simplifies some calculations if we use the equivalent representation(

A B
C D

)
=

 A 0 B1
0 0 0

C1 0 D1

+

 0 B
I 0
0 E

( Ac Bc
Cc Dc

)(
0 I 0
C 0 F

)
. (4.2.4)
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From this notation it is immediate that the left-hand side is an affine function of the controller pa-
rameters Ac,Bc,Cc,Dc.

Some special cases are worth mentioning:

• Static state feedback is the case where the controller has full access to the plant states and is
memoryless in the sense that it has a zero dimensional state vector. Thus C = I, F = 0 and(

A B
C D

)
=

(
A+BDc B1

C1 +EDc D1

)
.

• Dynamic state feedback is the case where the controller has access to the states, i.e., C = I,
F = 0. This gives (

A B
C D

)
=

 A+BDc BCc B1
Bc Ac 0

C1 +EDcC ECc D1

 .

• Full information feedback is the case where the plant delivers both states and disturbances to
the controller. Thus C =

(
I
0

)
, F =

(
0
I

)
and, under the additional assumption that the controller

is memoryless, (
A B
C D

)
=

(
A+BDfb

c B1 +BDff
c

C1 +EDfb
c D1 +EDff

c

)
.

where we partitioned Dc =
(
Dfb

c Dff
c
)

in a feedback and a feedforward component.

4.2.2 From analysis to synthesis - a general procedure

As a paradigm example let us consider the design of a controller that achieves stability and quadratic
performance for the controlled system (4.2.3). For that purpose, suppose that we have given a
performance index

P =

(
Q S
S> R

)
with R < 0. (4.2.5)

In Proposition 3.9 of Chapter 3 we have revealed that a controller (4.2.2) renders (4.2.3) internally
stable and establishes the nominal quadratic performance

∫
∞

0

(
w(t)
z(t)

)>(Q S
S> R

)(
w(t)
z(t)

)
d t ≤ −ε

2
∫

∞

0
w(t)>w(t)d t

for some ε > 0 if and only if

σ(A )⊂ C− and
(

I
T (iω)

)∗
P
(

I
T (iω)

)
≺ 0 for all ω ∈ R∪{∞}
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if and only if there exists a symmetric matrix X satisfying

X � 0
I 0
0 I

X A X B
C D


>

0 0 I 0
0 Q 0 S
I 0 0 0
0 S> 0 R




I 0
0 I

X A X B
C D

 ≺ 0


(4.2.6)

Recall that the second inequality in (4.2.6) can also be written as
I 0
A B
0 I
C D


>

0 X 0 0
X 0 0 0
0 0 Q S
0 0 S> R




I 0
A B
0 I
C D

=

=

(
A >X +X A X B

B>X 0

)
+

(
0 I
C D

)>( Q S
S> R

)(
0 I
C D

)
=

=


I 0

X A X B
0 I
C D


>

0 I 0 0
I 0 0 0
0 0 Q S
0 0 S> R




I 0
X A X B

0 I
C D

=

≺ 0.

The corresponding quadratic performance synthesis problem amounts to finding controller parame-
ters Ac,Bc,Cc,Dc and a symmetric X such that (4.2.6) holds.

Obviously, A depends on the controller parameters. Since X is also a decision variable, it follows
that X A depends, in general, non-linearly on the variables to be found. Hence, (4.2.6) is not an
LMI in the decision variables X and Ac,Bc,Cc,Dc.

The essential idea will be to construct a transformation of the decision variables in such a manner
that the transformed variables do enter linearly. Precisely, we will introduce a nonlinear mapping

(X ,Ac,Bc,Cc,Dc) → v := (X ,Y,K,L,M,N) (4.2.7)

that transforms the decision variables to a sixtuple of new decision variables v. In the transformed
variables, we define the matrix functions

XXX(v) :=
(

Y I
I X

)
(

AAA(v) BBB(v)
CCC(v) DDD(v)

)
:=

 AY +BM A+BNC B1 +BNF
K AX +LC XB1 +LF

C1Y +EM C1 +ENC D1 +ENF


 (4.2.8)

that are affine in the variables v. In the sequel, we will construct a clever matrix Y such that the
congruence transformations

Y and
(

Y 0
0 I

)
, (4.2.9)
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applied to the inequalities (4.2.6), transform (4.2.6) into

Y >X Y � 0
I 0
0 I

Y >X AY Y >X B
C Y D


>

0 0 I 0
0 Q 0 S
I 0 0 0
0 S> 0 R




I 0
0 I

Y >X AY Y >X B
C Y D

 ≺ 0


(4.2.10)

In this transformation, the blocks in (4.2.6) actually transform according to

Y >X Y = XXX(v)(
Y 0
0 I

)>(
X A X B

C D

)(
Y 0
0 I

)
=

(
AAA(v) BBB(v)
CCC(v) DDD(v)

)
 (4.2.11)

With the previous definitions of the matrix functions in v, it then follows that (4.2.10) is nothing but

XXX(v) � 0
I 0
0 I

AAA(v) BBB(v)
CCC(v) D(v)


>

0 0 I 0
0 Q 0 S
I 0 0 0
0 S> 0 R




I 0
0 I

AAA(v) BBB(v)
CCC(v) D(v)

 ≺ 0.


(4.2.12)

Therefore, and this is the essence, the original blocks that depend non-linearly on the decision vari-
ables X and Ac,Bc,Cc,Dc are now transformed into blocks that are affine functions of the new
variables X , Y , K,L,M,N. Throughout, we will refer to (4.2.12) as the synthesis inequalities.

Moreover, if Y is nonsingular, the congruence transformations (4.2.9) yield that the inequalities
(4.2.6) are, in fact, equivalent to (4.2.12).

For R = 0 (as it happens in the positive real performance index), the inequalities (4.2.12) are actually
affine in v. For a general performance index with R < 0, the second inequality in (4.2.12) is non-
linear but convex in v. It is straightforward to transform it to a genuine LMI with a Schur complement
argument. Since it is more convenient to stay with the inequalities in the form (4.2.12), we rather
formulate a general auxiliary result that displays how to perform the linearization whenever it is
required for computational purposes.

Lemma 4.1 (Linearization lemma) Suppose that A and S are constant matrices, that B(v), Q(v) =
Q(v)> depend affinely on a parameter v, and that R(v) can be decomposed as TU(v)−1T> with
U(v) being affine. Then the non-linear matrix inequalities

U(v)� 0,
(

A
B(v)

)>( Q(v) S
S> R(v)

)(
A

B(v)

)
≺ 0

are equivalent to the linear matrix inequality(
A>Q(v)A+A>SB(v)+B(v)>S>A B(v)>T

T>B(v) −U(v)

)
≺ 0.
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In order to apply this lemma, consider the second inequality of (4.2.12):
I 0
0 I

AAA(v) BBB(v)
CCC(v) DDD(v)


>

0 0 I 0
0 Q 0 S
I 0 0 0
0 S> 0 R




I 0
0 I

AAA(v) BBB(v)
CCC(v) DDD(v)

≺ 0. (4.2.13)

By taking Q(v) =
(0 0

0 Q
)
, U(v) = I and

R(v) =
(

0 0
0 R

)
=

(
0
T

)(
0 T>

)
where R = T T>

is an arbitrary factorization of R, it then follows from Lemma 4.1 that (4.2.13) is equivalent to an
LMI in the decision variables v, provided that R < 0.

So far, the discussion in this section shows that the synthesis inequalities (4.2.12) are feasible in v if
a controller (4.2.2) exists that achieves stability and quadratic performance for the controlled system
(4.2.3). To also show the converse, let us suppose that the inequalities (4.2.12) are feasible. That is,
suppose that we computed a solution v to (4.2.12). If we can find a pre-image (X ,Ac,Bc,Cc,Dc)
of v under the transformation (4.2.7) together with a nonsingular Y for which (4.2.11) holds, then
we can simply reverse all the steps performed above to reveal that (4.2.12) is equivalent to (4.2.6).
Therefore, the controller defined by Ac,Bc,Cc,Dc renders (4.2.6) satisfied and, hence, leads to the
desired quadratic performance specification for the controlled system.

Before we comment on the resulting design procedure, let us first provide a proof of the following
result that summarizes the discussion so far.

Theorem 4.2 There exists a controller Ac,Bc,Cc,Dc and an X satisfying (4.2.6) if and only if there
exists a v that solves the inequalities (4.2.12). If v satisfies (4.2.12), then I−XY is nonsingular and
there exist square nonsingular matrices U, V satisfying I−XY =UV>. With any such U and V ,

X =

(
Y V
I 0

)−1( I 0
X U

)
(

Ac Bc
Cc Dc

)
=

(
U XB
0 I

)−1( K−XAY L
M N

)(
V> 0
CY I

)−1

 (4.2.14)

satisfy the LMI’s (4.2.6) and therefore solves the quadratic synthesis problem.

Theorem 4.2 therefore provides an explicit solution to the synthesis problem that achieves stabil-
ity and quadratic performance of the controlled system. In fact, the Lyapunov matrix X and the
controller parameters Ac,Bc,Cc,Dc in (4.2.14) are the unique solutions of the equations(

Y V
I 0

)
X =

(
I 0
X U

)
and(

K L
M N

)
=

(
U XB
0 I

)(
Ac Bc
Cc Dc

)(
V> 0
CY I

)
+

(
XAY 0

0 0

)
(4.2.15)
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which do not involve matrix inversions. It is often preferred to directly solve the latter expressions
by a numerically stable technique.

Proof. Suppose a controller and some X satisfy (4.2.6). Let us partition

X =

(
X U

U> ∗

)
and X −1 =

(
Y V

V> ∗

)
according to A . Define

Y =

(
Y I

V> 0

)
and Z =

(
I 0
X U

)
to get Y >X = Z . (4.2.16)

Without loss of generality we can assume that the dimension of Ac is larger than that of A. Hence, U
has more columns than rows, and we can perturb this block (since we work with strict inequalities)
such that it has full row rank. Then Z has full row rank and, hence, Y has full column rank.

Due to XY +UV> = I, we infer that

Y >X Y =

(
Y I
I X

)
= XXX(v).

This leads to the first relation in (4.2.11). Let us now consider(
Y 0
0 I

)>(
X A X B

C D

)(
Y 0
0 I

)
=

(
Y >X AY Y >X B

C Y D

)
.

Using (4.2.4), a brief calculation reveals that

(
Y >X AY Y >X B

C Y D

)
=

(
Z AY Z B
C Y D

)
=

 AY A B1
0 XA XB1

C1Y C1 D1

+

+

 0 B
I 0
0 E

[( U XB
0 I

)(
Ac Bc
Cc Dc

)(
V> 0
CY I

)
+

(
XAY 0

0 0

)](
I 0 0
0 C F

)
.

Introduce the new parameters K,L,M,N as in (4.2.15). We then infer(
Y >X AY Y >X B

C Y D

)
=

=

 AY A B1
0 XA XB1

C1Y C1 D1

+

 0 B
I 0
0 E

( K L
M N

)(
I 0 0
0 C F

)
=

=

 AY +BM A+BNC B1 +BNF
K AX +LC XB1 +LF

C1Y +EM C1 +ENC D1 +ENF

=

(
AAA(v) BBB(v)
CCC(v) DDD(v)

)
.
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Hence the relations (4.2.11) are valid. Since Y has full column rank, (4.2.6) implies (4.2.10), and
by (4.2.11), (4.2.10) is identical to (4.2.12). This proves necessity.

To reverse the arguments we assume that v is a solution of (4.2.12). Since XXX(v) � 0, we infer that
I−XY is nonsingular. Hence we can factorize I−XY = UV> with square and nonsingular U , V .
Then Y and Z defined in (4.2.16) are, as well, square and nonsingular. Hence we can choose X ,
Ac,Bc,Cc,Dc such that (4.2.15) hold true; this implies that, again, the relations (4.2.11) are valid.
Therefore, (4.2.12) and (4.2.10) are identical. Since Y is nonsingular, a congruence transformation
with Y −1 and diag(Y −1, I) leads from (4.2.10) back to (4.2.6) and the proof is finished.

Theorem 4.2 has two important implications. Firstly, it provides a general procedure to derive from
the analysis inequalities the corresponding synthesis inequalities. Secondly, it provides explicit ex-
pressions for the controller parameters Ac,Bc,Cc,Dc that achieve quadratic performance and a Lya-
punov function V (ξ ) := ξ>X ξ that proves stability of the controlled system (4.2.3). An explicit
algorithm for the construction of such controllers is as follows:

Algorithm 4.3 (Synthesis algorithm) Aim: synthesize a controller (4.2.2) that solves the quadratic
performance problem for the system (4.2.1).

Input: The system (4.2.1) and the quadratic performance index (4.2.5).

Step 1: Rewrite the analysis inequalities in the blocks X , X A , X B, C , D in order to be
able to find a (formal) congruence transformation involving Y which leads to inequal-
ities in the blocks Y >X Y , Y >X AY , Y >X B, C Y , D .

Step 2: Perform the substitution (4.2.11) to arrive at matrix inequalities in the variables v.

Step 3: Solve the synthesis inequalities (4.2.12) for v to obtain X ,Y,K,L,M,N.

Step 4: Determine non-singular matrices U and V such that UV> = I−XY

Output: Define (4.2.14) as the controller parameters Ac, Bc, Cc and Dc and a Lyapunov matrix
X . These matrices satisfy the analysis inequalities (4.2.6).

The power of this procedure lies in its simplicity and its generality. Virtually all controller design
methods that are based on matrix inequality analysis results can be converted with ease into the
corresponding synthesis result. In the subsequent section we will include an extensive discussion
of how to apply this technique to the various analysis results that have been obtained in the present
notes.

Remark 4.4 (controller order) In the derivation of Theorem 4.2 we have not restricted the order of
the controller. In proving necessity for the solvability of the synthesis inequalities, the size of Ac was
arbitrary. The specific construction of a controller in proving sufficiency led to an Ac that has the
same size as A. Hence Theorem 4.2 gives as a side result that controllers of order larger than that of
the plant offer no advantage over controllers that have the same order as the plant. The story is very
different in reduced order control: Then the intention is to include an explicit constraint dim(Ac)≤ k
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for some k that is smaller than the dimension of A. It is not very difficult to derive the corresponding
synthesis inequalities; however, they include rank constraints that are hard, if not impossible, to treat
by current optimization techniques. We will only briefly comment on a concrete result later.

Remark 4.5 (strictly proper controllers) Note that the direct feed-through of the controller Dc is
actually not transformed; we simply have Dc = N. If we intend to design a strictly proper controller
(i.e. Dc = 0), we can just set N = 0 to arrive at the corresponding synthesis inequalities. The
construction of the other controller parameters remains the same. Clearly, the same holds if one
wishes to impose an arbitrary more refined structural constraint on the direct feed-through term as
long as it can be expressed in terms of LMI’s.

Remark 4.6 (numerical aspects) After having verified the solvability of the synthesis inequalities,
we recommend to take some precautions to improve the conditioning of the calculations to recon-
struct the controller out of the decision variable v. In particular, one should avoid that the parameters
v get too large, and that I−XY is close to singular. This may render the controller computation
ill-conditioned. We have observed good results with the following two-step procedure:

• Add to the feasibility inequalities the bounds

‖X‖< α, ‖Y‖< α,

∥∥∥∥( K L
M N

)∥∥∥∥< α

as extra constraints and minimize α . Note that these bounds are equivalently rewritten in LMI
form as

X ≺ αI, Y ≺ αI,


αI 0 K L
0 αI M N

K> M> αI 0
L> N> 0 αI

� 0.

Hence they can be easily included in the feasibility test, and one can directly minimize α to
compute the smallest bound α∗.

• In a second step, one adds to the feasibility inequalities and to the bounding inequalities for
some enlarged but fixed α > α∗ the extra constraint(

Y β I
β I X

)
� 0.

Of course, the resulting LMI system is feasible for β = 1. One can hence maximize β and
obtain a supremal value β∗ > 1. The value β∗ gives an indication of the conditioning of the
controller reconstruction procedure. In fact, the extra inequality is equivalent to X−β 2Y−1 �
0. Hence, maximizing β amounts to ‘pushing X away from Y−1’. Therefore, this step is
expected to push the smallest singular value of I−XY away from zero. The larger the smaller
singular value of I−XY , the larger one can choose the smallest singular values of both U and
V in the factorization I−XY =UV>. This improves the conditioning of U and V , and renders
the calculation of the controller parameters more reliable.

In the remainder of this section we apply the general design strategy to a number of specific controller
synthesis problems.
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4.2.3 H∞ design

Recall that the optimal value of the H∞ control synthesis problem is defined as

γ
∗ = inf

Ac,Bc,Cc,Dc such that σ(A )⊂C−
‖T ‖∞.

Hence, by definition, γ > γ∗ if and only if there exists a controller that achieves

σ(A )⊂ C− and ‖T ‖∞ < γ.

As we have seen in the previous chapter, these two properties are equivalent to stability and quadratic
performance for the index

P =

(
Q S
S> R

)
=

(
−γI 0

0 (γI)−1

)
.

The corresponding synthesis inequalities (4.2.12) are rewritten with Lemma 4.1 to

XXX(v)� 0,

 AAA(v)>+AAA(v) BBB(v) CCC(v)>

BBB(v)> −γI DDD(v)>

CCC(v) DDD(v) −γI

≺ 0.

Note that the the optimal H∞ value γ∗ is then just given by the minimal γ for which these inequalities
are feasible; one can directly compute γ∗ by a standard LMI algorithm.

For the controller reconstruction, one should improve the conditioning (as described in the previous
section) by an additional LMI optimization. We recommend not to perform this step with the optimal
value γ∗ itself but with a slightly increased value γ > γ∗. This is motivated by the observation that,
at optimality, the matrix XXX(v) is often (but not always!) close to singular; then I−XY is close to
singular and it is expected to be difficult to render it better conditioned if γ is too close to the optimal
value γ∗.

4.2.4 Positive real design

In this problem the goal is to test whether there exists a controller which renders the following two
conditions satisfied:

σ(A )⊂ C−, T (iω)∗+T (iω)� 0 for all ω ∈ R∪{∞}.
This is equivalent to stability and quadratic performance for

P =

(
Q S
S> R

)
=

(
0 −I
−I 0

)
,

and the corresponding synthesis inequalities read as

XXX(v)� 0,
(

AAA(v)>+AAA(v) BBB(v)−CCC(v)>

BBB(v)>−CCC(v) −DDD(v)−DDD(v)>

)
≺ 0.
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4.2.5 H2 design

Let us define the linear functional
f (Z) := trace(Z).

Recall from Chapter 3 that A is stable and ‖T ‖2 < γ if and only if there exists a symmetric X with

D = 0, X � 0,
(

A >X +X A X B
B>X −γI

)
≺ 0, f (C X −1C>)< γ. (4.2.17)

The latter inequality is rendered affine in X and C by introducing the auxiliary variable (or slack
variable) Z. Indeed, the analysis test is equivalent to

D = 0,
(

A >X +X A X B
B>X −γI

)
≺ 0,

(
X C>

C Z

)
� 0, f (Z)< γ. (4.2.18)

This version of the inequalities is suited to simply read-off the corresponding synthesis inequalities.

Corollary 4.7 There exists a controller that renders (4.2.18) for some X , Z satisfied if and only if
there exist v and Z with

DDD(v) = 0,
(

AAA(v)>+AAA(v) BBB(v)
BBB(v)> −γI

)
≺ 0,

(
XXX(v) CCC(v)>

CCC(v) Z

)
� 0, f (Z)< γ. (4.2.19)

The proof of this statement and the controller construction are literally the same as for quadratic
performance.

4.2.6 Generalized H2 design

For the generalized H2-norm ‖T ‖2g, we recall that A is stable and ‖T ‖2g < γ if and only if

D = 0, X � 0,
(

A >X +X A X B
B>X −γI

)
≺ 0, C X −1C> ≺ γI.

These conditions are nothing but

D = 0,
(

A >X +X A X B
B>X −γI

)
≺ 0,

(
X C>

C γI

)
� 0

and it is straightforward to derive the synthesis LMI’s.

Note that the corresponding inequalities are equivalent to (4.2.19) for the function

f (Z) = Z.

In contrast to the genuine H2-problem, there is no need for the extra variable Z to render the inequal-
ities affine.
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Remark 4.8 A few generalizations and observations can be made on general H2-type synthesis
problems.

• If f assigns to Z its diagonal diag(z1, . . . ,zm) (where m is the dimension of Z), one char-
acterizes a bound on the gain of L2 3 w→ z ∈L∞ if equipping L∞ with the norm ‖x‖∞ :=
esssupt≥0 maxk |xk(t)| [40,43]. Note that the three concrete H2-like analysis results for f (Z) =
trace(Z), f (Z) = Z, f (Z) = diag(z1, . . . ,zm) are exact characterizations, and that the corre-
sponding synthesis results do not involve any conservatism.

• In fact, Corollary 4.7 holds for any affine function f that maps symmetric matrices into sym-
metric matrices (of possibly different dimension) and that has the property Z < 0⇒ f (Z)≥ 0.
Hence, Corollary 4.7 admits many other specializations.

• Similarly as in the H∞ problem, we can directly minimize the bound γ to find the optimal
H2-value or the optimal generalized H2-value that can be achieved by stabilizing controllers.

• We observe that it causes no trouble in our general procedure to derive the synthesis inequal-
ities if the underlying analysis inequalities involve certain auxiliary parameters (such as Z) as
extra decision variables.

• It is instructive to equivalently rewrite (4.2.18) as X � 0, Z � 0, f (Z)< γ and I 0
X A X B

0 I

> 0 I 0
I 0 0
0 0 −γI

 I 0
X A X B

0 I

≺ 0,

 I 0
0 I
C D

> −X 0 0
0 0 0
0 0 Z−1

 I 0
0 I
C D

4 0.

Note that the last inequality is non-strict and includes the algebraic constraint D = 0. It can
be equivalently replaced by(

I
C

)>( −X 0
0 Z−1

)(
I
C

)
≺ 0, D = 0.

The synthesis relations then read as XXX(v)� 0, Z � 0, f (Z)< γ and I 0
AAA(v) BBB(v)

0 I

> 0 I 0
I 0 0
0 0 −γI

 I 0
AAA(v) BBB(v)

0 I

≺ 0, (4.2.20)

(
I

CCC(v)

)>( −XXX(v) 0
0 Z−1

)(
I

CCC(v)

)
≺ 0, DDD(v) = 0. (4.2.21)

The first inequality is affine in v, whereas the second one can be rendered affine in v and Z
with Lemma 4.1.
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4.2.7 Design to bound the peak-to-peak norm

The controller (4.2.2) renders A stable and the bound

‖w‖∞ ≤ γ‖z‖∞ for all z ∈L∞

satisfied if (and not only if) there exist a symmetric X and real parameters λ , µ with

λ > 0,
(

A >X +X A +λX X B
B>X 0

)
+

(
0 I
C D

)>( −µI 0
0 0

)(
0 I
C D

)
≺ 0(

0 I
C D

)>( 0 0
0 1

γ
I

)(
0 I
C D

)
≺
(

λX 0
0 (γ−µ)I

)
.

(Note that X � 0 is built in). The inequalities are obviously equivalent to

λ > 0,
(

A >X +X A +λX X B
B>X −µI

)
≺ 0,

 λX 0 C>

0 (γ−µ)I D>

C D γI

� 0,

and the corresponding synthesis inequalities thus read as

λ > 0,
(

AAA(v)>+AAA(v)+λXXX(v) BBB(v)
BBB(v)> −µI

)
≺ 0,

 λXXX(v) 0 CCC(v)>

0 (γ−µ)I DDD(v)>

CCC(v) DDD(v) γI

� 0.

If these inequalities are feasible, one can construct a stabilizing controller which bounds the peak-
to-peak norm of z = T w by γ . We would like to stress that the converse of this statement is not true
since the analysis result involves conservatism.

Note that the synthesis inequalities are formulated in terms of the variables v, λ , and µ; hence they
are non-linear since λXXX(v) depends quadratically on λ and v. This problem can be overcome as
follows: For fixed λ > 0, test whether the resulting linear matrix inequalities are feasible; if yes, one
can stop since the bound γ on the peak-to-peak norm has been assured; if the LMI’s are infeasible,
one has to pick another λ > 0 and repeat the test.

In practice, it might be advantageous to find the best possible upper bound on the peak-to-peak norm
that can be assured with the present analysis result. This would lead to the problem of minimizing γ

under the synthesis inequality constraints as follows: Perform a line-search over λ > 0 to minimize
γ∗(λ ), the minimal value of γ if λ > 0 is held fixed; note that the calculation of γ∗(λ ) indeed amounts
to solving a genuine LMI problem. The line-search leads to the best achievable upper bound

γ
u = inf

λ>0
γ
∗(λ ).

To estimate the conservatism, let us recall that the H∞ norm ‖T ‖∞ is a lower bound on the peak-to-
peak norm of T . If we calculate the minimal achievable H∞-norm, say γ l , of T , we know that the
actual optimal peak-to-peak gain must be contained in the interval

[γ l ,γu].
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Figure 4.2: Multi-channel closed-loop system

If the length of this interval is small, we have a good estimate of the actual optimal peak-to-peak
gain that is achievable by control, and if the interval is large, this estimate is poor.

4.3 Multi-objective and mixed controller design

In a realistic controller design problem one is usually not just confronted with a single-objective for
the controlled system but one has to render various objectives satisfied simultaneously.

Consider, for this purpose the multi-channel control configuration as depicted in Figure 4.2 and
suppose that the plant is a linear time-invariant multi-channel system described as

ẋ
z1
...

zq
y

=


A B1 · · · Bq B

C1 D1 · · · D1q E1
...

...
. . .

...
...

Cq Dq1 · · · Dq Eq
C F1 · · · Fq 0




x

w1
...

wq
u

 . (4.3.1)

where, as in (4.2.1), u denotes the control input, y the measured output, and w j→ z j are the channels
on which we want to impose certain robustness and/or performance objectives. Since we want to
extend the design technique to mixed problems with various performance specifications on various
channels, we already start at this point with a multi-channel system description. Collect the signals
as

z =

z1
...

zq

 , w =

w1
...

wq

 .
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We will not exclude the situation that some of the signals w j or z j are identical, but we consider an
equal number of input- and output-signals. It might seem restrictive to only consider the diagonal
channels and neglect the channels w j→ zk for j 6= k. This is not the case. As a typical example, sup-
pose we intend to impose for z = T w specifications on L jT R j where L j, R j are arbitrary matrices
that pick out certain linear combinations of the signals z, w (or of the rows/columns of the transfer
matrix if T is described by an LTI system). If we set w = ∑ j R jw j, z j = L jz, we are hence interested
in specifications on the diagonal channels of

z1
z2
...

zq

=


L1
L2
...

Lq

T
(

R1 R2 . . . Rq
)


w1
w2
...

wq

 .

If T is LTI, the selection matrices L j and R j can be easily incorporated into the realization to arrive
at the description (4.3.1).

As before, a controller for (4.3.1) is a system of the form (4.2.2). The controlled or closed-loop
system admits the description

(
ξ̇

z

)
=

(
A B
C D

)(
ξ

w

)
or


ξ̇

z1
...

zq

=


A B1 · · · Bq
C1 D1 · · · D1q
...

...
. . .

...
Cq Dq1 · · · Dq




ξ

w1
...

wq

 . (4.3.2)

where the corresponding input-output mappings (or transfer matrices) are denoted as

w = T z or

 z1
...

zq

=

 T1 ∗
. . .

∗ Tq


 w1

...
wq

 .

respectively, in which T j admits the realization(
ξ̇

z j

)
=

(
A B j
C j D j

)(
ξ

w j

)
(4.3.3)

where (
A B j
C j D j

)
=

 A+BDcC BCc B j +BDcFj
BcC Ac BcFj

C j +E jDcC E jCc D j +E jDcFj

 .

As a typical example, one might wish to keep the H∞ norm of z1 =T1w1 below a bound γ1 to ensure
robust stability against uncertainties entering as w1 = ∆z1 where the stable mapping ∆ has L2-gain
smaller than 1/γ1, and render, at the same time, the H2-norm of z2 = T2w2 as small as possible to
ensure good performance measured in the H2-norm (such as guaranteeing small asymptotic variance
of z j against white noise inputs w j or small energy of the output z j against pulses as inputs w j.)
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Such a problem would lead to minimizing γ2 over all controllers which render

σ(A )⊂ C−, ‖T1‖∞ < γ1, ‖T2‖2 < γ2 (4.3.4)

satisfied. This is a multi-objective H2/H∞ control problem with two performance specifications.

Note that it is often interesting to investigate the trade-off between the H∞-norm and the H2-norm
constraint. For that purpose one plots the curve of optimal values if varying γ1 in some interval
[γ l

1,γ
u
1 ] where the lower bound γ l

1 could be taken close to the smallest achievable H∞-norm of T1.
Note that the optimal value will be non-increasing if increasing γ1. The actual curve will provide
insight in how far one can improve performance by giving up robustness. In practice, it might be
numerically advantageous to give up the hard constraints and proceed, alternatively, as follows: For
fixed real weights α1 and α2, minimize the weighted sum

α1γ1 +α2γ2

over all controllers that satisfy (4.3.4). The larger α j, the more weight is put on penalizing large
values of γ j, the more the optimization procedure is expected to reduce the corresponding bound γ j.

Multi-objective control problems as formulated here are hard to solve. Let us briefly sketch one
line of approach. The Youla parameterization reveals that the set of all T j that can be obtained by
internally stabilizing controllers can be parameterized as

T j
1 +T j

2 QT j
3 with Q varying freely in RH p×q

∞ .

Here T j
1 , T j

2 , T j
3 are real-rational proper and stable transfer matrices which can be easily computed in

terms of the system description (4.3.1) and an arbitrary stabilizing controller. Recall also that RH p×q
∞

denotes the algebra of real-rational proper and stable transfer matrices of dimension p×q. With this
re-parameterization, the multi-objective control problem then amounts to finding a Q ∈ RH p×q

∞ that
minimizes γ2 under the constraints

‖T 1
1 +T 1

2 QT 1
3 ‖∞ < γ1, ‖T 2

1 +T 2
2 QT 2

3 ‖2 < γ2. (4.3.5)

After this re-formulation, we are hence faced with a convex optimization problem in the parameter Q
which varies in the infinite-dimensional space RH∞. A pretty standard Ritz-Galerkin approximation
scheme leads to finite-dimensional problems. In fact, consider for a fixed real parameter a > 0 the
sequence of finite-dimensional subspaces

Sν :=
{

Q0 +Q1
s−a
s+a

+Q2
(s−a)2

(s+a)2 + · · ·+Qν

(s−a)ν

(s+a)ν
: Q0, . . . ,Qν ∈ Rp×q

}
of the space RH p×q

∞ . Let us now denote the infimum of all γ2 satisfying the constraint (4.3.5) for
Q ∈ RH p×q

∞ by γ∗2 , and that for Q ∈Sν by γ2(ν). Since Sν ⊂ RH p×q
∞ , we clearly have

γ
∗
2 ≤ γ2(ν +1)≤ γ2(ν) for all ν = 0,1,2 . . . .

Hence solving the optimization problems for increasing ν leads to a non-increasing sequence of
values γ(ν) that are all upper bounds on the actual optimum γ∗2 . If we now note that any element of

102 Compilation: January 2015
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Q can be approximated in the H∞-norm with arbitrary accuracy by an element in Sν if ν is chosen
sufficiently large, it is not surprising that γ2(ν) actually converges to γ∗2 for ν → ∞. To be more
precise, we need to assume that the strict constraint ‖T 1

1 +T 1
2 QT 1

3 ‖∞ < γ1 is feasible for Q ∈ Sν

and some ν , and that T 1
1 and T 2

2 or T 3
2 are strictly proper such that ‖T 2

1 + T 2
2 QT 2

3 ‖2 is finite for
all Q ∈ RH p×q

∞ . Then it is not difficult to show that limν→∞ γ2(ν) = γ∗2 . Finally, we observe that
computing γ2(ν) is in fact an LMI problem.

The approach sketched above suffers from two severe disadvantages: First, if improving the ap-
proximation accuracy by letting ν grow, the size of the LMI’s and the number of variables that are
involved grow drastically what renders the corresponding computations slow. Second, increasing ν

amounts to a potential increase of the McMillan degree of Q ∈Sν what leads to controllers whose
McMillan degree cannot be bounded a priori.

In view of these difficulties, it has been proposed to replace the multi-objective control problem by
a mixed control problem. To prepare its definition, recall that the conditions (4.3.4) are guaranteed
by the existence of symmetric matrices X1, X2, Z2 satisfying

X1 � 0,

 A >X1 +X1A X1B1 C>1
X1B1 −γ1I D>1

C1 D1 −γ1I

≺ 0

D2 = 0,
(

A >X2 +X2A X2B2
B>2 X2 −γ2I

)
≺ 0,

(
X2 C>2
C2 Z2

)
� 0, trace(Z2)< γ2.

If trying to apply the general procedure to derive the synthesis inequalities, there is some trouble
since the controller parameter transformation depends on the closed-loop Lyapunov matrix; here
two such matrices X1, X2 do appear such that the technique breaks down. This observation itself
motivates a remedy: Just force the two Lyapunov matrices to be equal. This certainly introduces
conservatism that is, in general, hard to quantify. On the positive side, if one can find a common
matrix

X = X1 = X2

that satisfies the analysis relations, we can still guarantee (4.3.4) to hold. However, the converse is
not true, since (4.3.4) does not imply the existence of common Lyapunov matrix to satisfy the above
inequalities.

This discussion leads to the definition of the mixed H2/H∞ control problem: Minimize γ2 subject to
the existence of X , Z2 satisfying A >X +X A X B1 C>1

B>1 X −γ1I D>1
C1 D1 −γ1I

≺ 0

D2 = 0,
(

A >X +X A X B2
B>2 X −γ2I

)
≺ 0,

(
X C>2
C2 Z2

)
� 0, trace(Z2)< γ2.

This problem is amenable to our general procedure. As before, one proves that the corresponding
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synthesis LMI’s are  AAA(v)>+AAA(v) BBB1(v) CCC1(v)>

BBB1(v)> −γ1I DDD1(v)>

CCC1(v) DDD1(v) −γ1I

≺ 0

DDD2(v) = 0,
(

AAA(v)>+AAA(v) BBB2(v)
BBB2(v)> −γ2I

)
≺ 0,

(
XXX(v) CCC2(v)>

CCC2(v) Z2

)
� 0, trace(Z2)< γ2,

and the controller construction remains unchanged as in (4.2.14) in Theorem 4.2.

Let us conclude this section with some important remarks.

• After having solved the synthesis inequalities corresponding to the mixed problem for v and
Z2, one can construct a controller which satisfies (4.3.4) and which has a McMillan degree
(size of Ac) that is not larger than (equal to) the size of A.

• For the controller resulting from mixed synthesis one can perform an analysis with different
Lyapunov matrices X1 and X2 without any conservatism. In general, the actual H∞-norm of
T1 will be strictly smaller than γ1, and the H2-norm will be strictly smaller than the optimal
value obtained from solving the mixed problem. Judging a mixed controller should, hence,
rather be based on an additional non-conservative and direct analysis.

• Performing synthesis by searching for a common Lyapunov matrix introduces conservatism.
Little is known about how to estimate this conservatism a priori. However, the optimal value of
the mixed problem is always an upper bound of the optimal value of the actual multi-objective
problem.

• Starting from a mixed controller, it has been suggested in [47, 48] how to compute sequences
of upper and lower bounds, on the basis of solving LMI problems, that approach the actual
optimal value. This allows to provide an a posteriori estimate of the conservatism that is
introduced by setting X1 equal to X2.

• If starting from different versions of the analysis inequalities (e.g. through scaling the Lya-
punov matrix), the artificial constraint X1 = X2 might lead to a different mixed control prob-
lem. Therefore, it is recommended to choose those analysis tests that are expected to lead to
Lyapunov matrices which are close to each other. However, there is no general rule how to
guarantee this property.

• In view of the previous remark, let us sketch one possibility to reduce the conservatism in
mixed design. If we multiply the analysis inequalities for stability of A and for ‖T1‖∞ < γ1
by an arbitrary real parameter α > 0, we obtain

αX1 � 0,

 A >(αX1)+(αX1)A (αX1)B1 αC>1
B>1 (αX1) −αγ1I αD>1

αC1 αD1 −αγ1I

≺ 0.
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If we multiply the last row and the last column of the second inequality with 1
α

(what is
a congruence transformation) and if we introduce Y1 := αX1, we arrive at the following
equivalent version of the analysis inequality for the H∞-norm constraint:

Y1 � 0,

 A >Y1 +Y1A Y1B1 C>1
B>1 Y1 −γ1αI D>1

C1 D1 −γ1/αI

≺ 0.

Performing mixed synthesis with this analysis inequality leads to optimal values of the mixed
H2/H∞ problem that depend on α . Each of these values form an upper bound on the actual
optimal value of the multi-objective problem such that the best bound is found by performing
a line-search over α > 0.

• Contrary to previous approaches to the mixed problem, the one presented here does not require
identical input- or output-signals of the H∞ or H2 channel. In view of their interpretation
(uncertainty for H∞ and performance for H2), such a restriction is, in general, very unnatural.
However, due to this flexibility, it is even more crucial to suitably scale the Lyapunov matrices.

• We can incorporate with ease various other performance or robustness specifications (formu-
lated in terms of linear matrix inequalities) on other channels. Under the constraint of using
for all desired specifications the same Lyapunov matrix, the design of a mixed controller is
straightforward. Hence, one could conceivably consider a mixture of H∞, H2, generalized H2,
and peak-to-peak upper bound requirements on more than one channel. In its flexibility and
generality, this approach is unique; however, one should never forget the conservatism that is
involved.

• Using the same Lyapunov function might appear less restrictive if viewing the resulting pro-
cedure as a Lyapunov shaping technique. Indeed, one can start with the most important spec-
ification to be imposed on the controller. This amounts to solving a single-objective problem
without conservatism. Then one keeps the already achieved property as a constraint and sys-
tematically imposes other specifications on other channels of the system to exploit possible
additional freedom that is left in designing the controller. Hence, the Lyapunov function is
shaped to realize additional specifications.

• Finally, constraints that are not necessarily related to input- output-specifications can be incor-
porated as well. As a nice example we mention the possibility to place the eigenvalues of A
into an arbitrary LMI region {z : Q+Pz+P>z̄≺ 0}. For that purpose one just has to include p11XXX(v)+q11AAA(v)+q11AAA(v)> . . . p1kXXX(v)+q1kAAA(v)+qk1AAA(v)>

...
. . .

...
pk1XXX(v)+qk1AAA(v)+q1kAAA(v)> . . . pkkXXX(v)+qkkAAA(v)+qkkAAA(v)>

≺ 0

in the set of synthesis LMI (see Chapter 2).
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4.4 Elimination of parameters

The general procedure described in Section 4.2 leads to synthesis inequalities in the variables K,
L, M, N and X , Y as well as some auxiliary variables. For specific problems it is often possible to
eliminate some of these variables in order to reduce the computation time. For example, since K has
the same size as A, eliminating K for a system with McMillan degree 20 would save 400 variables.
In view of the fact that, in our experience, present-day solvers are practical for solving problems up
to about one thousand variables, parameter elimination might be of paramount importance to be able
to solve realistic design problems.

In general, one cannot eliminate any variable that appears in at least two synthesis inequalities.
Hence, in mixed design problems, parameter elimination is typically only possible under specific
circumstances. In single-objective design problems one has to distinguish various information struc-
tures. In output-feedback design problems, it is in general not possible to eliminate X , Y but it might
be possible to eliminate some of the variables K, L, M, N if they only appear in one inequality.
For example, in quadratic performance problems one can eliminate all the variables K, L, M, N. In
state-feedback design, one can typically eliminate in addition X , and for estimation problems one
can eliminate Y .

To understand which variables can be eliminated and how this is performed, we turn to a discussion
of two topics that will be of relevance, namely the dualization of matrix inequalities and explicit
solvability tests for specifically structured LMI’s.

4.4.1 Dualization

The synthesis inequalities for quadratic performance can be written in the form (4.2.13). This in-
equality has the structure(

I
M

)>( Q S
S> R

)(
I
M

)
≺ 0 and R < 0. (4.4.1)

Let us re-formulate these conditions in geometric terms. Recall that (4.2.5) is partitioned according
to

P =

(
Q S
S> R

)
∈ R(k+l)×(k+l)

and observe that (4.4.1) is nothing but

P≺ 0 on im
(

I
M

)
and P < 0 on im

(
0
I

)
.

Since the direct sum of im
(

I
M

)
and im

(
0
I

)
spans the whole R(k+l)×(k+l), we can apply the

following dualization lemma if P is non-singular.
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Lemma 4.9 (Dualization Lemma) Let P be a non-singular symmetric matrix in Rn×n, and let U ,
V be two complementary subspaces whose sum equals Rn. Then

x>Px < 0 for all x ∈U \{0} and x>Px≥ 0 for all x ∈ V (4.4.2)

is equivalent to

x>P−1x > 0 for all x ∈U ⊥ \{0} and x>P−1x≤ 0 for all x ∈ V ⊥. (4.4.3)

Proof. Since U ⊕V =Rn is equivalent to U ⊥⊕V ⊥ =Rn, it suffices to prove that (4.4.2) implies
(4.4.3); the converse implication follows by symmetry. Let us assume that (4.4.2) is true. Moreover,
let us assume that U and V have dimension k and l respectively. We infer from (4.4.2) that P has at
least k negative eigenvalues and at least l non-negative eigenvalues. Since k+ l = n and since P is
non-singular, we infer that P has exactly k negative and l positive eigenvalues. We first prove that P−1

is positive definite on U ⊥. We assume, to the contrary, that there exists a vector y ∈U ⊥ \{0} with
y>P−1y ≤ 0. Define the non-zero vector z = P−1y. Then z is not contained in U since, otherwise,
we would conclude from (4.4.2) on the one hand z>Pz < 0, and on the other hand z⊥y = Pz what
implies z>Pz = 0. Therefore, the space Ue := span(z)+U has dimension k+ 1. Moreover, P is
negative semi-definite on this space: for any x ∈U we have

(z+ x)>P(z+ x) = y>P−1y+ y>x+ x>y+ x>Px = y>P−1y+ x>Px≤ 0.

This implies that P has at least k+1 non-positive eigenvalues. Since 0 is not an eigenvalue of P, this
contradicts the already established fact that P has exactly k negative eigenvalues.

Let us now prove that P−1 is negative semi-definite on V ⊥. For that purpose we just observe that
P+ εI satisfies

x>(P+ εI)x < 0 for all x ∈U \{0} and x>(P+ εI)x > 0 for all x ∈ V \{0}

for all small ε > 0. Due to what has been already proved, this implies

x>(P+ εI)−1x > 0 for all x ∈U ⊥ \{0} and x>(P+ εI)−1x < 0 for all x ∈ V ⊥ \{0}

for all small ε . Since P is non-singular, (P+ εI)−1 converges to P−1 for ε → 0. After taking the
limit, we end up with

x>P−1x≥ 0 for all x ∈U ⊥ \{0} and x>P−1x≤ 0 for all x ∈ V ⊥ \{0}.

Since we already know that the first inequality must be strict, the proof is finished.

Based on the result of Lemma 4.9, we introduce

P−1 =

(
Q̃ S̃
S̃> R̃

)
∈ R(k+l)×(k+l)

and observe that

im
(

I
M

)⊥
= ker

(
I M>

)
= im

(
−M>

I

)
and im

(
0
I

)⊥
= ker

(
0 I

)
= im

(
I
0

)
.
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Hence Lemma 4.9 implies that (4.4.1) is equivalent to(
−M>

I

)>( Q̃ S̃
S̃> R̃

)(
−M>

I

)
� 0 and Q̃ 4 0. (4.4.4)

As an immediate consequence, we arrive at the following dual version of the quadratic performance
synthesis inequalities that appeared in (4.2.13) and Theorem 4.2

Corollary 4.10 Let P :=
(

Q S
S> R

)
be non-singular and let P−1 :=

(
Q̃ S̃
S̃> R̃

)
. Then


I 0
0 I

AAA(v) BBB(v)
CCC(v) DDD(v)


>

0 0 I 0
0 Q 0 S
I 0 0 0
0 S> 0 R




I 0
0 I

AAA(v) BBB(v)
CCC(v) DDD(v)

 ≺ 0

R < 0


is equivalent to

−AAA(v)> −CCC(v)>

−BBB(v)> −DDD(v)>

I 0
0 I


>

0 0 I 0
0 Q̃ 0 S̃
I 0 0 0
0 S̃> 0 R̃



−AAA(v)> −CCC(v)>

−BBB(v)> −DDD(v)>

I 0
0 I

 � 0

Q̃ 4 0


Remark 4.11 Recall that we require P to satisfy R < 0 since, otherwise, the synthesis inequalities
may not be convex. The above discussion reveals that any non-singular performance index has to
satisfy Q̃ 4 0 as well since, otherwise, we are sure that the synthesis inequalities are not feasible. We
stress this point since, in general, R < 0 does not imply Q̃ 4 0. (Take e.g. P� 0 such that P−1 � 0.

As an example, let us dualize the H2 synthesis inequalities as formulated in (4.2.20)-(4.2.21).

Corollary 4.12 For γ > 0, I 0
AAA(v) BBB(v)

0 I

> 0 I 0
I 0 0
0 0 −γI

 I 0
AAA(v) BBB(v)

0 I

≺ 0

if and only if  −AAA(v)>

−BBB(v)>

I

> 0 I 0
I 0 0
0 0 − 1

γ
I

 −AAA(v)>

−BBB(v)>

I

� 0.

For XXX(v)� 0 and Z � 0, (
I

CCC(v)

)>( −XXX(v) 0
0 Z−1

)(
I

CCC(v)

)
≺ 0
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if and only if (
−CCC(v)>

I

)>( −XXX(v)−1 0
0 Z

)(
−CCC(v)>

I

)
� 0.

Again, the linearization Lemma 4.1 allows to render the first and the second dual inequalities affine
in γ and XXX(v) respectively.

4.4.2 Projection

Let us now turn to specific linear matrix inequalities for which one can easily derive explicit solv-
ability tests or which can be simplified considerably by eliminating variables. We start with a simple
example that is cited for later reference.

Lemma 4.13 The inequality  P11 P12 P13
P21 P22 +X P23
P31 P32 P33

≺ 0

in the symmetric unknown X has a solution if and only if(
P11 P13
P31 P33

)
≺ 0.

Proof. The ‘only if’ statement is obvious by canceling the second row/column. To prove the ‘if
part’, observe that any X with

X ≺−P22 +
(

P11 P13
)( P11 P13

P31 P33

)−1( P12
P32

)
≺ 0

(such as X =−αI for sufficiently large α > 0) is a solution (Schur).

Remark. This result extends to finding a common solution to a whole system of LMI’s, due to the
following simple fact: For finitely many matrices Q1, . . . ,Qm, there always exists an X with X ≺Q j,
j = 1, . . . ,m.

The first of three more advanced results in this vain is just a simple consequence of a Schur comple-
ment argument and it can be viewed as a powerful variation of what is often called the technique of
‘completing the squares’.

Lemma 4.14 (Projection Lemma) Let P be a symmetric matrix partitioned into three rows/columns
and consider the LMI  P11 P12 +X> P13

P21 +X P22 P23
P31 P32 P33

≺ 0 (4.4.5)

109 Compilation: January 2015



110 4.4. ELIMINATION OF PARAMETERS

in the unstructured matrix X. There exists a solution X of (4.4.5) if and only if(
P11 P13
P31 P33

)
≺ 0 and

(
P22 P23
P32 P33

)
≺ 0. (4.4.6)

If (4.4.6) hold, one particular solution is given by

X = P>32P−1
33 P31−P21. (4.4.7)

Proof. (Only if) If (4.4.5) has a solution then (4.4.6) just follow from (4.4.5) by canceling the first
or second block row/column.

(If) Suppose that (4.4.6) holds. Then P33 ≺ 0 and we observe that (4.4.5) is equivalent to (Schur
complement) (

P11 P12 +X>

P21 +X P22

)
−
(

P13
P23

)
P−1

33
(

P31 P32
)
≺ 0.

Due to (4.4.6), the diagonal blocks are negative definite. X defined in (4.4.7) just renders the off-
diagonal block zero such that it is a solution of the latter matrix inequality.

An even more powerful generalization is the so-called projection lemma.

Lemma 4.15 (Projection Lemma) For arbitrary A, B and a symmetric P, the LMI

A>XB+B>X>A+P≺ 0 (4.4.8)

in the unstructured X has a solution if and only if

Ax = 0 or Bx = 0 imply x>Px < 0 or x = 0. (4.4.9)

If A⊥ and B⊥ denote arbitrary matrices whose columns form a basis of ker(A) and ker(B) respec-
tively, (4.4.9) is equivalent to

A>⊥PA⊥ ≺ 0 and B>⊥PB⊥ ≺ 0. (4.4.10)

We give a full proof of the Projection Lemma since it provides a scheme for constructing a solution
X if it exists. It also reveals that, in suitable coordinates, Lemma 4.15 reduces to Lemma 4.14 if the
kernels of A and B together span the whole space.

Proof. The proof of ‘only if’ is trivial. Indeed, let us assume that there exists some X with A>XB+
B>X>A+P ≺ 0. Then Ax = 0 or Bx = 0 with x 6= 0 imply the desired inequality 0 > x>(A>XB+
B>X>A+P)x = x>Px.

For proving ‘if’, let S = (S1 S2 S3 S4) be a nonsingular matrix such that the columns of S3 span
ker(A)∩ker(B), those of (S1 S3) span ker(A), and those of (S2 S3) span ker(B). Instead of (4.4.8),
we consider the equivalent inequality S>(4.4.8)S < 0 which reads as

(AS)>X(BS)+(BS)>X>(AS)+S>PS≺ 0. (4.4.11)

110 Compilation: January 2015



4.4. ELIMINATION OF PARAMETERS 111

Now note that AS and BS have the structure (0 A2 0 A4) and (B1 0 0 B4) where (A2 A4) and (B1 B4)
have full column rank respectively. The rank properties imply that the equation

(AS)>X(BS) =


0

A>2
0

A>4

X
(

B1 0 0 B4
)
=


0 0 0 0

Z21 0 0 Z24
0 0 0 0

Z41 0 0 Z44


has a solution X for arbitrary Z21, Z24, Z41, Z44. With Q := S>PS partitioned accordingly, (4.4.11)
hence reads as 

Q11 Q12 +Z>21 Q13 Q14 +Z>41
Q21 +Z21 Q22 Q23 Q24 +Z24

Q31 Q32 Q33 Q34

Q41 +Z41 Q42 +Z>24 Q43 Q44 +Z44 +Z>44

≺ 0 (4.4.12)

with free blocks Z21, Z24, Z41, Z44. Since

ker(AS) = im


I 0
0 0
0 I
0 0

 and ker(BS) = im


0 0
I 0
0 I
0 0

 ,

the hypothesis (4.4.9) just amounts to the conditions(
Q11 Q13
Q31 Q33

)
≺ 0 and

(
Q22 Q23
Q32 Q33

)
≺ 0.

By Lemma 4.14, we can hence find a matrix Z21 which renders the marked 3× 3 block in (4.4.12)
negative definite. The blocks Z41 and Z24 can be taken arbitrary. After having fixed Z21, Z41, Z24, we
can choose Z44 according to Lemma 4.13 such that the whole matrix on the left-hand side of (4.4.12)
is negative definite.

Remark 4.16 We can, of course, replace ≺ everywhere by �. It is important to recall that the
unknown X is unstructured. If one requires X to have a certain structure (such as being symmetric),
the tests, if existing at all, are much more complicated. There is, however, a generally valid extension
of the Projection Lemma to block-triangular unknowns X [42]. Note that the results do not hold true
as formulated if just replacing the strict inequalities by non-strict inequalities (as it is sometimes
erroneously claimed in the literature)! Again, it is possible to provide a full generalization of the
Projection Lemma to non-strict inequalities.

4.4.3 Elimination

As in Subsection 4.4.1, let

P =

(
Q S
S> R

)
with R < 0 and P−1 =

(
Q̃ S̃
S̃> R̃

)
with Q̃ 4 0 (4.4.13)
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and let us consider the quadratic inequality(
I

A>XB+C

)>
P
(

I
A>XB+C

)
≺ 0 (4.4.14)

in the unstructured unknown X . According to Lemma 4.9, we can dualize this inequality to(
−B>X>A−C>

I

)>
P−1

(
−B>X>A−C>

I

)
� 0. (4.4.15)

It is pretty straightforward to derive necessary conditions for the solvability of (7.2.10). Indeed, let
us assume that (7.2.10) holds for some X . If A⊥ and B⊥ denote basis matrices of ker(A) and ker(B)
respectively, we infer(

I
A>XB+C

)
B⊥ =

(
I
C

)
B⊥ and

(
−B>X>A−C′

I

)
A⊥ =

(
−C′

I

)
A⊥.

Since B>⊥(7.2.10)B⊥ ≺ 0 and A>⊥(4.4.15)A⊥ � 0, it follows that the two inequalities

B>⊥

(
I
C

)>
P
(

I
C

)
B⊥ ≺ 0 and A>⊥

(
−C>

I

)>
P−1

(
−C>

I

)
A⊥ � 0 (4.4.16)

are necessary conditions for a solution of (7.2.10) to exist. The inequalities (4.4.16) do no longer
depend on the decision variable X and are therefore easily verified. Interestingly, the conditions
(4.4.16) are also sufficient for the feasibility of (7.2.10).

Lemma 4.17 (Elimination Lemma) Under the hypotheses (4.4.13) on P, the inequality (7.2.10)
has a solution if and only if (4.4.16) hold true.

Proof. It remains to prove that (4.4.16) implies the existence of a solution of (7.2.10). To see this, let
us first reveal that one can assume without loss of generality that R� 0 and Q̃≺ 0. For that purpose
we need to have information about the inertia of P. Since R < 0, P and P−1 have size(R) positive
eigenvalues (since none of the eigenvalues can vanish). Similarly, Q̃ 4 0 implies that P−1 and P have
size(Q̃) = size(Q) negative eigenvalues. Let us now consider (7.2.10) with the perturbed data

Pε :=
(

Q S
S> R+ εI

)
where ε > 0

is fixed sufficiently small such that (4.4.16) persist to hold for Pε , and such that Pε and P have the
same number of positive and negative eigenvalues. Trivially, the right-lower block of Pε is positive
definite. The Schur complement Q− S(R + εI)−1S> of this right-lower block must be negative
definite since Pε has size(Q) negative and size(R) positive eigenvalues. Hence the left-upper block
of P−1

ε which equals [Q−S(R+ εI)−1S>]−1 is negative definite as well. If the result is proved with
R � 0 and Q̃ ≺ 0, we can conclude that (7.2.10) has a solution X for the perturbed data Pε . Since
P0 4 Pε , the very same X also satisfies the original inequality for P0.
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Let us hence assume from now on that R� 0 and Q̃≺ 0. The left-hand side of (7.2.10) equals(
I
C

)>
P
(

I
C

)
+(A>XB)>(S>+RC)+(S>+RC)>(A>XB)+(A>XB)>R(A>XB).

Hence (7.2.10) is equivalent to (Schur) (
I
C

)>
P
(

I
C

)
+(A>XB)>(S>+RC)+(S>+RC)>(A>XB) (A>XB)>

(A>XB) −R−1

≺ 0

or  (
I
C

)>
P
(

I
C

)
0

0 −R−1

+

+

(
A(S>+RC)>

A

)>
X
(

B 0
)
+

(
B>

0

)
X>
(

A(S>+RC) A
)
≺ 0. (4.4.17)

The inequality (4.4.17) has the structure as required in the Projection Lemma. We need to show that(
B 0

)( x
y

)
= 0,

(
x
y

)
6= 0 (4.4.18)

or (
A(S>+RC) A

)( x
y

)
= 0,

(
x
y

)
6= 0 (4.4.19)

imply(
x
y

)> (
I
C

)>
P
(

I
C

)
0

0 −I

( x
y

)
= x>

(
I
C

)>
P
(

I
C

)
x− y>y≺ 0. (4.4.20)

In a first step we show that (4.4.17) and hence (7.2.10) have a solution if A = I. Let us assume
(4.4.18). Then (4.4.20) is trivial if x = 0. For x 6= 0 we infer Bx = 0 and the first inequality in
(4.4.16) implies

x>
(

I
C

)>
P
(

I
C

)
x < 0

what shows that (4.4.20) is true. Let us now assume (4.4.19) with A = I. We infer x 6= 0 and
y =−(S>+RC)x. The left-hand side of (4.4.20) is nothing but

x>
(

I
C

)>
P
(

I
C

)
x− x>(S>+RC)>R−1(S>+RC)x =

= x>
(

I
C

)>
P
(

I
C

)
x− x>

(
I
C

)>( S
R

)
R−1 ( S> R

)( I
C

)
x =

= x>
(

I
C

)> [
P−

(
SR−1S> S

S> R

)](
I
C

)
x = x>(Q−SR−1S>)x
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what is indeed negative since Q̃−1 = Q− SR−1S> ≺ 0 and x 6= 0. We conclude that, for A = I,
(4.4.17) and hence (

I
XB+C

)>
P
(

I
XB+C

)
≺ 0

have a solution.

By symmetry –since one can apply the arguments provided above to the dual inequality (4.4.15)–
we can infer that (

I
A>X +C

)>
P
(

I
A>X +C

)
≺ 0

has a solution X . This implies that (4.4.17) has a solution for B = I. Therefore, with the Projection
Lemma, (4.4.19) implies (4.4.20) for a general A.

In summary, we have proved for general A and B that (4.4.18) or (4.4.19) imply (4.4.20). We can
infer the solvability of (4.4.17) or that of (7.2.10).

4.4.4 Elimination for quadratic performance designs

In Section 4.2 we have derived that for the performance index

P =

(
Q S
S> R

)
, R < 0 with inverse P−1 =

(
Q̃ S̃
S̃′ R̃

)
, Q̃ 4 0, (4.4.21)

internal stability and quadratic performance can be achieved for the system (4.2.1) by a suitable
controller (4.2.2) if and only if the synthesis inequalities

XXX(v) � 0
I 0

AAA(v) BBB(v)
0 I

CCC(v) DDD(v)


>

0 I 0 0
I 0 0 0
0 0 Q S
0 0 S> R




I 0
AAA(v) BBB(v)

0 I
CCC(v) DDD(v)

 ≺ 0


(4.4.22)

are feasible. Due to the specific structure

(
AAA(v) BBB(v)
CCC(v) DDD(v)

)
=

 AY A B
0 XA XB1

C1Y C1 D1

+

 0 B
I 0
0 E

( K L
M N

)(
I 0 0
0 C F

)
,

it is straightforward to apply the Elimination Lemma 4.17 to eliminate all the variables K,L,M,N.
For that purpose it suffices to compute basis matrices

Φ =

(
Φ1

Φ2

)
of ker

(
B> E>

)
and Ψ =

(
Ψ1

Ψ2

)
of ker

(
C F

)
.
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Corollary 4.18 For a performance index with (4.4.21), there exists a solution v of (4.4.22) if and
only if there exist symmetric X and Y that satisfy(

Y I
I X

)
� 0, (4.4.23)

Ψ
>


I 0
A B1
0 I

C1 D1


>

0 X 0 0
X 0 0 0
0 0 Q S
0 0 S> R




I 0
A B1
0 I

C1 D1

Ψ≺ 0, (4.4.24)

Φ
>


−A> −C>1

I 0
−B>1 −D>1

0 I


>

0 Y 0 0
Y 0 0 0
0 0 Q̃ S̃
0 0 S̃> R̃



−A> −C>1

I 0
−B>1 −D>1

0 I

Φ� 0. (4.4.25)

Remark 4.19 Note that the columns of ( B
E ) indicate in how far the right-hand side of (4.2.1) can

be modified by control, and the rows of (C F ) determine those functionals that provide informa-
tion about the system state and the disturbance that is available for control. Roughly speaking, the
columns of Φ or of Ψ indicate what cannot be influenced by control or which information cannot
be extracted from the measured output. Let us hence compare (4.4.23)-(4.4.25) with the synthesis
inequalities that would be obtained for

ẋ
z1
...

zq

=


A B1 · · · Bq

C1 D1 · · · D1q
...

...
. . .

...
Cq Dq1 · · · Dq




x
w1
...

wq

 (4.4.26)

without control input and measurement output. For this system we could choose Φ = I and Ψ = I to
arrive at the synthesis inequalities (

Y I
I X

)
� 0, (4.4.27)

I 0
A B j
0 I

C1 D1


>

0 X 0 0
X 0 0 0
0 0 Q j S j
0 0 S>j R j




I 0
A B j
0 I

C1 D1

≺ 0, (4.4.28)


−A> −C>1

I 0
−B>j −D>1

0 I


>

0 Y 0 0
Y 0 0 0
0 0 Q̃ j S̃ j
0 0 S̃>j R̃ j



−A> −C>1

I 0
−B>j −D>1

0 I

� 0. (4.4.29)

Since there is no control and no measured output, these could be viewed as analysis inequalities for
(4.4.26). Hence we have very nicely displayed in how far controls or measurements do influence
the synthesis inequalities through Φ and Ψ. Finally, we note that (4.4.27)-(4.4.29) are equivalent to
X � 0, (4.4.28) or to Y � 0, (4.4.29). Moreover, if dualizing X � 0, (4.4.28), we arrive at Y � 0,
(4.4.29) for Y := X−1.
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Proof of Corollary 4.18. The first inequality (4.4.23) is just XXX(v) � 0. The inequalities (4.4.24)-
(4.4.25) are obtained by simply applying Lemma 4.17 to the second inequality of (4.4.22), viewed
as a quadratic matrix inequality in the unknowns K,L,M,N. For that purpose we first observe that

ker
(

0 I 0
B> 0 E>

)
has the basis matrix

 Φ1

0
Φ2


ker
(

I 0 0
0 C F

)
has the basis matrix

 0
Ψ1

Ψ2


Since


I 0

AAA(v) BBB(v)
0 I

CCC(v) DDD(v)


 0

Ψ1

Ψ2

=


I 0 0
0 I 0

AY A B1
0 XA XB1
0 0 I

C1Y C1 D1


 0

Ψ1

Ψ2

=


0 0
I 0
A B1

XA XB1
0 I

C1 D1

Ψ,

the solvability condition that corresponds to the first inequality in (4.4.16) reads as

Ψ
>


0 0
I 0
A B1

XA XB1
0 I

C1 D1



>
0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 Q S
0 0 0 0 S> R




0 0
I 0
A B1

XA XB1
0 I

C1 D1

Ψ≺ 0.

This simplifies to

Ψ
>


I 0

XA XB1
0 I

C1 D1


>

0 I 0 0
I 0 0 0
0 0 Q S
0 0 S> R




I 0
XA XB1
0 I

C1 D1

Ψ≺ 0.

This is clearly nothing but (4.4.24). The very same steps lead to (4.4.25). Indeed, we have
AAA(v)> CCC(v)>

I 0
BBB(v)> DDD(v)>

0 I


 Φ1

0
Φ2

=

=


−YA> 0 −YC>1
−A> −A>X −C>1

I 0 0
0 I 0
−B>1 −XB>1 −D>1

0 0 I


 Φ1

0
Φ2

=


−YA> −YC>1
−A> −C>1

I 0
0 0
−B>1 −D>1

0 I

Φ
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such that the solvability condition that corresponds to the second inequality in (4.4.16) is

Φ
>


−YA> −YC>1
−A> −C>1

I 0
0 0
−B>1 −D>1

0 I



>
0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 Q̃ S̃
0 0 0 0 S̃> R̃




−YA> −YC>1
−A> −C>1

I 0
0 0
−B>1 −D>1

0 I

Φ≺ 0

which simplifies to

Φ
>


−YA> −YC>1

I 0
−B>1 −D>1

0 I


>

0 I 0 0
I 0 0 0
0 0 Q̃ S̃
0 0 S̃> R̃



−YA> −YC>1

I 0
−B>1 −D>1

0 I

Φ≺ 0

and we arrive at (4.4.25).

Starting from the synthesis inequalities (4.4.22) in the variables X , Y , K,L,M,N, we have derived the
equivalent inequalities (4.4.23)-(4.4.25) in the variables X , Y only. Testing feasibility of these latter
inequalities can hence be accomplished much faster. This is particularly advantageous if optimizing
an additional parameter, such as minimizing the sup-optimality level γ in the H∞ problem.

To conclude this section, let us comment on how to compute the controller after having found solu-
tions X , Y of (4.4.23)-(4.4.25). One possibility is to explicitly solve the quadratic inequality (4.4.22)
in K,L,M,N along the lines of the proof of Lemma 4.17, and reconstruct the controller parameters
as earlier. One could as well proceed directly: Starting from X and Y , we can compute non-singular
U and V with UV> = I−XY , and determine X � 0 by solving the first equation in (4.2.14). Due
to (4.2.4), we can apply Lemma 4.17 directly to the analysis inequality


I 0
A B
0 I
C D


>

0 X 0 0
X 0 0 0
0 0 Q S
0 0 S> R




I 0
A B
0 I
C D

≺ 0

if viewing Ac,Bc,Cc,Dc as variables. It is not difficult (and you are invited to provide the details!)
to verify the solvability conditions for this quadratic inequality, and to construct an explicit solution
along the lines of the proof of Lemma 4.17. Alternatively, one can transform the quadratic inequality
to a linear matrix inequality with Lemma 4.1, and apply the Projection Lemma to reconstruct the
controller parameters. We conclude that there are many basically equivalent alternative ways to
compute a controller once one has determined X and Y .
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4.4.5 Elimination for H2 designs

If recalling (4.2.8), we observe that the synthesis inequalities (4.2.19) in the H2 controller design
problems involve the variables M and N, but only the first inequality(

AAA(v)>+AAA(v) BBB(v)
BBB(v)> −γI

)
≺ 0 (4.4.30)

is affected by K and L. This might suggest that the latter two variables can be eliminated in the
synthesis conditions. Since (4.4.30) is affine in

(
K L

)
, we can indeed apply the Projection

Lemma to eliminate these variables. It is not difficult to arrive at the following alternative synthesis
conditions for H2-type criteria.

Corollary 4.20 There exists a controller that renders (4.2.18) for some X , Z satisfied if and only if
there exist X, Y , M, N, Z with f (Z)< γ , D1 +ENF = 0 and Y I (C1Y +EM)>

I X (C1 +ENC)>

C1Y +EM C1 +ENC Z

� 0,

Ψ
>
(

A>X +XA XB1
B>1 X −γI

)
Ψ≺ 0,

(
(AY +BM)+(AY +BM)> B1 +BNF

(B1 +BNF)> −γI

)
≺ 0. (4.4.31)

Proof. We only need to show that the elimination of K and L in (4.4.30) leads to the two inequalities
(4.4.31). Let us recall

(
AAA(v) BBB(v)

)
=

(
AY A B1
0 XA XB1

)
+

(
0 B
I 0

)(
K L
M N

)(
I 0 0
0 C F

)
=

=

(
AY +BM A+BNC B1 +BNF

0 XA XB1

)
+

(
0
I

)(
K L

)( I 0 0
0 C F

)
.

Therefore, (4.4.30) is equivalent to

 AY +YA> A B1
A> A>X +XA XB1

B>1 B>1 X −γI

+ sym

 B
0
0

( M N
)( I 0 0

0 C F

)+

+ sym

 0
I
0

( K L
)( I 0 0

0 C F

)≺ 0

where sym(M) := M+M> is just an abbreviation to shorten the formulas.
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Now note that

ker
(

0 I 0
)

has the basis matrix

 I 0
0 0
0 I


ker
(

I 0 0
0 C F

)
has the basis matrix

 0
Ψ1

Ψ2


Therefore, the Projection Lemma leads to the two inequalities 0

Ψ1

Ψ2

> AY +YA> A B1
A> A>X +XA XB1

B>1 B>1 X −γI

 0
Ψ1

Ψ2

≺ 0

and (
AY +YA> B1

B>1 −γI

)
+ sym

((
B
0

)(
M N

)( I 0
0 F

))
≺ 0

that are easily rewritten to (4.4.31).

If E = 0, we can actually eliminate all variables K,L,M,N from the synthesis inequalities. The
corresponding results are obtained in a straightforward fashion and their proof is left as an exercise.

Corollary 4.21 Suppose that E = 0. Then there exists a controller that renders (4.2.18) for some
X , Z satisfied if and only if D1 = 0 and there exist X, Y Z with f (Z)< γ and Y I (C1Y )>

I X C>1
C1Y C1 Z

� 0,

Ψ
>
(

A>X +XA XB1
B>1 X −γI

)
Ψ≺ 0,

(
Φ̂ 0
0 I

)>(
AY +YA> B1

B>1 −γI

)(
Φ̂ 0
0 I

)
≺ 0

where Φ̂ is a basis matrix of ker(B).

Remark 4.22 Once the synthesis inequalities have been solved, the computation of
(

K L
)

or
of the parameters K,L,M,N can be performed along the lines that are indicated in the proof of the
Projection Lemma.

Remark 4.23 In this section we have focused on performing variable elimination which involve as
little computations as possible. These results should be viewed as examples on how one can proceed
in specific circumstances. The examples can be easily extended to various other performance speci-
fications. As an exercise, the reader is invited to eliminate decision variables in the synthesis results
that we derived for controller designs that bound the peak-to-peak norm of the controlled system.
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4.5 State-feedback problems

The state-feedback problem is characterized by

y = x or
(

C F1 · · · Fq
)
=
(

I 0 · · · 0
)
.

Then the formulas (4.2.8) read as(
AAA(v) BBB(v)
CCC(v) DDD(v)

)
=

 AY +BM A+BN B1
K AX +L XB1

C1Y +EM C1 +EN D1

 .

Note that the variable L only appears in the (2,2)-block, and that we can assign an arbitrary matrix
in this position by suitably choosing L. Therefore, by varying L, the (2,2) block of(

AAA(v)>+AAA(v) BBB(v)
BBB(v) 0

)
=

=

 (AY +BM)+(AY +BM)> (A+BN)+K> B1
K +(A+BN)> (AX +L)+(AX +L)> XB1

B>1 B>1 X 0


varies in the set of all symmetric matrices. This allows to apply Lemma 4.13 in order to eliminate L
in synthesis inequalities and leads to a drastic simplification.

Let us illustrate all this for the quadratic performance problem. The corresponding synthesis in-
equalities (4.2.12) read as

(
Y I
I X

)
� 0,

 (AY +BM)+(AY +BM)> (A+BN)+K> B1
K +(A+BN)> (AX +L)+(AX +L)> XB1

B>1 B>1 X 0

+

+

(
0 0 I

C1Y +EM C1 +EN D1

)>
P
(

0 0 I
C1Y +EM C1 +EN D1

)
≺ 0.

These imply, just by canceling the second block row/column,

Y � 0,
(

(AY +BM)+(AY +BM)> B1
B>1 0

)
+

+

(
0 I

C1Y +EM D1

)>
P
(

0 I
C1Y +EM D1

)
≺ 0

or

Y � 0,


I 0

AY +BM B1
0 I

C1Y +EM D1


>

0 I 0 0
I 0 0 0
0 0 Q S
0 0 S> R




I 0
AY +BM B1

0 I
C1Y +EM D1

≺ 0. (4.5.1)
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This is a drastic simplification since only the variables Y and M do appear in the resulting inequal-
ities. It is no problem to reverse the arguments in order to show that the reduced inequalities are
equivalent to the full synthesis inequalities.

However, proceeding in a different fashion leads to another fundamental insight: With solutions Y
and M of (4.5.1), one can in fact design a static controller which solves the quadratic performance
problem. Indeed, we just choose

Dc := MY−1

to infer that the static controller y = Dcu leads to a controlled system with the describing matrices(
A B
C D

)
=

(
A+BDc B1

C1 +EDc D1

)
=

(
(AY +BM)Y−1 B1
(C1Y +EM)Y−1 D1

)
.

We infer that (4.5.1) is identical to

Y � 0,


I 0

A Y B
0 I

CY D


>

0 I 0 0
I 0 0 0
0 0 Q S
0 0 S> R




I 0
A Y B

0 I
CY D

≺ 0.

If we perform congruence transformations with Y−1 and
(

Y−1 0
0 I

)
, we arrive with X :=Y−1 at

X � 0,


I 0

X A X B
0 I
C D


>

0 I 0 0
I 0 0 0
0 0 Q S
0 0 S> R




I 0
X A X B

0 I
C D

≺ 0.

Hence the static gain D indeed defines a controller which solves the quadratic performance problem.

Corollary 4.24 Under the state-feedback information structure, there exists a dynamic controller
(4.2.2) and some X which satisfy (4.2.6) if and only if there exist solutions Y and M of the inequal-
ities (4.5.1). If Y and M solve (4.5.1), the static state-feedback controller gain

Dc = MY−1

and the Lyapunov matrix X := Y−1 render (4.2.6) satisfied.

In literally the same fashion as for output-feedback control, we arrive at the following general pro-
cedure to proceed from analysis inequalities to synthesis inequalities, and to construct a static state-
feedback controller:

Algorithm 4.25 (State feedback synthesis algorithm) Aim: Synthesis of general static state feed-
back control laws.
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122 4.5. STATE-FEEDBACK PROBLEMS

Step 1: Rewrite the analysis inequalities in the blocks X , X A , X B, C , D in order to be
able to find a (formal) congruence transformation involving Y which leads to inequal-
ities in the blocks Y >X Y , Y >X AY , Y >X B, C Y , D .

Step 2: Perform the substitutions

Y >X Y → Y and
(

Y >X AY Y >X B
C Y D

)
→
(

AY +BM B1
C1Y +EM D1

)
to arrive at matrix inequalities in the variables Y and M.

Step 3: Solve the synthesis inequalities for Y and M.

Step 4: Set the static controller gain D and the Lyapunov matrix X to

D = MY−1 and X = Y−1.

These matrices render the analysis inequalities satisfied.

As an illustration, starting form the analysis inequalities (4.2.18) for H2-type synthesis problems, the
corresponding state-feedback synthesis conditions read as(

(AY +BM)>+(AY +BM) B1
B>1 −γI

)
≺ 0,(

Y (C1Y +EM)>

C1Y +EM Z

)
� 0, f (Z)< γ, D1 = 0.

All our previous remarks pertaining to the (more complicated) procedure for the output-feedback
information structure apply without modification.

In general we can conclude that dynamics in the controller do not offer any advantage over static con-
trollers for state-feedback problems. This is also true for mixed control problems. This statements
requires extra attention since our derivation was based on eliminating the variable L which might
occur in several matrix inequalities. At this point the remark after Lemma 4.13 comes into play:
This particular elimination result also applies to systems of matrix inequalities such that, indeed, the
occurrence of L is various inequalities will not harm the arguments.

As earlier, in the single-objective quadratic performance problem by state-feedback, it is possible to
eliminate the variable M in (4.5.1). Alternatively, one could as well exploit the particular structure
of the system description to simplify the conditions in Theorem 4.18. Both approaches lead to the
following result.

Corollary 4.26 For the state-feedback quadratic performance problem with index satisfying (4.4.21),
there exists dynamic controller and some X with (4.2.6) if and only if there exists a symmetric Y
which solves

Y � 0, Φ
>


−A> −C>1

I 0
−B>1 −D>1

0 I


>

0 Y 0 0
Y 0 0 0
0 0 Q̃ S̃
0 0 S̃> R̃



−A> −C>1

I 0
−B>1 −D>1

0 I

Φ� 0. (4.5.2)
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4.6. DISCRETE-TIME SYSTEMS 123

Remark 4.27 The state feedback results in this subsection should be viewed as illustrations on how
to proceed for specific system descriptions. Indeed, another popular choice is the so-called full
information structure in which both the state and the disturbance are measurable:

y =
(

x
w

)
.

Similarly, one could consider the corresponding dual versions that are typically related to estimation
problems, such as e.g. 

B
E1
...

Eq

=


I
0
...
0

 .

We have collected all auxiliary results that allow to handle these specific problems without any
complications.

4.6 Discrete-time systems

Everything that has been said so far can be easily extended to discrete time-design problems. This
is particularly surprising since, in the literature, discrete-time problem solutions often seem much
more involved and harder to master than their continuous-time counterparts.

Our general procedure to step from analysis to synthesis as well as the technique to recover the
controller need no change at all; in particular, the concrete formulas for the block substitutions do
not change. The elimination of transformed controller parameters proceeds in the same fashion on
the basis of the Projection Lemma or the Elimination Lemma and the specialized version thereof.

Only as an example we consider the problem discussed in [21]: the mixed H2/H∞ problem with
different disturbance inputs and controlled outputs in discrete-time.

It is well-known [21] that A has all its eigenvalues in the unit disk, that the discrete time H2-norm
of

C1(zI−A )−1B1 +D1

is smaller than γ1, and that the discrete time H∞-norm of

C2(zI−A )−1B2 +D2

is smaller than γ2 if and only if there exist symmetric matrices X1, X2, and Z with trace(Z) < γ1
and X1 X1A X1B1

A >X1 X1 0
B>1 X1 0 γ1I

� 0,

 X1 0 C>1
0 I D>1
C1 D1 Z

� 0,


X2 0 A >X2 C>2
0 γ2I B>2 X2 D>2

X2A X2B2 X2 0
C2 D2 0 γ2I

� 0.

(4.6.1)
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Note that we have transformed these analysis LMI’s such that they are affine in the blocks that will
be transformed for synthesis.

The mixed problem consists of searching for a controller that renders these inequalities satisfied with
a common Lyapunov function X = X1 = X2. The solution is immediate: Perform congruence
transformations of (4.6.1) with

diag(Y ,Y , I), diag(Y , I, I), diag(Y , I,Y , I)

and read off the synthesis LMI’s using (4.2.8). After solving the synthesis LMI’s, we stress again
that the controller construction proceeds along the same steps as in Theorem 4.2. The inclusion of
pole constraints for arbitrary LMI regions (related, of course, to discrete time stability) and other
criteria poses no extra problems.

4.7 Further reading

The linearization and convexification transformation that is at the basis of the synthesis algorithms
discussed in this Chapter have been published in its general format in [28, 50]. Details on the Youla
parametrization can be found in [26]. For more information on multi-objective and mixed control
synthesis problems, the reader is referred to [16, 43, 44, 53]. Mixed control problems for discrete
time systems are discussed in [21]. for more details on the dualization of matrix inequalities we refer
to [18, 45]. We refer to [40] for an early reference to generalized H2 optimization. The Elimination
Lemma 4.17 has been published in [49].

4.8 Exercises

Exercise 1
Derive an LMI solution of the H∞-control problem for the system ẋ

z1
y

=

 A B1 B
C1 D1 E
C F 0

 x
w1
u


with

C =

(
I
0

)
, F =

(
0
I

)
such that y =

(
x

w1

)
.

(This is the so-called full information problem.)

Exercise 2 (H∞ estimator design)
Consider the system  ẋ

z
y

=

 A B1
C1 D1
C F

( x
w

)

124 Compilation: January 2015



4.8. EXERCISES 125

and interconnect it with the estimator(
ẋc
ẑ

)
=

(
Ac Bc
Cc Dc

)(
xc
y

)
(4.8.1)

where both A and Ac are Hurwitz. The goal in optimal estimation is to design an estimator which
keeps z− ẑ as small as possible for all disturbances w in a certain class. Out of the multitude of
possibilities, we choose the L2-gain of w→ z− ẑ (for zero initial condition of both the system and
the estimator) as the measure of the estimation quality.

This leads to the following problem formulation: Given γ > 0, test whether there exists an estimator
which renders

sup
w∈L2, w6=0

‖z− ẑ‖2

‖w‖2
< γ (4.8.2)

satisfied. If yes, reveal how to design an estimator that leads to this property.

(a) Show that the estimation problem is a specialization of the general output-feedback H∞-design
problem.

(b) Due to the specific structure of the open-loop system, show that there exists a linearizing
transformation of the estimator parameters which does not involve any matrices that describe
the open-loop system.

Hint: To find the transformation, proceed as in the proof of Theorem 4.2 with the factorization

Y >X = Z where Y > =

(
I Y−1V
I 0

)
, Z =

(
Y−1 0

X U

)
,

Exercise 3 (LQ optimal control)
Suppose we are given the system

ẋ = Ax+Bu, y =Cx+Du, x(0) = ξ

with a stabilizable pair (A,B). For a fixed initial condition ξ let us define the optimal LQ cost

J(ξ ) := inf
F, A+BF is stable

∫
∞

0
y(t)>y(t)d t.

(a) Let yF denote the system output for a fixed F for which A+BF is stable. Show that

(A+BF)>K +K(A+BF)+(C+DF)>(C+DF) = 0

has a unique solution KF < 0 and that∫
∞

0
yF(t)>yF(t)d t = ξ

>KF ξ .
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(b) Let yF(.) denote the system output for a fixed F such that A+BF is stable. Show that∫
∞

0
yF(t)>yF(t)dt = inf

K�0 satisfies (A+BF)>K+K(A+BF)+(C+DF)>(C+DF)≺0
ξ
>Kξ .

(c) Show that

J(ξ ) = inf
F, K�0 satisfies (A+BF)>K+K(A+BF)+(C+DF)>(C+DF)≺0

ξ
>Kξ .

(d) Derive an LMI problem to compute J(ξ ).

Exercise 4 (Time-delay systems)
For some τ > 0 consider the time-delay system

ẋ(t) = Ax(t)+Adx(t− τ)+Gw(t)+Bu(t), z(t) =Cx(t)+Du(t).

Given any continuous function φ on [−τ,0] and any continuous disturbance w(.) on [0,∞), the
initialization x(t) = φ(t) for t ∈ [−τ,0] leads to a unique solution of the differential equation. This
is an infinite dimensional system with state-space equal to all continuous functions ξ on [−τ,0]. For
symmetric K and Kd the expression

ξ (0)>Kξ (0)+
∫ 0

−τ

ξ (σ)>Kdξ (σ)dσ

defines a mapping from this function space into the real numbers and is hence storage function
candidate, called Lyapunov-Krasovski functional. The value at time t of this storage function along
a system trajectory x(.) is then given by

v(t) := x(t)>Kx(t)+
∫ t

t−τ

x(σ)>Kdx(σ)dσ .

(a) For u(t) = 0 and w(t) = 0 show that

d
dt

v(t) =
(

x(t)
x(t− τ)

)>( A>K +KA+Kd KAd
A>d K −Kd

)(
x(t)

x(t− τ)

)
.

(b) Suppose that u(t) = 0 and w(t) = 0. Show that, if there exist K � 0 and Kd � 0 with(
A>K +KA+Kd KAd

A>d K −Kd

)
≺ 0,

then all solutions satisfy limt→∞ x(t) = 0. To prove this, you may like to proceed along the
following lines:

• Show that there exists an ε > 0 such that ε‖x(t)‖2 ≤ v(t) and v̇(t)≤−ε‖x(t)‖2.

• Show that x(·) and hence (via the differential equation) ẋ(·) are bounded on [0,∞).
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• If limt→∞ x(t) = 0 is not true, there exist a constant α > 0 and a sequence tk → ∞ such
that ‖x(tk)‖ ≥ α for all k. Show that there exists some β such that ‖x(t)‖ ≥ 1

2 α for all
t ∈ [tk−β , tk +β ] and all k.
• Show that v̇(t)≤−εα2/4 for all t ∈ [tk−β , tk+β ] and all k. Note that one can make sure

that the intervals [tk−β , tk+β ] do not overlap for k= 1,2, . . ., by choosing a subsequence
if necessary. Let’s assume that this has been done.

• Show that v(tk+1−β )≤−βεα2/2+ v(tk−β ).
• Show that there exists a k with v(tk−β )< 0. Why is this a contradiction?

Note that these are standard Lyapunov arguments (for delay systems) which actually hold in
much larger generality!

(c) Suppose that u(t) = 0 for t ≥ 0 and x(t) = 0 for t ∈ [−τ,0]. Assume that the disturbance
w(·) ∈L2 is of finite energy. Show that, if there exist K � 0 and Kd � 0 with A>K +KA+Kd KAd KG

A>d K −Kd 0
G>K 0 0

+

(
0 0 I
C 0 D

)>( −I 0
0 I

)(
0 0 I
C 0 D

)
≺ 0,

then the L2-gain of the system is not larger than one.

(d) Derive a sufficient LMI condition for the existence of a state-feedback controller which stabi-
lizes the system and which guarantees that the L2-gain of the system is bounded by one.

Exercise 5 (H2-observer synthesis)
In this exercise we consider the design of an optimal H2-observer for the configuration

System
wz

y

+
e

−

Observer

The system is described as  ẋ
z
y

=

 A B
C D
E F

( x
w

)
where y is the measurement, z is the to-be-estimated variable, and w is white noise. The observer is
assumed to admit the description

ξ̇ = Aξ +L(Eξ − y), ẑ =Cξ

where the observer gain L is the design parameter.

(a) With the estimation error e = z− ẑ, show that the transfer matrix w→ e admits the realization[
A+LE B+LF

C D

]
.
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(b) For a fixed observer gain L formulate an LMI problem that allows to analyze whether A+LE
is Hurwitz and whether the H2-norm of w→ e is strictly smaller than some γ > 0.

(c) Formulate an LMI problem for computing an observer gain L such that A+LE is Hurwitz and
such that the H2-norm of w→ e is as small as possible.

(d) Consider the mechanical system

m1 m2

x1

x2

k

k

c

with the numerical values m1 = 1, m2 = 0.5, k = 1 and c = 2. The goal is to estimate the
position of the second mass, on the basis of a measurement of the position of the first mass.
Both the first mass and the position measurement are affected by white noise. With the given
numerical values the system is modeled as

 ẋ
z
y

=


0 0 1 0 0 0
0 0 0 1 0 0
−2 1 −2 2 1 0

2 −2 4 −4 0 0
0 1 0 0 0 0
1 0 0 0 0 0.1


(

x
w

)
=

 A B
C D
E F

( x
w

)

where y is the measurement, z is the to-be-estimated variable, and w is the disturbance. Com-
pute the minimally achievable H2-norm of w→ e and a corresponding observer for this system.

Exercise 6
Suppose the LMI region

L :=
{

z ∈ C : Q+ zS+ z̄S> ≺ 0
}

is given. For given matrices A and B, consider the problem of finding a state-feedback gain F such
that A+BF has all its eigenvalues in L.

(a) Does the LMI-test for λ (A+BF)⊂ L result in an inequality that is convex/an LMI in both F
and K?

(b) Can you linearize/convexify the synthesis problem by a suitable variable transformation?

(c) Consider a general LMI region LP as defined in the lectures. How can we verify whether LP
defines a convex set in C?

Exercise 7 (Multi-objective and mixed control synthesis)
This is a simulation exercise that involves the synthesis of an active controller for the suspension
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system in Exercise 3 of Chapter 2. We consider the rear wheel of a vehicle as is depicted in Fig-
ure 4.3. Here m1 represents tire, wheel and rear axle mass, m2 denotes a fraction of the semitrailer

Figure 4.3: Active suspension system

mass. The deflection variables qi are properly scaled so that q2− q1 = 0 and q1− q0 = 0 in steady
state. The system is modeled by the state space equations(

ẋ
z

)
=

(
A B1 B

C1 D1 E

) x
q0
f


where

A =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

− b1+b2
m1

b2
m1

k2
m2

− k2
m2

b2
m2

− b2
m2

 ; B1 =


b1
m1
0

k1
m1
− b1

m1

b1+b2
m1

b1b2
m1m2

 ; B =


0
0
− 1

m1
1

m2



C1 =


1 0 0 0
0 0 0 0
k2
m2

− k2
m2

b2
m2

− b2
m2

−1 1 0 0

 ; D1 =


−1
0

b1b2
m1m2

0

 ; E =


0
1
1

m2
0


Here, x = col(q1,q2, q̇1− b1q0/m1, q̇2) and z = col(q1− q0, f , q̈2,q2− q1) define the state and the
to-be-controlled output, respectively. The control input is the force f , the exogenous input is the
road profile q0.

Let the physical parameters be specified as in Table 2.1 in Chapter 2 and let b1 = 50 [Ns/m]. The aim
is to design an active suspension control system that generates the force f as a (causal) function of
the measured variable y = col(q̈2,q2−q1). We wish to achieve low levels of acceleration throughout
the vehicle (q̈2), bounded suspension deflection (q2−q1 and q1−q0) and bounded dynamic tire force
( f ).

(a) Let the road profile be represented by q0 = Wq0 q̃0 where q̃0 ∈L2 is equalized in frequency
and where

Wq0(s) =
0.01

0.4s+1
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reflects the quality of the road when the vehicle drives at constant speed. Define the to-be-
controlled output z̃ =Wzz where Wz is a weighting matrix with transfer function

Wz(s) = diag(200,0.1,
0.03s+0.4

0.000316s2 +0.0314s+1
,100).

Here, the dynamic weight on the chassis acceleration reflects the frequency band of the human
sensitivity to vertical accelerations. Implement the generalized plant

P :
(

q̃0
f

)
7→
(

z̃
y

)
and synthesize a controller which minimizes the H∞ norm of the closed-loop transfer function
T : q̃0 7→ z̃.

(b) Construct the closed-loop system which maps q0 to z (not q̃0 to z̃!) and validate the controlled
system by plotting the four frequency responses of the closed-loop system and the four re-
sponses to a road bump with amplitude 0.2 (meter). What are your conclusions about the
behavior of this active suspension system?

(c) Partition the output z of the system into

z =
(

z1
z2

)
; z1 =

(
q1−q0

f

)
; z2 =

(
q̈2

q2−q1

)
.

and let the weights on the signal components be as in the first part of this exercise. Let Ti,
i = 1,2 be the transfer function mapping q̃0 7→ z̃i. We wish to obtain insight in the achievable
trade-offs between upper bounds of ‖T1‖∞ and ‖T2‖2. To do this,

(i) Calculate the minimal achievable H∞ norm of T1.

(ii) Calculate the minimal achievable H2 norm of T2.

(iii) Calculate the minimal achievable H2 norm of T2 subject to the bound ‖T1‖∞ < γ1 where
γ1 takes some (≈ 5) values in the interval [0.15,0.30].

Make a plot of the Pareto optimal performances, i.e, plot the minimal achievable H2 norm of
T2 as function of γ1.
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Chapter 5

Robust stability and robust
performance

First principle models of physical systems are often represented by state space equations in which
components of the state variable represent well defined physical quantities. Variations, perturbations
or uncertainties in specific physical parameters lead to uncertainty in the model. Often, this uncer-
tainty is reflected by variations in well distinguished parameters or coefficients in the model, while
the nature and/or range of the uncertain parameters may be known, or partially known. Since very
small parameter variations may have a major impact on the dynamics of a system, it is of evident
importance to analyse parametric uncertainties of dynamical systems. This will be the subject of
this chapter. We reconsider the notions of nominal stability and nominal performance introduced
in Chapter 3 in the light of different types of parametric uncertainty that effect the behavior of the
system. We aim to derive robust stability tests and robust performance tests for systems with time-
varying and rate-bounded parametric uncertainties.

5.1 Parametric uncertainties

Suppose that δ = (δ1, . . . ,δp) is the vector which expresses the ensemble of all uncertain quantities
in a given dynamical system. There are at least two distinct cases which are of independent interest:

(a) time-invariant parametric uncertainties: the vector δ is a fixed but unknown element of an
uncertainty set δδδ ⊆ Rp.

(b) time-varying parametric uncertainties: the vector δ is an unknown time varying function
δ : R→ Rp whose values δ (t) belong to an uncertainty set δδδ ⊆ Rp, and possibly satisfy
additional constraints on rates of variation, continuity, spectral content, etc.
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132 5.1. PARAMETRIC UNCERTAINTIES

The first case typically occurs in models for which the physical parameters are fixed but only ap-
proximately known up to some level of accuracy. The second case typically captures models in
which uncertain parameters, coefficients, or other physical quantities are time-dependent. One may
object that in many practical situations both time-varying and time-invariant uncertainties occur so
that the distinction between the two cases may seem somewhat artificial. This is true, but since
time-invariant uncertainties can equivalently be viewed as time-varying uncertainties with a zero
rate constraint, combined time-varying and time-invariant uncertainties are certainly not excluded.

A rather general class of uncertain continuous time, dynamical systems S is described by the state
space equations

ẋ = f (x,w,δ ), x(0) = x0 (5.1.1a)
z = g(x,w,δ ) (5.1.1b)

where δ may or may not be time-varying, x, w and z are the state, input and output which take
values in the state space X , the input space W and the output space Z, respectively. This constitutes
a generalization of the model described in (2.2.1) defined in Chapter 2. If the uncertainties are fixed
but unknown elements of an uncertainty set δδδ ⊆Rp then one way to think of equations of this sort is
to view S as a set of time-invariant systems, parametrized by δ ∈ δδδ . However, if δ is time-dependent,
then (5.1.1a) is to be interpreted as ẋ(t) = f (x(t),w(t),δ (t)) and S is better viewed as a time-varying
dynamical system. If the components of δ (t) coincide, for example, with state components then S
may become a non-linear system, even when the mappings f and g are linear. If δ (t) is scalar valued
and assumes values in a finite set δδδ = {1, . . . ,K} then S defines a hybrid system of K modes whose
kth mode is defined by the dynamics

ẋ = fk(x,w) := f (x,w,k), x(0) = x0

z = gk(x,w) := g(x,w,k)

and where the time-varying behavior of δ (t) defines the switching events between the various modes.
In any case, the system S defined by (5.1.1) is of considerable theoretical and practical interest as it
covers quite some relevant classes of dynamical systems.

5.1.1 Affine parameter dependent systems

If f and g in (5.1.1) are linear in x and w then the uncertain system S assumes a representation{
ẋ = A(δ )x+B(δ )w, x(0) = x0

z =C(δ )x+D(δ )w
(5.1.2)

in which δ may or may not be time-varying.

Of particular interest will be those systems (5.1.2) in which the matrices affinely depend on δ . This
means that

S(δ ) :=
(

A(δ ) B(δ )
C(δ ) D(δ )

)
=

(
A0 B0
C0 D0

)
+δ1

(
A1 B1
C1 D1

)
+ . . .+δp

(
Ap Bp
Cp Dp

)
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or, written in more compact form, S(δ ) = S0 +δ1S1 + . . .+δpSp where

Si =

(
Ai Bi
Ci Di

)
, i = 1, . . . , p

are the coefficient matrices associated with (5.1.2). Models of this type are referred to as affine
parameter dependent models.

5.1.2 Polytopic parameter dependent systems

As an alternative representation of uncertainty, consider the system (5.1.2) and suppose that any
matrix

S(δ ) =
(

A(δ ) B(δ )
C(δ ) D(δ )

)
with δ ∈ δδδ

can be written as the convex combination of N system matrices

S j =

(
A j B j

C j D j

)
, j = 1, . . . ,N.

(where j is a superscript, not a power). This means that for any δ ∈ δδδ there exist α j ≥ 0 with
∑

N
j=1 α j = 1 such that

S(δ ) =
N

∑
j=1

α jS j.

Stated otherwise, {S(δ ) | δ ∈ δδδ}= conv(S1, . . . ,SN). Models of this type are referred to as polytopic
linear differential inclusions.

It is easily seen that a polytopic linear differential inclusion is a special cases of an affine parameter
dependent system if the uncertainty set δδδ is polytopic and equal to the convex hull δδδ = conv(δδδ g)
where δδδ g = {δ 1, . . . ,δ N} is a finite set. Indeed, in that case we have

{S(δ ) | δ ∈ δδδ}= {S(δ ) | δ ∈ conv(δδδ g)}= conv{S1, . . . ,SN}

where S j = S(δ j) define the generator matrices of the polytopic model.

5.2 Robust stability

5.2.1 Time-invariant parametric uncertainty

An important issue in the design of control systems involves the question as to what extend the
stability and performance of the controlled system is robust against perturbations and uncertainties
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in the parameters of the system. In this section we consider the uncertain time-invariant system
defined by

ẋ = A(δ )x (5.2.1)

where the state matrix A(·) is a continuous function of a real valued time-invariant parameter vector
δ = col(δ1, . . . ,δp) which we assume to be contained in an uncertainty set δδδ ⊆ Rp. Let X = Rn be
the state space of this system. We will analyze the robust stability of the equilibrium point x∗ = 0
of this system. Precisely, we address the question when the equilibrium point x∗ = 0 of (5.2.1) is
asymptotically stable in the sense of Definition 3.1 for all δ ∈ δδδ .

Example 5.1 As an example, let

A(δ ) =

−1 2δ1 2
δ2 −2 1
3 −1 δ3−10

δ1+1


where δ1 ∈ [−0.5,1], δ2 ∈ [−2,1] and δ3 ∈ [−0.5,2]. Then the uncertainty set δδδ is polytopic and
defined by

δδδ = {col(δ1,δ2,δ3) | δ1 ∈ [−0.5,1], δ2 ∈ [−2,1], δ3 ∈ [−0.5,2]} .
Moreover, δδδ = conv(δδδ g) with

δδδ g = {col(δ1,δ2,δ3) | δ1 ∈ {−0.5,1}, δ2 ∈ {−2,1}, δ3 ∈ {−0.5,2}}

the set of vertices (or generators) of δδδ .

For time-invariant parametric uncertainties, the system ẋ = A(δ )x is asymptotically stable if and
only if A(δ ) is Hurwitz for all δ ∈ δδδ . That is, if and only if the eigenvalues of A(δ ) lie in the open
left-half complex plane for all admissible perturbations δ ∈ δδδ . Hence, using Proposition 3.6, the
verification of robust stability amounts to checking whether

ρ(A(δ )) := maxRe(λ (A(δ )))< 0 for all δ ∈ δδδ .

There are at least three reasons why this is difficult to verify. Firstly, if δδδ is a continuum in Rp, this
means verifying an inequality at an infinite number of points. Secondly, if δδδ is a polytope, it will
generally not suffice to check the above inequality on the vertices of the uncertainty set only. Thirdly,
since ρ(A(δ ) is, in general, not a convex or concave function of δ it will be numerically difficult to
find the global maximum over δδδ .

Quadratic stability with time-invariant uncertainties

We will apply Theorem 3.4 to infer the asymptotic stability of the equilibrium point x∗ = 0 of (5.2.1).

Definition 5.2 (Quadratic stability) The system (5.2.1) is said to be quadratically stable for per-
turbations δ ∈ δδδ if there exists a matrix K = K> such that

K � 0 and A(δ )>K +KA(δ )≺ 0 for all δ ∈ δδδ . (5.2.2)
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The importance of this definition becomes apparent when considering quadratic Lyapunov functions
V (x) = x>Kx. Indeed, if K satisfies (5.2.2) then there exists an ε > 0 such that

A(δ )>K +KA(δ )+ εK 4 0 for all δ ∈ δδδ .

The time-derivative V̇ of the composite function V (t) := V (x(t)) = x(t)>Kx(t) along solutions of
(5.2.1), defined in (3.1.5), then satisfies

V̇ (t)+ εV (t) = ∂xV (x(t))A(δ )x(t)+ εV (x(t))

= x>(t)
[
A(δ )>K +KA(δ )+ εK

]
x(t)≤ 0

for all t ≥ 0 and all δ ∈ δδδ . Integrating this expression over an interval [t0, t1] shows that V has
exponential decay according to V (t1)≤V (t0)e−ε(t1−t0) for all t1 ≥ t0 and all δ ∈ δδδ . Now use that

λmin(K)‖x‖2 ≤ x>Kx≤ λmax(K)‖x‖2

to see that

‖x(t1)‖2 ≤ 1
λmin(K)

V (x(t1))≤
1

λmin(K)
V (x(t0))e−ε(t1−t0) ≤ λmax(K)

λmin(K)
‖x(t0)‖2e−ε(t1−t0).

That is,

‖x(t)‖ ≤ ‖x(t0)‖
√

λmax(K)

λmin(K)
e−

ε
2 (t−t0) for all δ ∈ δδδ , t ≥ 0.

Conclude that the origin of a system that is quadratically stable is globally exponentially stable (and
hence globally asymptotically stable) for all perturbations δ ∈ δδδ . In particular, the exponential decay
rate, ε/2 does not depend on δ .

It is truly worthwhile to understand (better even to appreciate) the arguments in this reasoning as
they are at the basis of more general results to come.

Verifying quadratic stability with time-invariant uncertainties

By (5.2.2), the verification of quadratic stability of a system places an infinite number of constraints
on the symmetric matrix K if δδδ is a continuum of uncertain parameters. It is the purpose of this
section to make additional assumptions on the way the uncertainty enters the system, so as to convert
(5.2.2) into a numerically tractable condition.

Suppose that A(δ ) is an affine function of the parameter vector δ , i.e.,

A(δ ) = A0 +δ1A1 + · · ·+δpAp (5.2.3)

for some real matrices A0, . . . ,Ap, all of dimension n×n. In addition, let us suppose that the uncer-
tainty set δδδ is convex and coincides with the convex hull of a set δδδ g ⊂ Rp. With this structure on A
and δδδ we have the following result.
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Proposition 5.3 If A(·) is an affine function and δδδ = conv(δδδ g) with δδδ g ⊂Rp, then the system (5.2.1)
is quadratically stable if and only if there exists K = K> such that

K � 0 and A(δ )>K +KA(δ )≺ 0 for all δ ∈ δδδ g.

Proof. The proof of this result is an application of Proposition 1.14 in Chapter 1. Indeed, consider
the mapping f : δδδ → S defined by

f (δ ) := A(δ )>K +KA(δ ).

Then the domain δδδ = conv(δδδ g) of f is convex. Since A(·) is affine, it follows that f is a convex
function. By Proposition 1.14 (Chapter 1) it follows that f (δ ) ≺ 0 for all δ ∈ δδδ if and only if
f (δ )≺ 0 for all δ ∈ δδδ g. Hence, A(δ )>K+KA(δ )≺ 0 for all δ ∈ δδδ if and only if the same inequality
holds for all δ ∈ δδδ g. This yields the result.

Obviously, the importance of this result lies in the fact that quadratic stability can be concluded from
a finite test of matrix inequalities whenever δδδ g consists of a finite number of elements. That is, when
the uncertainty set is the convex hull of a finite number of points in Rp. In that case, the condition
stated in Proposition 5.3 is a feasibility test of a (finite) system of LMI’s.

Example 5.4 Continuing Example 5.1, the matrix A(δ ) is not affine in δ , but by setting δ4 =
δ3−10
δ1+1 +

12 we obtain that

A(δ ) =

−1 2δ1 2
δ2 −2 1
3 −1 δ4−12

 ,

δ1
δ2
δ4

 ∈ δδδ = [−0.5,1]× [−2,1]× [−9,8].

covers the set of matrices in Example 5.1. Since δδδ = conv(δδδ g) with δδδ g = {δ 1, . . . ,δ N} consisting
of the N = 23 = 8 vertices of the uncertainty set, the verification of the quadratic stability of (5.2.1)
is a feasibility test of the 9 LMI’s

K � 0, A(δ j)>K +KA(δ j)≺ 0, j = 1, . . . ,8.

The test will not pass. By Proposition 5.3, the system is not quadratically stable for the given
uncertainty set.

Example 5.5 Consider the uncertain control system ẋ = A(δ )x+B(δ )u where we wish to construct
a feedback law u = Fx such that the controlled system ẋ = (A(δ )+B(δ )F)x is quadratically stable
for all δ in some polytopic uncertainty set δδδ = conv(δδδ g) with δδδ g the set of vertices. By Proposi-
tion 5.3, this is equivalent to finding F and K = K> such that

K � 0 and (A(δ )+B(δ )F)>K +K(A(δ )+B(δ )F)≺ 0, for all δ ∈ δδδ g

This is not a system of LMI’s. However, with X = K−1 and L = FK−1 and assuming that A(·) and
B(·) are affine, we can transform the latter to an LMI feasibility test to find X = X> and L such that

X � 0 and A(δ )X +XA(δ )+B(δ )L+(B(δ )L)> ≺ 0, for all δ ∈ δδδ g.

Whenever the test passes, the quadratically stabilizing feedback law is given by F = LX−1.
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Parameter-dependent Lyapunov functions with time-invariant uncertainties

The main disadvantage in searching for one quadratic Lyapunov function for a class of uncertain
models is the conservatism of the test. Indeed, Example 5.1 shows that (5.2.1) may not be quadrati-
cally stable, but no conclusions can been drawn from this observation concerning the stability of the
uncertain system. To reduce conservatism of the quadratic stability test we will consider quadratic
Lyapunov functions for the system (5.2.1) which are parameter dependent, i.e., Lyapunov functions
V : X×δδδ → R of the form

V (x,δ ) := x>K(δ )x

where K(δ ) is a matrix valued function that is allowed to depend on the uncertain parameter δ . A
sufficient condition for robust asymptotic stability can be stated as follows.

Proposition 5.6 Let the uncertainty set δδδ be compact and suppose that K(δ ) is continuously differ-
entiable on δδδ and satisfies

K(δ )� 0 for all δ ∈ δδδ (5.2.4a)

A(δ )>K(δ )+K(δ )A(δ )≺ 0 for all δ ∈ δδδ . (5.2.4b)

Then the system (5.2.1) is globally asymptotically stable for all δ ∈ δδδ .

Proof. Let K(δ ) satisfy (5.2.4) and consider V (x,δ ) = x>K(δ )x as candidate Lyapunov function.
There exists ε > 0 such that K(δ ) satisfies A(δ )>K(δ )+K(δ )A(δ )+ εK(δ ) 4 0. Take the time
derivative of the composite function V (t) :=V (x(t),δ ) along solutions of (5.2.1) to infer that V̇ (t)+
εV (t)≤ 0 for all t ∈ R and all δ ∈ δδδ . This means that for all δ ∈ δδδ , V (·) is exponentially decaying
along solutions of (5.2.1) according to V (t) ≤ V (0)e−εt . Define a := infδ∈δδδ λmin(K(δ )) and b :=
supδ∈δδδ λmax(K(δ )). If δδδ is compact, the positive definiteness of K implies that both a and b are
positive and we have that a‖x‖2 ≤ V (x,δ ) ≤ b‖x‖2 for all δ ∈ δδδ and all x ∈ X . Together with
the exponential decay of V this yields that ‖x(t)‖2 ≤ b

a‖x(0)‖2e−εt for all δ ∈ δδδ which proves the
exponential and asymptotic stability of (5.2.1).

The search for matrix valued functions that satisfy the conditions (5.2.4) is much more involved and
virtually intractable from a computational point of view. There are many ways to turn Proposition 5.6
into a numerically efficient scheme that yield parameter varying Lyapunov functions. Here is one:
consider Lyapunov functions that are affine in the parameter δ , i.e.,

K(δ ) = K0 +δ1K1 + . . .+δpKp

where K0, . . . ,Kp are real symmetric matrices of dimension n×n and δ = col(δ1, . . . ,δp) is the time-
invariant uncertainty vector. Clearly, with K1 = . . . = Kp = 0 we are back to the case of parameter
independent quadratic Lyapunov functions as discussed in the previous subsection. The system
(5.2.1) is called affine quadratically stable if there exist matrices K0, . . . ,Kp such that K(δ ) satisfies
the conditions (5.2.4) of Proposition 5.6.
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Let A(·) be affine and represented by (5.2.3). Suppose that δδδ is convex with δδδ = conv(δδδ g) where
δδδ g is a finite set of vertices of δδδ . Then the expression

L(δ ) := A(δ )>K(δ )+K(δ )A(δ )

in (5.2.4b) is, in general, not affine in δ . As a consequence, the function f : δδδ → S defined by

f (δ ) := L(δ ) (5.2.5)

will not be convex so that the implication

{ f (δ )≺ 0 for all δ ∈ δδδ g} =⇒ { f (δ )≺ 0 for all δ ∈ δδδ} (5.2.6)

used in the previous section (proof of Proposition 5.3), will not hold. Expanding L(δ ) yields

L(δ ) = [A0 +
p

∑
j=1

δ jA j]
>[K0 +

p

∑
j=1

δ jK j]+ [K0 +
p

∑
j=1

δ jK j][A0 +
p

∑
j=1

δ jA j]

=
p

∑
i=0

p

∑
j=0

δiδ j[A>i K j +K jAi]

where, to allow compact notation, we set δ0 = 1. Consequently, (5.2.5) takes the form

f (δ ) =C0 +
p

∑
j=1

δ jC j +
p

∑
j=1

j−1

∑
i=1

δiδ jCi j +
p

∑
j=1

δ
2
j D j

where C0, C j, Ci j and D j are symmetric matrices. Now consider the following “box-shaped” uncer-
tainty sets

δδδ = {δ ∈ Rp | δk ∈ [δ k, δ̄k] }, δδδ g = {δ ∈ Rp | δk ∈ {δ k, δ̄k} } (5.2.7)

Here, δ k ≤ δ̄k and it is immediate that δδδ = conv(δδδ g). It is easily seen that a sufficient condition for
the implication (5.2.6) to hold for the uncertainty sets (5.2.7) is that f (δ1, . . . ,δ j, . . . ,δp) is partially
convex, that is f is convex in each of its arguments δ j, j = 1, . . . , p separately. Since f is a twice
differentiable function, f is partially convex if

D j =
1
2

∂ 2 f
∂δ 2

j
= A>j K j +K jA j < 0

for j = 1, . . . , p. We therefore obtain that

A>j K j +K jA j < 0, j = 1, . . . , p

is a sufficient condition for (5.2.6) to hold on the uncertainty sets (5.2.7). This leads to the following
main result.

Theorem 5.7 If A(·) is an affine function described by (5.2.3) and δδδ = conv(δδδ g) assumes the form
(5.2.7), then the system (5.2.1) is affine quadratically stable if there exist real matrices K0, . . . ,Kp
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such that K(δ ) = K0 +∑
p
j=1 δ jK j satisfies

A(δ )>K(δ )+K(δ )A(δ )≺ 0 for all δ ∈ δδδ g (5.2.8a)
K(δ )� 0 for all δ ∈ δδδ g (5.2.8b)

A>j K j +K jA j < 0 for j = 1, . . . , p. (5.2.8c)

In that case, the parameter varying function satisfies the conditions (5.2.4) and V (x,δ ) := x>K(δ )x
is a quadratic parameter-dependent Lyapunov function of the system.

Proof. It suffices to prove that (5.2.8) implies (5.2.4). Since K(δ ) is affine in δ , the mapping

δ 7→ −K(δ )

with δ ∈ δδδ is convex. Consequently, −K(δ ) 4 0 for all δ ∈ δδδ if and only if −K(δ ) 4 0 for all
δ ∈ δδδ g. This yields that (5.2.4a) is implied by (5.2.8b). The proof that (5.2.8a) and (5.2.8c) imply
(5.2.4b) was given in the arguments preceding this theorem.

Theorem 5.7 reduces the problem to verify affine quadratic stability of the system (5.2.1) with box-
type uncertainties to a feasibility problem of a (finite) set of linear matrix inequalities.

5.2.2 Time-varying parametric uncertainty

Robust stability against time-varying perturbations is generally a more demanding requirement than
robust stability against time-invariant parameter uncertainties. In this section we consider the ques-
tion of robust stability for the system

ẋ(t) = A(δ (t))x(t) (5.2.9)

where the values of the time-varying parameter vector δ (t) belong to the uncertainty set δδδ ⊂ Rp for
all time t ∈ R. In this section we assess the robust stability of the fixed point x∗ = 0. It is important
to remark that, unlike the case with time-invariant uncertainties, robust stability of the origin of the
time-varying system (5.2.9) is not equivalent to the condition that the (time-varying) eigenvalues
λ (A(δ (t))) belong to the stability region C− for all admissible perturbations δ (t) ∈ δδδ .

Proposition 5.8 The uncertain system (5.2.9) with time-varying uncertainties δ (·) ∈ δδδ is asymptot-
ically stable if there exists a matrix K = K> such that (5.2.2) holds.

The inequalities (5.2.2) are therefore sufficient conditions to conclude asymptotic stability of the
time-varying uncertainties that occur in (5.2.9). Since Proposition 5.8 is obtained as a special case of
Theorem 5.10 below, we defer its proof. An interesting observation related to Proposition 5.8 is that
the existence of a real symmetric matrix K satisfying (5.2.2) not only yields quadratic stability of
the system (5.2.1) with δ ∈ δδδ but also the asymptotic stability of (5.2.9) with δ (t) ∈ δδδ . Hence, the

139 Compilation: January 2015



140 5.2. ROBUST STABILITY

existence of such K implies that arbitrary fast variations in the time-varying parameter vector δ (·)
may occur so as to guarantee asymptotic stability of (5.2.9). If additional a priori information on the
time-varying parameters is known, the result of Proposition 5.8 may become too conservative and we
therefore may like to resort to different techniques to incorporate information about the parameter
trajectories δ (·).

A rather natural way to incorporate additional a priori information on time-varying uncertainties is
to assume that trajectories δ (·) are both value and rate constrained.

Assumption 5.9 The trajectories δ (·) are continuously differentiable and satisfy

δ (t) ∈ δδδ , δ̇ (t) ∈ λλλ for all time t ∈ R.

where δδδ and λλλ are compact subsets of Rp.

We will therefore assume that not only the values but also the rates of the parameter trajectories are
constrained.

Quadratic stability with time-varying uncertainties

A central result for achieving robust stability of the system (5.2.9) against all uncertainties that satisfy
Assumption 5.9 is given in the following theorem.

Theorem 5.10 Suppose that the function K : δδδ → Sn is continuously differentiable on a compact set
δδδ and satisfies

K(δ )� 0 for all δ ∈ δδδ (5.2.10a)

∂δ K(δ )λ +A(δ )>K(δ )+K(δ )A(δ )≺ 0 for all δ ∈ δδδ and λ ∈ λλλ (5.2.10b)

Then the origin of the system (5.2.9) is exponentially stable against all time-varying uncertainties
δ : R→ Rp that satisfy Assumption 5.9. Moreover, in that case V (x,δ ) := x>K(δ )x is a quadratic
parameter depending Lyapunov function for the system (5.2.9).

Note that this result involves taking partial derivatives of the matrix functions K(·). Specifically, in
(5.2.10b), we have used the compact notation

∂δ K(δ )λ =
∂K
∂δ1

(δ )λ1 + . . .+
∂K
∂δp

(δ )λp =
p

∑
k=1

∂K
∂δk

(δ )λk

for the partial derivatives of matrix functions. To further simplify notation, let ∂k := ∂

∂δk
denote the

operator that takes partial derivatives with respect to the kth entry in δ . (You need good eyes to
distinguish the symbols).
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Proof. The proof follows very much the same lines as the proof of Proposition 5.6, but now
includes time-dependence of the parameter functions. Suppose that K(δ ) satisfies the hypothesis.
Consider V (x,δ ) = x>K(δ )x as candidate Lyapunov function. Let a := infδ∈δδδ λminK(δ ) and b :=
supδ∈δδδ λmaxK(δ ). If δδδ is compact, the positive definiteness of K(δ ) for all δ ∈ δδδ implies that both
a and b are positive. In addition, we can find ε > 0 such that K(δ ) satisfies

aI 4 K(δ )4 bI, ∂δ K(δ )λ +A(δ )>K(δ )+K(δ )A(δ )+ εK(δ )4 0

for all δ ∈ δδδ and λ ∈ λλλ . Take the time derivative of the composite function V (t) := V (x(t),δ (t))
along solutions of (5.2.9) to infer that

V̇ (t)+ εV (t) = x(t)>A(δ (t))>K(δ (t))x(t)+ x(t)>K(δ (t))A(δ (t))x(t)+

+ εx(t)>K(δ (t))x(t)+ x(t)>
{

p

∑
k=1

∂kK(δ (t))δ̇k(t)

}
x(t) ≤ 0

for all t ∈ R, all δ (t) ∈ δδδ and all δ̇ (t) ∈ λλλ . This means that for this class of uncertainties V is
exponentially decaying along solutions of (5.2.1) according to V (t) ≤ V (0)e−εt . Moreover, since
a‖x‖2 ≤ V (x,δ ) ≤ b‖x‖2 for all δ ∈ δδδ and all x ∈ X we infer that ‖x(t)‖2 ≤ b

a‖x(0)‖2e−εt for all
t ≥ 0 and all uncertainties δ (t) satisfying Assumption 5.9. Hence, (5.2.9) is exponentially stable
against uncertainties that satisfy Assumption 5.9.

Theorem 5.10 involves a search for matrix functions satisfying the inequalities (5.2.10) to guarantee
robust asymptotic stability. Note that the result is a sufficient algebraic test only that provides a
quadratic parameter dependent Lyapunov function, when the test passes. The result is not easy to
apply or verify by a computer program as it involves a partial differential equation on K(δ ) and, in
general, an infinite number of conditions on the inequalities (5.2.10). We will therefore focus on a
number of special cases that convert Theorem 5.10 in a feasible numerical test.

For this, first consider the case where the parameters are time-invariant. This is equivalent to saying
that λλλ = {0}. The conditions (5.2.10) then coincide with (5.2.4) and we therefore obtain Propo-
sition 5.6 as a special case. In particular, the sufficient condition (5.2.10) for robust stability in
Theorem 5.10 is also necessary in this case.

If we assume arbitrary fast time-variations in δ (t) then we consider rate constraints of the form
λλλ = [−r,r]p with r→ ∞. For (5.2.10b) to hold for any λ with |λk| > r and r→ ∞ it is immediate
that ∂δ K(δ ) needs to vanish for all δ ∈ δδδ . Consequently, in this case K can not depend on δ and
Theorem 5.10 reduces to Proposition 5.8. In particular, this argument proves Proposition 5.8 as a
special case.

Verifying quadratic stability with time-varying uncertainties

In this section we will assume that A(·) in (5.2.9) is an affine function of δ (t). The uncertainty sets
δδδ and λλλ are assumed to be convex sets defined by the ‘boxes’

δδδ = {δ ∈ Rp | δk ∈ [δ k, δ̄k]}, λλλ = {λ ∈ Rp | λk ∈ [λ k, λ̄k]} (5.2.11)
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Stated otherwise, the uncertainty regions are the convex hulls of the sets

δδδ g = {δ ∈ Rp | δk ∈ {δ k, δ̄k} }, λλλ g = {λ ∈ Rp | λk ∈ {λ k, λ̄k} }.

In addition, the search of a parameter dependent K(δ ) will be restricted to the class of affine functions
K(δ ) represented by

K(δ ) = K0 +δ1K1 + · · ·+δpKp

where K j ∈ Sn, 0 = 1, . . . , p is symmetric. For this class of parameter dependent functions we have
that ∂kK(δ ) = Kk so that (5.2.10b) reads

p

∑
k=1

Kkλk +
p

∑
ν=0

p

∑
µ=0

δν δµ(A>ν Kµ +Kµ Aν) ≺ 0 for all δν ,δµ ∈ δδδ and λk ∈ λλλ .

Here, we set δ0 = 1 to simplify notation. Now note that the latter expression is affine in K0, . . . ,Kp,
affine in λ1, . . . ,λp and quadratic in δ1, . . . ,δp due to the mixture of constant, linear and quadratic
terms. Similar to (5.2.5), we introduce the function f : δδδ ×λλλ → R defined by

f (δ ,λ ) :=
p

∑
k=1

Kkλk +
p

∑
ν=0

p

∑
µ=0

δν δµ(A>ν Kµ +Kµ Aν).

A sufficient condition for the implication

{ f (δ ,λ )≺ 0 for all (δ ,λ ) ∈ δδδ g×λλλ g} =⇒ { f (δ ,λ )≺ 0 for all (δ ,λ ) ∈ δδδ ×λλλ}

is that f is partially convex in each of its arguments δ j, j = 1, . . . , p. As in subsection 5.2.1, this
condition translates to the requirement that

A>j K j +K jA j < 0, j = 1, . . . , p,

which brings us to the following main result.

Theorem 5.11 Suppose that A(·) is affine as described by (5.2.3), and assume that δ (t) satisfies
Assumption 5.9 with δδδ and λλλ compact box-shaped sets specified in (5.2.11). Then the origin of
the system (5.2.9) is robustly asymptotically stable against all time-varying uncertainties that satisfy
Assumption 5.9 if there exist real matrices K0, . . . ,Kp such that K(δ ) = K0 +∑

p
j=1 δ jK j satisfies

p

∑
k=1

Kkλk +
p

∑
ν=0

p

∑
µ=0

δν δµ

(
A>ν Kµ +Kµ Aν

)
≺ 0 for all δ ∈ δδδ g and λ ∈ λλλ g (5.2.12a)

K(δ )� 0 for all δ ∈ δδδ g (5.2.12b)

A>j K j +K jA j < 0 for j = 1, . . . , p. (5.2.12c)

Moreover, in that case, V (x,δ ) := x>K(δ )x defines a quadratic parameter-dependent Lyapunov
function for the system.
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Theorem 5.11 provides an LMI feasibility test to verify robust asymptotic stability against uncer-
tainties that satisfy Assumption 5.9.

It is interesting to compare the numerical complexity of the conditions of Theorem 5.7 with the
conditions mentioned in Theorem 5.11. If the uncertainty vector δ is p-dimensional then the vertex
set δδδ g has dimension 2p so that the verification of conditions (5.2.10) requires a feasibility test of

2p +2p + p

linear matrix inequalities. In this case, also the vertex set λλλ g has dimension 2p which implies that
the condition of Theorem 5.11 require a feasibility test of

22p +2p + p = 4p +2p + p

linear matrix inequalities.

Generalizations

By assuming the state evolution map A(·) and the Lyapunov matrix function K(·) to be affine, we
were able (Theorem 5.11) to restrict the search of a parameter dependent Lyapunov function for the
system (5.2.9) to a finite dimensional subspace. The central idea that led to Theorem 5.11 allows
many generalizations to non-affine structures. For example, if b1(δ ), b2(δ ), . . . , bp(δ ) denote a set
of scalar, continuously differentiable basis functions in the uncertain parameter δ , we may assume
that A(δ ) and K(δ ) allow for expansions

A(δ ) = A0 +A1b1(δ )+ · · ·+Apbp(δ )

K(δ ) = K0 +K1b1(δ )+ · · ·+Kpbp(δ ).

The condition (5.2.10b) in Theorem 5.10 then involves the partial derivative

∂kK(δ ) =
p

∑
j=1

K j∂kb j(δ ).

The robust stability conditions (5.2.10) in Theorem 5.10 then translate to

p

∑
k=1

Kkbk(δ )� 0 for all δ ∈ δδδ (5.2.13a)

p

∑
k=1

(
p

∑
j=1

K j∂kb j(δ )λk +[A(δ )>K j +K jA(δ )]b j(δ )

)
≺ 0 for all δ ∈ δδδ and λ ∈ λλλ . (5.2.13b)

which is finite dimensional but not yet an LMI feasibility test. Possible basis functions are

(a) natural basis
b1(δ ) = δ1, . . . , bp(δ ) = δp

where δk = 〈ek,δ 〉 is the kth component of δ in the natural basis {ek}p
k=1 of Rp.
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(b) multivariate polynomial basis

bk1,...,kp(δ ) = δ
k1
1 · · ·δ

kp
p , kν = 0,1,2, . . . , and v = 1, . . . , p.

Also standard basis functions such as Laguerre polynomials, Zernike functions, Fourier functions,
etc. may prove useful in specific applications.

As a conclusion, in this section we derived from the nominal stability characterizations in Chap-
ter 3 the corresponding robust stability tests against both time-invariant and time-varying and rate-
bounded parametric uncertainties. We continue this chapter to also generalize the performance char-
acterizations in Chapter 3 to robust performance.

5.3 Robust performance

5.3.1 Robust dissipation

Among the various refinements and generalizations of the notion of a dissipative dynamical system,
we mentioned in Section 2.2 the idea of a robust dissipative system. To make this more precise, let
s : W ×Z→ R be a supply function associated with the uncertain system S defined in (5.1.1) where
the uncertain parameter δ (·) satisfies Assumption 5.9.

Definition 5.12 (Robust dissipation) The system S defined in (5.1.1) with supply function s is said
to be robustly dissipative against time-varying uncertainties that satisfy Assumption 5.9 if there
exists a function V : X×δδδ → R such that the dissipation inequality

V (x(t1),δ (t1)) ≤ V (x(t0),δ (t0))+
∫ t1

t0
s(w(t),z(t))d t (5.3.1)

holds for all t0 ≤ t1 and all signals (w,x,z,δ ) that satisfy (5.1.1) and Assumption 5.9.

Any function V that satisfies (5.3.1) is called a (parameter dependent) storage function and (5.3.1)
is referred to as the robust dissipation inequality. If the composite function V (t) :=V (x(t),δ (t)) is
differentiable as a function of time t, then it is easily seen that (5.3.1) holds for all t0 ≤ t1 and all
possible trajectories (w,x,z,δ ) if and only if

∂xV (x,δ ) f (x,w,δ )+∂δV (x,δ )λ ≤ s(w,g(x,w,δ )) (5.3.2)

holds for all points (x,w,δ ,λ ) ∈Rn×Rm×δδδ ×λλλ . The latter robust differential dissipation inequal-
ity (5.3.2) makes robust dissipation a de facto local property of the functions f , g, the supply function
s and the uncertainty sets δδδ and λλλ .

As in Chapter 2, we will specialize this concept to linear systems with quadratic supply functions
and derive explicit tests for the verification of robust dissipation. Suppose that f and g in (5.1.1) are
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linear in x and w. This results in the model (5.1.2) in which the uncertainty δ will be time-varying.
In addition, suppose that the supply function is a general quadratic form in (w,z) given by (2.3.2) in
Chapter 2. A sufficient condition for robust dissipation is then given as follows.

Theorem 5.13 Suppose that K : δδδ → Sn is continuously differentiable on a compact set δδδ and sat-
isfies

F(K,δ ,λ ) :=
I 0

A(δ ) B(δ )
0 I

C(δ ) D(δ )


>

∂δ K(δ )λ K(δ ) 0 0
K(δ ) 0 0 0

0 0 −Q −S
0 0 −S> −R




I 0
A(δ ) B(δ )

0 I
C(δ ) D(δ )

 4 0 (5.3.3)

for all δ ∈ δδδ and all λ ∈ λλλ . Then the uncertain system{
ẋ(t) = A(δ (t))x(t)+B(δ (t))w(t), x(0) = x0

z(t) =C(δ (t))x(t)+D(δ (t))w(t)
(5.3.4)

where δ : R→ Rp is in the class of continuously differentiable functions satisfying the value and
rate constraints stated in Assumption 5.9 is robustly dissipative with respect to the quadratic supply
function

s(w,z) =
(

w
z

)>(Q S
S> R

)(
w
z

)
. (5.3.5)

Moreover, in that case, V (x,δ ) := x>K(δ )x is a parameter dependent storage function.

Proof. If (5.3.3) holds for all (δ ,λ ) ∈ δδδ × λλλ , then also col(x,w)F(K,δ ,λ )col(x,w) ≤ 0 for all
x, w, δ ∈ δδδ and λ ∈ λλλ . But this is precisely the robust differential dissipation inequality with
V (x,δ ) := x>K(δ )x. Hence, (5.3.4) is robustly dissipative with respect to the given quadratic supply
function and uncertainty sets that satisfy Assumption 5.9.

Theorem 5.13 provides a sufficient condition for robust dissipation. The condition (5.3.3) is also
necessary if the class of storage function V (x,δ ) is restricted to functions that are quadratic in x,
i.e., functions of the form V (x,δ ) = x>K(δ )x. A result similar to Theorem 5.13 can be obtained for
robust strictly dissipative systems.

Definition 5.14 (Robust strict dissipation) The uncertain system S with supply function s is said
to be robust strictly dissipative against time-varying uncertainties if there exists a storage function
V : X×δδδ → R and an ε > 0 such that

V (x(t1),δ (t1)) ≤V (x(t0),δ (t0))+
∫ t1

t0
s(w(t),z(t))d t− ε

2
∫ t1

t0
‖w(t)‖2 d t (5.3.6)

for all t0 ≤ t1 and all trajectories (w,x,z,δ ) which satisfy (5.1.1).
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This notion is a straightforward generalization of Definition 2.5 to uncertain systems. In particu-
lar, if the uncertainty parameter δ is time-invariant, then λλλ = {0} and F(K,δ ,λ ) simplifies to an
expression that does not depend on λ . Only in this case, one can apply the Kalman-Yakubovich-
Popov Lemma 2.11 and infer an equivalent frequency domain characterization. For robust strictly
dissipative systems this yields the following statement.

Theorem 5.15 Consider the uncertain system (5.1.2) with time-invariant uncertainties δ ∈ δδδ , δδδ

compact. The following statements are equivalent.

(a) There exists a continuously differentiable function K : δδδ → Sn such that

F(K,δ ) :=


I 0

A(δ ) B(δ )
0 I

C(δ ) D(δ )


>

0 K(δ ) 0 0
K(δ ) 0 0 0

0 0 −Q −S
0 0 −S> −R




I 0
A(δ ) B(δ )

0 I
C(δ ) D(δ )

 ≺ 0

(5.3.7)

(b) For all (ω,δ ) ∈ R× δδδ with det(iωI−A(δ )) 6= 0, the uncertain transfer function T (s,δ ) :=
C(δ )(Is−A(δ ))−1B(δ )+D(δ ) satisfies(

I
T (iω,δ )

)∗(Q S
S> R

)(
I

T (iω,δ )

)
� 0. (5.3.8)

Moreover, if one of the above equivalent statements holds, then the uncertain system (5.1.2) is robust
strictly dissipative with respect to the supply function (5.3.5).

5.3.2 Robust quadratic performance

Formulating Theorem 5.15 for robust strictly dissipative systems yields the following generalization
of Proposition 3.9 to uncertain dynamical systems.

Theorem 5.16 Consider the uncertain system (5.3.4) where δ : R→ Rp is in the class of continu-
ously differentiable functions satisfying the value and rate constraints in Assumption 5.9. Suppose
there exists a continuously differentiable function K : δδδ → Sn such that

(a) K(δ )� 0 for all δ ∈ δδδ and

(b) for all δ ∈ δδδ and λ ∈ λλλ
I 0

A(δ ) B(δ )
0 I

C(δ ) D(δ )


>

∂δ K(δ )λ K(δ ) 0 0
K(δ ) 0 0 0

0 0 Q S
0 0 S> R




I 0
A(δ ) B(δ )

0 I
C(δ ) D(δ )

 ≺ 0 (5.3.9)
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If, in addition, R < 0, then

• the origin of the uncertain system (5.3.4) is exponentially stable and

• there exists ε > 0 such that for x(0) = 0 and for all w ∈ L2 and all uncertain parameter
functions δ (·) satisfying Assumption 5.9 we have

∫
∞

0

(
w(t)
z(t)

)>(Q S
S> R

)(
w(t)
z(t)

)
dt ≤−ε

2
∫

∞

0
w>(t)w(t)dt (5.3.10)

Proof. If K : δδδ → Sn satisfies the hypothesis then

∂δ K(δ )λ +A(δ )>K(δ )+K(δ )A(δ )+C(δ )>RC(δ )≺ 0.

for all (δ ,λ ) ∈ δδδ ×λλλ . With R < 0 it follows that K(·) satisfies (5.2.10) which, by Theorem 5.10,
proves the first item. To see the second item, observe that (as in Theorem 5.13) (5.3.9) implies that
the system (5.3.4) with the negative of the supply function (5.3.5) is robust strictly dissipative against
the given class of uncertainties. Consequently, using (5.3.6) with V (x,δ ) := x>K(δ )x, and the fact
that K(δ )� 0 and V (0,δ ) = 0 this gives

∫ t1

0

(
w(t)
z(t)

)>(Q S
S> R

)(
w(t)
z(t)

)
d t ≤ −ε

2
∫ t1

0
w>(t)w(t)d t

for all t1 ≥ 0 and all trajectories (w,x,z,δ ) that are compatible with the system and the uncertainty
set. Let t1→ ∞ to infer (5.3.10) for all w ∈L2 and all δ that satisfy Assumption 5.9.

The inequality (5.3.10) will be referred to as the robust quadratic performance property and is the
robust variation of the quadratic nominal performance that we introduced in Proposition 3.9. As
in Chapter 3 it allows many specializations to define robust passivity, robust H∞, robust H2 and a
robust L2 gain performance criterion for uncertain dynamical systems. From this point on, these
specializations are straightforward applications of Theorem 5.16 and are left to the reader.

5.4 Further reading

5.5 Exercises

Exercise 1
Consider the system ẋ = A(δ )x with A(δ ) and δδδ defined in Example 5.4.

(a) Show that A(δ ) is quadratically stable on the set 0.4δδδ .
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148 5.5. EXERCISES

(b) Derive a quadratic stability test for the eigenvalues of A(δ ) being located in a disc of radius r
with center at the origin.

(c) Can you find the smallest radius r by convex optimization?

Exercise 2
Time-invariant perturbations and arbitrary fast perturbations can be viewed as two extreme cases
of time-varying uncertainty sets that satisfy Assumption 5.9. These two extreme manifestations of
time-varying perturbations reduce Theorem 5.10 to two special cases.

(a) Show that the result of Theorem 5.7 is obtained as a special case of Theorem 5.11 if λλλ = {0}.

(b) Show that if λλλ = [−r,r]p with r→ ∞ then the matrices K0, . . . ,Kp satisfying the conditions of
Theorem 5.11 necessarily satisfy K1 = . . .= Kp = 0.

Exercise 3
Reconsider the suspension system of Exercise 7 in Chapter 4. Suppose that the road profile q0 = 0
and the active suspension force f = 0. Let k̄ = 250 and b̄ = 50. The suspension damping is a
time-varying uncertain quantity with

b2(t) ∈ [500− b̄,500+ b̄], t ≥ 0 (5.5.1)

and the suspension stiffness is a time-varying uncertainty parameter with

k2(t) ∈ [5000− k̄,5000+ k̄], t ≥ 0. (5.5.2)

Let δ (t) = col(b2(t),k2(t)) be the vector containing the uncertain physical parameters.

(a) Let x = col(q1,q2, q̇1, q̇2) denote the state of this system and write this system in the form
(5.2.1). Verify whether A(δ ) is affine in the uncertainty parameter δ .

(b) Use Proposition 5.3 to verify whether this system is quadratically stable. If so, give a quadratic
Lyapunov function for this system.

(c) Calculate vertex matrices A1, . . . ,AN (superscripts, not powers) such that

A(δ ) ∈ conv(A1, . . . ,AN)

for all δ satisfying the specifications.

(d) Suppose that b2 and k2 are time-varying and that their rates of variation satisfy

|ḃ2| ≤ β (5.5.3a)

|k̇2| ≤ κ (5.5.3b)

where β = 1 and κ = 2.5. Use Theorem 5.11 to verify whether there exists a parameter
dependent Lyapunov function that proves affine quadratic stability of the uncertain system.
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Exercise 4
In Exercise 8 of Chapter 3 we considered the batch chemical reactor where the series reaction

A
k1−−−−→ B

k2−−−−→ C

takes place. k1 and k2 are the kinetic rate constants of the conversions from product A to B and from
product B to product C, respectively. We will be interested in the concentration CB of product B and
assume here that the kinetic rate constants are uncertain.

(a) Show that CB satisfies the differential equation C̈B +(k1 + k2)ĊB + k1k2CB = 0 and represent
this system in state space form with state x = col(CA,CB).

(b) Show that the state space system is of the form (5.2.1) where A is an affine function of the
kinetic rate constants.

(c) Verify whether this system is quadratically stable in view of jointly uncertain kinetic constants
k1 and k2 in the range [.1,1]. If so, calculate a Lyapunov function for the uncertain system, if
not, try to find a parameter dependent Lyapunov function for this system.

(d) At time t = 0 the reactor is injected with an initial concentration CA0 = 10 (mol/liter) of reac-
tant A while the concentrations CB(0) =CC(0) = 0. Plot the time evolution of the concentra-
tion CB of reactant B if

k1(t) = 1−0.9exp(−t); k2(t) = 0.1+0.9exp(−t).

Exercise 5
Let f : δδδ →R be partially convex and suppose that δδδ = {δ | δk ∈ [δ k, δ̄k],k = 1, . . . , p} with δ k ≤ δ̄k.
Let δδδ g = {δ | δk ∈ {δ k, δ̄k},k = 1, . . . , p} be the corresponding set of corner points. Show that for
all γ ∈ R we have that

f (δ )≤ γ for all δ ∈ δδδ

if and only if
f (δ )≤ γ for all δ ∈ δδδ g.

Exercise 6
Suppose we are given a system ẋ = Ax+Bw, z =Cx+Dw with

A =


−1 0 0 1

0 −1 4 −3
1 −3 −1 −3
0 4 2 −1

 , B =


0 1
0 0
−1 0

0 0

 , C =

(
−1 0 1 0

0 1 0 1

)
, D =

(
0 1
0 0

)
.

(a) Let all coefficients of C deviate from their nominal values by 100%.

(i) Determine the worst-case H∞-norm. (Please argue how this can be done!)

(ii) Compute the worst case H∞-norm with a common quadratic storage function.
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(iii) Can you explain the difference?

(b) Now suppose that only the elements of A deviate from their nominal value by 5%. Let us try
to compute a bound on the H∞ norm with a common quadratic storage function.

(i) If describing this uncertainty as A ∈ conv{A1, . . . ,AN}, how many generators N do you
need? Is the direct approach as in the previous exercise expected to be tractable?

(ii) Determine an LFR: Find a representation of the uncertain system as ẋ
z1
z

=

 A0 B1 B2
C1 D11 D12
C2 D21 D22

 x
w1
w

 , w1 = diag(δ1I, . . . ,δ12I)z1.

(iii) Consider the LMI problem of minimizing γ such that

X � 0,


I 0 0

A0 B1 B2
0 I 0

C1 D11 D12
0 0 I

C2 D21 D22




0 X 0 0 0 0
X 0 0 0 0 0
0 0 −Q S 0 0
0 0 ST Q 0 0
0 0 0 0 −γ2I 0
0 0 0 0 0 I




I 0 0

A0 B1 B2
0 I 0

C1 D11 D12
0 0 I

C2 D21 D22

≺ 0

where Q = diag(Q1, . . . ,Q12) < 0 and S = diag(S1, . . . ,S12) is skew-symmetric. Why
does this compute a bound on the worst-case H∞-norm? (Don’t forget stability.)

(iv) Compute such an optimal bound for the given system.

Exercise 7 (MIMO circle criterion and extensions)
Consider the nonlinear system

ẋ = Ax+Bw, z =Cx, w = ∆(t,z) (5.5.4)

where ∆ :R×Rl→Rk is any Lipschitz continuous function that satisfies, for two matrices K, L, the
multi-variable sector condition

[∆(t,z)−Kz]T [∆(t,z)−Lz]≤ 0 for all (t,z) ∈ R×Rl . (5.5.5)

(a) Find a symmetric matrix P such that(
∆(z, t)

z

)T

P
(

∆(z, t)
z

)
≥ 0 for all z, t.

(b) Formulate an LMI test for proving global exponential stability of (5.5.4).

(c) With M(s) =C(sI−A)−1B define G(s) = (I−LM(s))(I−KM(s))−1. Show that the LMI you
found has a solution iff

A+BKC is stable and G(iω)∗+G(iω)� 0 for all ω ∈ R.
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Is stability of A required for your arguments?

Hint: Apply a congruence transformation with
(

I 0
KC I

)
.

(d) Consider now the saturation nonlinearity

∆(t,z) =


1 for z≥ 1
z for |z| ≤ 1
−1 for z≤−1

.

Show that it satisfies the sector condition (7.8.2) with K = 0 and L = 1.

(e) Is (5.5.4) with the saturation nonlinearity and

C(sI−A)−1B = M(s) =
−4

(s+1)( 1
2 s+1)( 1

3 s+1)

globally exponentially stable?

(f) Let us now suppose the system is excited by an L2-disturbance d as

ẋ = Ax+B(w+d), z =Cx, w = ∆(t,z), e =Cx.

Use the multiplier τP with τ ≥ 0 to set up an LMI optimization problem which minimizes a
guaranteed bound γ on the L2-gain of the nonlinear system with input d and output e.

(g) Compute such an optimal bound for the saturation nonlinearity in item (d) and the system in
item (e).

Exercise 8

Figure 5.1: Magnetic levitation system.
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152 5.5. EXERCISES

Consider the magnetic levitation system as depicted in Figure 5.1. A simple nonlinear model of this
system is given by

M
d2

dt2 z̈ = Mg− k
i2

z2 , L
d
dt

i+Ri = v

where the voltage v is the input of the system and where the ball position z is the output. The current
through the inductor is i; M denotes the mass that is attracted by the coil; L is the magnetic induction
of the coil and R its resistance. Suppose that M = 0.005, g = 9.81, k = 0.0003, L = 0.1, R = 2 (in SI
units).

(a) With v0 = 2 Volt, determine the equilibrium (z0, i0) of the system with z0 > 0.

(b) Determine a function f (z, i) such that the system can be represented as

d
dt

 z− z0
ż

i− i0

=

 0 1 0√
g f (z, i) 0 −α f (z, i)

0 0 −R
L

 z− z0
ż

i− i0

+

 0
0
1
L

(v− v0).

This motivates to consider the parameter-dependent system

ẋ =

 0 1 0√
gδ (t) 0 −α δ (t)
0 0 −R

L

x+

 0
0
1
L

u, z =
(

1 0 0
)

x (5.5.6)

where δ (t) varies in the interval defined by a 50%-deviation from the nominal (mid-point) value
δ0 = f (z0, i0). Let us denote the LTI system that results from (5.5.6) for δ (t) = δ0 by the transfer
function G(s). The goal is to design a stabilizing dynamic control law u = K(z− r) such that the
output z tracks the reference signal r.

(c) Use an H∞-synthesis procedure to design such a controller for the generalized plant

e = Gu− r, y = Gu− r

To do this, incorporate weightings

We(s) =
2s+100

5s+1
and Wu(s) = 8∗10−5

on the tracking error e and the control input u. Analyze the resulting controlled system by
providing relevant plots of frequency and step responses. Draw conclusions about the quality
of the design.

(d) For the designed H∞-controller, compute the quadratic stability margin of the controlled sys-
tem. What do you conclude about the allowable values of f (z(t), i(t)) along a trajectory
without endangering stability?

(e) Apply a reference signal r(t) = asin(ωt) with various amplitudes a and frequencies ω to
the system. Confirm the previous stability guarantees by making a nonlinear simulation, and
investigate the possibility to destabilize the controlled system.

152 Compilation: January 2015



Chapter 6

Uncertainty and linear fractional
representations

Control systems need to operate well in the face of many types of uncertainties. That is, stabil-
ity and performance of controlled systems need to be as robust as possible against perturbations,
model uncertainties and un-modeled dynamics. These uncertainties may be known, partly known
or completely unknown. It will be one of the fundamental insights in this chapter that large classes
of uncertainties can be modeled in a unified manner by representing uncertain systems as intercon-
nections of nominal systems and uncertain components. This insight is at the basis of the notion of
linear fractional representations and proves instrumental to derive guarantees for robust stability and
robust performance against linear time invariant uncertainties of complex systems. A main advan-
tage of this notion is that complex and diverse robustness questions in control can be transformed to
a specific algebraic problem and subsequently be solved. It is of quite some independent interest to
understand the emergence of robustness in algebraic problems and to convey the essential techniques
how to handle them.

6.1 Linear fractional representations of rational functions

To set the stage, consider the uncertain autonomous system

ẋ = F(δ )x (6.1.1)

where x(t) ∈ Rn is an n dimensional state vector, and F(δ ) is a real matrix-valued function which
depends on a p-dimensional parameter vector δ = col(δ1, . . . ,δp) that is assumed to belong to a
parameter set δδδ ⊂ Rp. Apart from a change of notation, this is the same system as (5.2.1) that we
studied in Chapter 5.
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154 6.1. LINEAR FRACTIONAL REPRESENTATIONS OF RATIONAL FUNCTIONS

F(δ )� �ẋ x
=

ẋ = Ax+Bw
z =Cx+Dw

∆(δ )

��

�

-
wz

xẋ

Figure 6.1: Linear fractional representation of (6.1.1)

The aim of this section is to represent the uncertain system (6.1.1) in the form

(
ẋ
z

)
=

(
A B
C D

)(
x
w

)
, w = ∆(δ )z (6.1.2)

where ∆ is a function that depends linearly on δ . This standard form will be called a linear fractional
representation and the general idea is depicted in Figure 6.1.

In this chapter it will be demonstrated that a linear fractional representation is, in fact, a very general
and powerful tool to represent uncertainty in dynamical systems. Among the key results, we will
show that any system of the form (6.1.1) where F depends rationally on δ can be written in the form
(6.1.2). To study these representations, it will be essential to identify, as usual, the matrix F(δ ) with
the linear function F(δ ) : Rn→ Rn that maps η 7→ ξ := F(δ )η .

Definition 6.1 A linear fractional representation (LFR) of F(δ ) is a pair (H,∆(δ )) where

H =

(
A B
C D

)

is a constant partitioned real-valued matrix and ∆ is a linear function of δ such that for all δ for
which I−D∆(δ ) is invertible and for all (η ,ξ ) there holds ξ = F(δ )η if and only if there exist
vectors w and z such that

(
ξ

z

)
=

(
A B
C D

)(
η

w

)
, w = ∆(δ )z. (6.1.3)

The LFR is said to be well posed at δ if I−D∆(δ ) is non-singular. We occasionally call ∆(δ ) the
parameter-block of the LFR.
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6.1. LINEAR FRACTIONAL REPRESENTATIONS OF RATIONAL FUNCTIONS 155

Hence, if (6.1.3) is a well posed LFR of F(δ ) at δ then

ξ = F(δ )η ⇐⇒ ∃ w,z :


ξ = Aη +Bw
z =Cη +Dw
w = ∆(δ )z

⇐⇒ ∃ z :

{
(I−D∆(δ ))z =Cη

ξ = B∆(δ )z+Aη

⇐⇒ ∃ z :

{
z = (I−D∆(δ ))−1Cη

ξ = B∆(δ )z+Aη

⇐⇒ ξ = [A+B∆(δ )(I−D∆(δ ))−1C]η

In other words, in that case, the equations (6.1.3) define a linear mapping and

F(δ ) = A+B∆(δ )(I−D∆(δ ))−1C. (6.1.4)

Whenever well posed, we will write this mapping as F(δ ) = H ?∆(δ ), the star product of H with
∆(δ ). Let us agree that, from this point on, the usage of the expression F(δ ) = H ? ∆(δ ) will
implicitly mean that I−D∆(δ ) is invertible.

Since ∆(δ ) is linear in δ , the expression (6.1.4) reveals that any F(δ ) that admits an LFR (H,∆(δ ))
must be a rational function of δ . Moreover, since F(0) = H ?∆(0) = A, it is clear that zero is not
a singular point (a pole) of F . The main point of this section is to prove that the converse is true as
well. That is, we will show that any matrix-valued multi-variable rational function without singular
points in the origin admits an LFR.

Before proving this essential insight we first derive some elementary operations that allow manip-
ulations with LFR’s. This will prove useful especially in later chapters where all operations on
LFR’s are fully analogous to manipulating (feedback) interconnections of linear systems and their
state-space realizations. Let us summarize some of the most important operations for a single LFR
F(δ ) = H ? ∆(δ ) or for two LFR’s F1(δ ) = H1 ? ∆1(δ ) and F2(δ ) = H2 ? ∆2(δ ) assuming fully
compatible matrix dimensions.

Summation
As depicted in Figure 6.2, the sum ξ = [F1(δ )+F2(δ )]η admits the LFR ξ

z1
z2

=

 A1 +A2 B1 B2
C1 D1 0
C2 0 D2

 η

w1
w2

 ,

(
w1
w2

)
=

(
∆1(δ ) 0

0 ∆2(δ )

)(
z1
z2

)
.

Multiplication
As shown in Figure 6.3, the product ξ = F1(δ )F2(δ )η admits the LFR ξ

z1
z2

=

 A1A2 B1 A1B2
C1A2 D1 C1B2

C2 0 D2

 η

w1
w2

 ,

(
w1
w2

)
=

(
∆1(δ ) 0

0 ∆2(δ )

)(
z1
z2

)
.
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F2(δ ) �

F1(δ ) �

d� � ηξ +

+6

?
∆1(δ )

H1 �

-

�

w1z1

∆2(δ )

H2 �

-

�

w2z2

d
6

? ��ξ η+

+

Figure 6.2: Sum of LFR’s is LFR

F1(δ ) �� F2(δ ) �
ηξ

∆2(δ )

H2 �

-

�

w2z2
∆1(δ )

H1 �

-

� �

w1z1

ηξ

Figure 6.3: Product of LFR’s if LFR

Augmentation
For arbitrary matrices L and R, the augmented system ξ = LF(δ )Rη admits the LFR(

ξ

z

)
=

(
LAR LB
CR D

)(
η

w

)
, w = ∆(δ )z.

This simple result allows to construct LFR’s of row, column and diagonal augmentations by sum-
mation. For example, by using that(

F1(δ ) F2(δ )
)
= F1(δ )

(
I 0

)
+F2(δ )

(
0 I

)(
F1(δ )
F2(δ )

)
=

(
I
0

)
F1(δ )+

(
0
I

)
F2(δ )(

F1(δ ) 0
0 F2(δ )

)
=

(
I
0

)
F1(δ )

(
I 0

)
+

(
0
I

)
F2(δ )

(
0 I

)
.
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F2(δ )

H1 �

-

� �

w1z1

ξ η

H1
� �
ξ η

z1 w1

∆2(δ )

H2 �

-

�

w2z2

��
��

�
��

HH
HH

H
HH

Figure 6.4: LFR of LFR is LFR

Inversion
If A is invertible then η = F(δ )−1ξ admits the LFR(

η

z

)
=

(
A−1 −A−1B

CA−1 D−CA−1B

)(
ξ

w

)
, w = ∆(δ )z.

LFR of LFR is LFR
As illustrated in Figure 6.4, if I−A2D1 is invertible then ξ = [H1 ?F2(δ )]η can be written as

H1 ?F2(δ ) = H1 ? (H2 ?∆2(δ )) = H12 ?∆2(δ )

where H12 is defined by(
ξ

z2

)
=

(
A1 +B1(I−A2D1)

−1A2C1 B1(I−A2D1)
−1B2

C2C1 +C2D1(I−A2D1)
−1A2C1 D2 +C2D1(I−A2D1)

−1B2

)
︸ ︷︷ ︸

H12

(
η

w2

)

w2 = ∆2(δ )z2.

Hence, an LFR of an LFR is an LFR. This expression is particularly relevant for the shifting and
scaling of parameters. Indeed, with D2 = 0 the LFR

F2(δ ) = H2 ?∆2(δ ) = A2 +B2∆2(δ )C2

represents a joint scaling (by B2 and C2) and shifting (by A2) of the uncertainty block ∆2(δ ). If the
parameter block ∆2(δ ) is not shifted, i.e., if A2 = 0 this leads to the even more special case:

H1 ? [B2∆2(δ )C2] = H̃12 ?∆2(δ ) with H̃12 =

(
A1 B1B2

C2C1 C2D1B2

)
. (6.1.5)

Also, if ∆2(δ ) is of smaller dimension than B2∆2(δ )C2, the latter formula reveals that one can
compress H1 ? [B2∆2(δ )C2] to the more compact LFR H̃12 ?∆2(δ ).
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158 6.1. LINEAR FRACTIONAL REPRESENTATIONS OF RATIONAL FUNCTIONS

Order reduction of LFR’s
In addition, from (6.1.5) it follows that any LFR with a general linear parameter-block ∆(δ ) can be
transformed into an equivalent one with the block-diagonal parameter dependence

∆d(δ ) =

 δ1Id1 0
. . .

0 δpIdp

 (6.1.6)

where Id1 , . . . , Idp are identity matrices of sizes d1, . . . ,dp respectively. In this case we call the positive
integer vector d = (d1, . . . ,dp) the order of the LFR. Indeed, if ∆(δ ) depends linearly on δ , there
exist suitable coefficient matrices ∆ j such that

w = ∆(δ )z = [δ1∆1 + · · ·+δp∆p]z. (6.1.7)

View the matrices δ jI as non-dynamic system components and rename the input and output signals
of each of these subsystems. Then w = ∆(δ )z is equivalent to w = w1 + · · ·+wp with w j = δ jz j =
[δ jI j]z j, z j = ∆ jz which is the desired alternative LFR. We observe that the size of I j, which deter-
mines how often δ j has to be repeated, corresponds to the dimension of the signals w j and z j. Since
the coefficient matrices ∆ j have often small rank in practice, this procedure can be adapted to reduce
the order of the LFR. One just needs to perform the factorizations

∆1 = L1R1, . . . ,∆p = LpRp

such that the number of columns and rows of L j and R j equal the rank of ∆ j and are, therefore,
as small as possible. These full-rank factorizations can be easily computed by a Gauss-elimination
algorithm or by applying singular value decompositions. Then (6.1.7) reads as

w =
[
L1(δ1Id1)R1 + · · ·+Lp(δpIdp)Rp

]
z

and leads to the following smaller order LFR of w = ∆(δ )z:
w
z1
...

zp

=


0 L1 · · · Lp

R1 0 · · · 0
...

...
. . .

...
Rp 0 · · · 0




z
w1
...

wp

 ,

 w1
...

wp

=

 δ1Id1 0
. . .

0 δpIdp


 z1

...
zp

 .

Since an LFR of an LFR is an LFR, it is straightforward to combine this LFR of w = ∆(δ )z with that
of ξ = F(δ )η to obtain the following new LFR of ξ = F(δ )η with a parameter-block that admits
the desired diagonal structure:

ξ

z1
...

zp

=


A BL1 · · · BLp

R1C R1DL1 · · · R1DLp
...

...
. . .

...
RpC RpDL1 · · · RpDLp




η

w1
...

wp

 , w j = [δ jId j ]z j.
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6.2 Construction of linear fractional representations

Let us now turn to the construction of linear fractional representations for rational functions F(δ ).
We first consider the simplest case in which F(δ ) depends affinely on δ . Then F(δ ) = F0 +∆(δ )
with ∆(δ ) a linear map. An LFR of ξ = F(δ )η is then given by(

ξ

z

)
=

(
F0 I
I 0

)(
η

w

)
, w = ∆(δ )z.

As just described, one can polish this representation further towards an LFR with a block-diagonal
parameter-block.

We proceed with a slightly more involved case where F(δ ) is an uncertain matrix which has poly-
nomial dependence on a single variable δ . That is,

ξ = [F0 +δF1 + · · ·+δ
pFp]η . (6.2.1)

To achieve an efficient LFR, we rewrite this as

ξ = F0η +δ [F1 +δ [F2 + · · ·+δ [Fp−1 +δFp] · · · ]]η . (6.2.2)

Then we can separate the uncertainties as

ξ = F0η +w1, w1 = δ z1, z1 = F1η +w2, w2 = δ z2, z2 = F2η +w3, . . .

. . . wp−1 = δ zp−1, zp−1 = Fp−1η +wp, wp = δ zp, zp = Fpη .

With w = col(w1, . . . ,wp), z = col(z1, . . . ,zp), an LFR of the matrix polynomial (6.2.1) then reads as
ξ

z1
...

zp−1
zp

=


F0 I · · · 0 0
F1 0 I · · · 0
...

...
. . . . . .

...
Fp−1 0 · · · 0 I
Fp 0 · · · 0 0




η

w1
...

wp−1
wp

 , w = δ z.

Next, assume that F(δ ) is a single-parameter matrix-valued rational function without pole in zero.
Then it is straightforward to construct a square polynomial matrix D such that DG = N is itself
polynomial. For example, one can determine the common multiple of the denominators in each row
of F(δ ) and collect these scalar polynomials on the diagonal of D. Since F(δ ) has no pole in zero,
none of the element denominators of F vanish in zero. Hence, this procedure will result in a D
matrix for which D(0) will be nonsingular. Therefore, det(D(δ )) does not vanish identically zero
which implies that F(δ ) = D(δ )−1N(δ ) for all δ for which D(δ ) is non-singular. Thus, one can
construct polynomial matrices

D(δ ) = D0 +δD1 + · · ·+δ
pDp

N(δ ) = N0 +δN1 + · · ·+δ
pNp

with either Dp 6= 0 or Np 6= 0 and with the following properties:
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160 6.2. CONSTRUCTION OF LINEAR FRACTIONAL REPRESENTATIONS

• D is square and D(0) = D0 is non-singular.

• If δ is chosen such that D(δ ) is invertible then F has no pole in δ , and ξ =F(δ )η is equivalent
to D(δ )ξ = N(δ )η .

Now, the expression D(δ )ξ = N(δ )η reads as

[D0 +δD1 + · · ·+δ
pDp]ξ = [N0 +δN1 + · · ·+δ

pNp]η

which is equivalent to

ξ = D−1
0 N0η +δ (D−1

0 N1η−D−1
0 D1ξ )+ · · ·+δ

p(D−1
0 Npη−D−1

0 Dpξ )

and hence to

ξ = D−1
0 [N0η +w1], w1 = δ z1, z1 =

p

∑
j=1

δ
j−1[N jη−D jD−1

0 N0η−D jD−1
0 w1].

Exactly as described for polynomial dependence this leads to the LFR
ξ

z1
...

zp−1
zp

=


D−1

0 N0 D−1
0 · · · 0 0

N1−D1D−1
0 N0 −D1D−1

0 I · · · 0
...

. . . . . .
...

...
Np−1−Dp−1D−1

0 N0 −Dp−1D−1
0 · · · 0 I

Np−DpD−1
0 N0 −DpD−1

0 · · · 0 0




η

w1
...

wp−1
wp

 , (6.2.3)

w1 = δ z1, . . . , wp = δ zp. (6.2.4)

If this LFR is well-posed at δ , then ξ = 0 implies η = 0, which in turn shows that D(δ ) is invertible.
Therefore we can conclude that (6.2.3) is indeed an LFR of ξ = F(δ )η as desired.

Remark 6.2 We have essentially recapitulated how to construct a realization for the rational func-
tion G(s) := F(1/s) in the variable s. Since F has no pole in zero, G(s) is proper. There exists a
large body of literature how to compute efficient minimal realizations of G, either by starting with
polynomial fractional representations that are coprime, or by reducing (6.2.3) with state-space tech-
niques. By constructing a minimal realization G(s) = A+B(Is−D)−1C, (i.e. a realization in which
the matrix D has minimal dimension) then

F(δ ) = A+B(
1
δ

I−D)−1C = A+Bδ (I−Dδ )−1C =

(
A B
C D

)
?δ In

with n = dim(A). This leads to the minimal sized LFR(
ξ

z

)
=

(
A B
C D

)(
η

w

)
, w = δ z

of F(δ ) with rational one-parameter dependence or, equivalently, to an LFR representation(
ξ

z

)
=

(
A B
C D

)(
η

w

)
, w =

1
s

z

of the transfer function G(s) that maps input η to output ξ .
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Remark 6.3 Let us choose an arbitrary mapping π : {1, . . . , p} → {1, . . . , p}. If replacing w j =
[δ I]z j in (6.2.3) with w j = [δπ( j)I]z j, we can follow the above derivation backwards to observe that
one obtains an LFR of

[D0 +δπ(1)D1 +(δπ(1)δπ(2))D2 + · · ·+(δπ(1) · · ·δπ(p))Dp]ξ =

= [N0 +δπ(1)N1 +(δπ(1)δπ(2))N2 + · · ·+(δπ(1) · · ·δπ(p))Np]η .

with a specific multi-linear dependence of D(δ ) and N(δ ) on δ .

Let us finally consider a general multi-variable matrix-valued rational function F(δ ) without pole in
zero. This means that each of its elements can be represented as

m1

∑
j1=0
· · ·

mp

∑
jp=0

α j1,..., jp δ
j1

1 · · ·δ
jp
p

l1

∑
j1=0
· · ·

lp

∑
jp=0

β j1,..., jp δ
j1

1 · · ·δ
jp
p

with β0,...,0 6= 0.

Literally following the construction as described for one-variable polynomials, we now construct
multi-variable polynomial matrices D and N with DF = N and nonsingular D(0). Likewise, for all
δ for which D(δ ) is non-singular one concludes that ξ = F(δ )η is equivalent to D(δ )ξ = N(δ )η
or to the kernel representation

0 = H(δ )

(
η

ξ

)
with H(δ ) =

(
N(δ ) −D(δ )

)
. (6.2.5)

Decompose H(δ ) according to

H(δ ) = H0 +δ1H1
1 (δ )+ · · ·+δpH1

p(δ )

where H1
j are polynomial matrices whose degrees are strictly smaller than those of H. Then (6.2.5)

is equivalent to

0 = H0

(
η

ξ

)
+

p

∑
j=1

w1
j , w1

j = δ jz1
j , z1

j = H1
j (δ )

(
η

ξ

)
. (6.2.6)

Let us stress that in this decomposition the channel j is considered absent (empty) whenever H1
j

is the zero polynomial matrix. With w1 = col(w1
1, . . . ,w

1
p), z1 = col(z1

1, . . . ,z
1
p), E0 := (I · · · I),

H1 = col(H1
1 , . . . ,H

1
p), the expression (6.2.6) is more compactly written as

0 = H0

(
η

ξ

)
+E0w1, z1 = H1(δ )

(
η

ξ

)
, w1 = diag(δ1I, . . . ,δpI)z1. (6.2.7)

We are now in the position to iterate. For this purpose, decompose

H1(δ ) = H1 +δ1H2
1 (δ )+ · · ·+δpH2

p(δ )
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and pull parameters out of the middle relation in (6.2.7) according to

z1 = H1

(
η

ξ

)
+

p

∑
j=1

w2
j , w2

j = δ jz2
j , z2

j = H2
j (δ )

(
η

ξ

)
.

Again using compact notation, (6.2.7) is then equivalent to

0 = H0

(
η

ξ

)
+E0w1, z1 = H1

(
η

ξ

)
+E1w2, z2 = H2(δ )

(
η

ξ

)
,

w1 = diag(δ1I, . . . ,δpI)z1, w2 = diag(δ1I, . . . ,δpI)z2.

Continue in this fashion. Then at each iteration the degree of H j is strictly decreased, and the
iteration stops after k steps if Hk(δ ) = Hk is just a constant matrix. In this last step one arrives at

0 = H0

(
η

ξ

)
+E0w1, z j = H j

(
η

ξ

)
+E jw j+1, w j = diag(δ1I, . . . ,δpI)z j, j = 1, . . . ,k

with Ek and wk+1 being empty. Now turn this implicit relation into a genuine input-output relation.
For this purpose, partition

H j =
(

N j −D j
)

conformably with H = (N −D). Recall that D0 = D(0) is non-singular and hence

0 = H0

(
η

ξ

)
+E0w1 is equivalent to ξ = D−1

0 N0η +D−1
0 E0w1.

After performing this substitution we arrive at the desired explicit LFR of the input-output relation
ξ = F(δ )η . It is given by

ξ = D−1
0 N0η +D−1

0 E0w1, z j = [N j−D jD−1
0 N0]η− [D jD−1

0 E0]w1 +E jw j+1,

w j = diag(δ1I, . . . ,δpI)z j, j = 1, . . . ,k.

In matrix form, this reads
ξ

z1

...
zk−1

zk

=


D−1

0 N0 D−1
0 E0 · · · 0 0

N1−D1D−1
0 N0 −D1D−1

0 E0 E1 · · · 0
...

. . . . . .
...

...
Nk−1−Dk−1D−1

0 N0 −Dk−1D−1
0 E0 · · · 0 Ek−1

Nk−DkD−1
0 N0 −DkD−1

0 E0 · · · 0 0




η

w1

...
wk−1

wk

 ,

w1 = diag(δ1I, . . . ,δpI)z1

...

wk = diag(δ1I, . . . ,δpI)zk.

Of course this LFR can again be modified to one with the diagonal parameter-block (6.1.6), which
just amounts to reordering variables in the present situation. We have constructively proved the
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desired representation theorem for matrices F(δ ) that depend rationally on the parameter vector
δ ∈ Rp. The presented technique is suited to lead to reasonably sized LFR’s in practice. We remark
that the steps that we performed in the construction of LFR’s of rational functions F(δ ) can be
largely automated.

Theorem 6.4 Suppose that all entries of the matrix F(δ ) are rational functions of δ = (δ1, . . . ,δp)
whose denominators do not vanish at δ = 0. Then there exist matrices A, B, C, D and non-negative
integers d1, . . . ,dp such that, for any pair (η ,ξ ) and with ∆(δ ) := diag(δ1Id1 , . . . ,δpIdp),

ξ = F(δ )η

if and only if there exists w,z such that(
ξ

z

)
=

(
A B
C D

)(
η

w

)
, w = ∆(δ )z

for all δ with det(I−D∆(δ )) 6= 0.

Example 6.5 As a simple example of the above construction, consider the matrix

F(δ ) :=
( −1 2δ1
−1

1+δ1
−4+3δ2

)
Applying the previous construction, we first observe that ξ = F(δ )η can be written as(

1 0
0 1+δ1

)
ξ =

(
−1 2δ1
−1 (−4+3δ2)(1+δ1)

)
η

which is polynomial in the parameter vector. This gives in the first step(
1 0
0 1

)
ξ +

(
0
1

)
w1 =

(
−1 0
−1 −4+3δ2

)
η +

(
2

−4+3δ2

)
w2,

w1 = δ1z1, z1 = ξ2, w2 = δ1z2, z2 = η2

and in the second and last step(
1 0
0 1

)
ξ +

(
0
1

)
w1 =

(
−1 0
−1 −4

)
η +

(
2
−4

)
w2 +

(
0
3

)
w3,

w1 = δ1z1, z1 = ξ2, w2 = δ1z2, z2 = η2, w3 = δ2z3, z3 = η2 +w2.

It follows that F(δ ) = H ?∆(δ ) with

H =


−1 0 0 2 0
−1 −4 −1 −4 3
−1 −4 −1 −4 3
0 1 0 0 0
0 1 0 1 0

 , ∆(δ ) =

δ1 0 0
0 δ1 0
0 0 δ2


where the parameter block is in diagonal form. Note that the order of this LFR is d = (2,1).
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Example 6.6 To illustrate the construction on a more elaborate example, consider

F(δ ) :=
1

(δ2−1)(δ2 +δ 2
1 +δ1−1)

(
2δ 2

2 −δ2 +2δ 2
1 δ2−δ 2

1 +2δ1 δ1δ2 +δ 2
1 +δ2 +δ1

(−2δ1δ2 +3δ1 +2δ2−1)δ1 (δ1δ2 +1)δ1

)
together with the equation

ξ = F(δ )η .

Then(
(δ2−1)(δ2 +δ 2

1 +δ1−1) 0
0 (δ2−1)(δ2 +δ 2

1 +δ1−1)

)
︸ ︷︷ ︸

D(δ )

ξ =

=

(
2δ 2

2 −δ2 +2δ 2
1 δ2−δ 2

1 +2δ1 δ1δ2 +δ 2
1 +δ2 +δ1

(−2δ1δ2 +3δ1 +2δ2−1)δ1 (δ1δ2 +1)δ1

)
︸ ︷︷ ︸

N(δ )

η .

Sorting for common powers leads to

ξ = δ1

[(
2 1
−1 1

)
η +ξ

]
+δ

2
1

[(
−1 1

3 0

)
η +ξ

]
+δ

2
1 δ2

[(
2 0
−2 1

)
η−ξ

]
+

+δ2

[(
−1 1

0 0

)
η +2ξ

]
+δ1δ2

[(
0 1
2 0

)
η−ξ

]
+δ

2
2

[(
2 0
0 0

)
η−ξ

]
.

In a first step we pull out the parameters as

ξ = w1 +w4, w1 = δ1z1, w4 = δ2z4

z1 =

(
2 1
−1 1

)
η +ξ +δ1

[(
−1 1

3 0

)
η +ξ

]
+δ1δ2

[(
2 0
−2 1

)
η−ξ

]
z4 =

(
−1 1

0 0

)
η +2ξ +δ1

[(
0 1
2 0

)
η−ξ

]
+δ2

[(
2 0
0 0

)
η−ξ

]
.

We iterate with the second step as

ξ = w1 +w4, w1 = δ1z1, w2 = δ1z2, w3 = δ1z3, w4 = δ2z4, w5 = δ2z5

z1 =

(
2 1
−1 1

)
η +ξ +w2, z2 =

(
−1 1

3 0

)
η +ξ +δ2

[(
2 0
−2 1

)
η−ξ

]
z4 =

(
−1 1

0 0

)
η +2ξ +w3 +w5, z3 =

(
0 1
2 0

)
η−ξ , z5 =

(
2 0
0 0

)
η−ξ .

It just requires one last step to complete the separation as

ξ = w1 +w4, w1 = δ1z1, w2 = δ2z2, w3 = δ1z3, w4 = δ1z4, w5 = δ2z5, w6 = δ2z6

z1 =

(
2 1
−1 1

)
η +ξ +w2, z2 =

(
−1 1

3 0

)
η +ξ +w6, z6 =

(
2 0
−2 1

)
η−ξ

z4 =

(
−1 1

0 0

)
η +2ξ +w3 +w5, z3 =

(
0 1
2 0

)
η−ξ , z5 =

(
2 0
0 0

)
η−ξ .
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In matrix format this can be expressed as

ξ

z1

z2

z3

z4

z5

z6



=



0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0
2 1 1 0 1 0 0 0 1 0 0 0 0 0
−1 1 0 1 0 1 0 0 0 1 0 0 0 0
−1 1 1 0 0 0 0 0 1 0 0 0 1 0

3 0 0 1 0 0 0 0 0 1 0 0 0 1
0 1 −1 0 0 0 0 0 −1 0 0 0 0 0
2 0 0 −1 0 0 0 0 0 −1 0 0 0 0
−1 1 2 0 0 0 1 0 2 0 1 0 0 0

0 0 0 2 0 0 0 1 0 2 0 1 0 0
2 0 −1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 −1 0 0 0 0
2 0 −1 0 0 0 0 0 −1 0 0 0 0 0
−2 1 0 −1 0 0 0 0 0 −1 0 0 0 0





η

w1

w2

w3

w4

w5

w6




w1
w2
w3
w4
w5
w6

=


δ1I2 0 0 0 0 0

0 δ1I2 0 0 0 0
0 0 δ1I2 0 0 0
0 0 0 δ2I2 0 0
0 0 0 0 δ2I2 0
0 0 0 0 0 δ2I2




z1
z2
z3
z4
z5
z6

 .

The parameter-block turns out to be of size 12. We stress that, even for the rather simple case at
hand, a less careful construction can easily lead to much larger-sized LFR’s. For example with
SISO realization techniques it is not difficult to find LFR’s of the elements of D, N of sizes 4 and 3
respectively. If using the operations augmentation, inversion and multiplication one obtains an LFR
with parameter-block of size (4+ 4)+ (4+ 3+ 3+ 3) = 21. We will briefly comment on various
aspects around the practical construction of LFR’s in the next section.

6.3 Robust stability and the full block S-procedure

Consider the uncertain time-invariant system (6.1.1) with time-invariant parameter vector δ ∈ δδδ . In
Chapter 5 we derived a number of LMI feasibility tests that guarantee that F(δ ) is Hurwitz for all
δ ∈ δδδ . Most of these tests were either conservative or of limited scope since in Chapter 5 we assumed
F to be affine or the uncertainty region δδδ to be box-shaped (cf. Proposition 5.3 and Theorem 5.7).

Using linear fractional representations, a non-conservative robustness test for the uncertain dynami-
cal system (6.1.1) can be given as follows.

Theorem 6.7 Let the uncertain dynamical system ẋ = F(δ )x be represented by the linear fractional
representation (

ẋ
z

)
=

(
A B
C D

)(
x
w

)
, w = ∆(δ )z
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where ∆ is linear for all δ ∈ δδδ . Define the transfer function T (s) =C(Is−A)−1B+D. Then the LFR
is well posed and F(δ ) is Hurwitz for all δ ∈ δδδ if and only if

det(I−T (iω)∆(δ )) 6= 0, for all ω ∈ R∪{∞}, δ ∈ δδδ

Proof. Suppose the LFR is well-posed for δ ∈ δδδ . Then F(δ ) is Hurwitz for all δ ∈ δδδ if and only if
the characteristic polynomial

det(Is−A−B∆(δ )(I−D∆(δ ))−1C) 6= 0, for allRe(s)≥ 0, δ ∈ δδδ

Using the well-posedness of the LFR, the Schur complement is well defined and gives the equivalent
condition that

det
(

Is−A −B∆(δ )
−C I−D∆(δ )

)
6= 0, for all Re(s)≥ 0, δ ∈ δδδ

Taking once more a Schur complement gives the equivalent condition

det
(
I− [D+C(Is−A)−1B]∆(δ )

)
6= 0, for allRe(s)≥ 0, δ ∈ δδδ

By a nontrivial homotopy argument, this is equivalent to saying that

det
(
I− [D+C(iωI−A)−1B]∆(δ )

)
6= 0, for all ω ∈ R, δ ∈ δδδ

Now observe that the latter condition is well-posedness for ω = ∞.

Testing robust stability therefore boils down to verifying a robust non-singularity condition for the
matrices T (iω), with ω ∈ R∪{∞}, and the matrices ∆(δ ) with δ ∈ δδδ .

Although useful, the frequency condition on the transfer function T is difficult to verify for any
δ ∈ δδδ . We therefore wish to derive numerically verifiable conditions for which F(δ ) is Hurwitz for
all δ ∈ δδδ . The LFR’s that we derived in the previous section prove very useful for this. Suppose that
F(δ ) = H ?∆(δ ) is a linear fractional representation of F(δ ) and let us denote by

∆∆∆c = {∆(δ ) | δ ∈ δδδ}= ∆(δδδ ) (6.3.1)

the collection of (complex or real valued) matrices ∆(δ ) that can be created by ranging δ over the
uncertainty set δδδ . Recall that the quadratic stability test that we considered in Chapter 5 (Defini-
tion 5.2) amounts to finding K � 0 such that

H ?∆ is well-posed and(
I

H ?∆

)∗(0 K
K 0

)(
I

H ?∆

)
≺ 0 for all ∆ ∈ ∆∆∆c.

 (6.3.2)

Here is a fundamental result which allows to design relaxations of (6.3.2) that are computationally
tractable with LMI’s.
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Theorem 6.8 (Concrete full block S-procedure)
If there exist a multiplier P = P> =

(
Q S
S∗ R

)
such that(

∆

I

)∗
P
(

∆

I

)
< 0 for all ∆ ∈ ∆∆∆c (6.3.3)

and (
I 0
A B

)>( 0 K
K 0

)(
I 0
A B

)
+

(
0 I
C D

)>
P
(

0 I
C D

)
≺ 0 (6.3.4)

then (6.3.2) holds. The converse holds in case ∆∆∆c, defined in (6.3.1), is compact.

As will be explained below it is elementary to show that (6.3.3) and (6.3.4) are sufficient for (6.3.2)
whereas the proof of necessity is more difficult. Before we embed this concrete version of the S-
procedure into a more versatile abstract formulation we intend to address the practical benefit of this
reformulation. By introducing the multiplier or scaling matrix P, Theorem 6.8 expresses that one
can equivalently rephrase (6.3.2) involving a multivariable rational function into the LMI conditions
(6.3.3) and (6.3.4). Let us introduce, for the purpose of clarity, the obviously convex set of all
multipliers that satisfy the infinite family of LMI’s (6.3.3):

Pall :=
{

P =

(
Q S
S∗ R

)
|
(

∆

I

)∗
P
(

∆

I

)
< 0 for all ∆ ∈ ∆∆∆c

}
.

Testing (6.3.2) then simply amounts to finding an element in Pall which satisfies the LMI (6.3.4).
Unfortunately, the actual implementation of this test requires a description of Pall through finitely
many LMI’s, or at least a close approximation thereof. The need for such an approximation is
the fundamental reason for conservatism in typical robust stability and robust performance tests in
control!

Let us assume that Pi ⊂Pall is an inner approximation with an LMI description. Then the compu-
tation of P ∈Pi with (6.3.4) is computationally tractable. If the existence of such a multiplier can
be verified, it is clear that (6.3.2) has been verified. On the other hand let Pall ⊂Po be an outer ap-
proximation. If one can computationally confirm that there does not exist any P ∈Po with (6.3.4),
it is guaranteed that (6.3.2) is not true. We stress that the non-existence of P ∈Pi or the existence
of P ∈Po satisfying (6.3.2) does not allow to draw any conclusion without any additional knowl-
edge about the quality of the inner or outer approximations respectively. In the sequel we discuss a
selection of possible choices for inner approximations that have been suggested in the literature.

• Spectral-norm multipliers. The simplest and crudest inner approximation is obtained by
neglecting any structural properties of the matrices in ∆∆∆c and just exploiting a known bound
on their spectral norm. Indeed suppose that r > 0 is any (preferably smallest) number with

‖∆‖ ≤ r for all ∆ ∈ ∆∆∆c.

Since

‖∆‖ ≤ r ⇐⇒ 1
r

∆
∗
∆ 4 rI ⇐⇒

(
∆

I

)∗( −1/r 0
0 r

)(
∆

I

)
< 0
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we can choose the set

Pn :=
{

τ

(
−1/r 0

0 r

)
| τ ≥ 0

}
as an inner approximation, and checking (6.3.4) amounts to solving a one-parameter LMI
problem.

• Full-block multipliers. For a more refined inner approximation let us assume that the set ∆∆∆c
is described as

∆∆∆c = conv(∆∆∆g) = conv{∆1, . . . ,∆N} with ∆∆∆g = {∆1, . . . ,∆N}

as finitely many generators. Then define

Pfull :=
{

P =

(
Q S
S∗ R

)
| Q 4 0,

(
∆

I

)∗
P
(

∆

I

)
< 0 for all ∆ ∈ ∆∆∆g

}
.

Since any P ∈Pfull has a north-west block which is negative semi-definite, the mapping

∆ 7→
(

∆

I

)∗
P
(

∆

I

)
is concave,

and hence positivity of its values at the generators ∆ ∈ ∆∆∆g implies positivity for all ∆ ∈ ∆∆∆c.
We conclude that Pfull ⊂Pall. On the other hand, Pfull is described by finitely many LMI’s;
hence searching for P ∈Pfull satisfying (6.3.4) is a standard LMI problem that can be easily
implemented.

By linearity of the mapping δ 7→ ∆(δ ) we infer for convex finitely generated parameter sets
that

∆∆∆c = conv{∆(δ j) | j = 1, . . . ,N} whenever δδδ = conv{δ 1, . . . ,δ N}.
This means that the generators in ∆∆∆g are given by ∆ j = ∆(δ j). In particular, for parameter
boxes (products of intervals) defined as

δδδ = {δ ∈ Rp : δ j ∈ [a j,b j], j = 1, . . . , p}

we can use the representation

δδδ = conv(δδδ g) with δδδ g := {δ ∈ Rp : δ j ∈ {a j,b j}, j = 1, . . . , p}.

All these choices do not depend upon a specific structure of ∆(δ ) and hence allow for non-
diagonal parameter-blocks.

• Extended full-block multipliers. Can we be more specific if δδδ is a box generated by δδδ g and
the parameter-block ∆(δ ) is diagonal, as in (6.1.6)? With the column partition (E1 · · · Em) = I
of the identity matrix conformable with that of ∆(δ ), we infer that

∆(δ ) =
p

∑
k=1

Ek[δkI]E>k .
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Let us then define

Pfe :=
{

P | E>k QEk 4 0, k = 1, . . . , p,
(

∆(δ )
I

)∗
P
(

∆(δ )
I

)
< 0, δ ∈ δδδ g

}
.

Due to E>k QEk 4 0, k = 1, . . . , p, we conclude for any P ∈Pfe that the mapping

δ 7→
(

∆(δ )
I

)∗( Q S
S∗ R

)(
∆(δ )

I

)
is concave in δk for k = 1, . . . , p.

It is easily seen that this implies again that Pfe ⊂Pall. We stress that Pfull ⊂Pfe so that
Pfe is a potentially better inner approximation of Pall which leads to less conservative nu-
merical results. This comes at the expense of a more complex description of Pfe since it
involves a larger number of LMI’s. This observation leads us to the description of the last
inner approximation of Pall in our non-exhaustive list.

• Diagonal multipliers. Suppose that the parameter space δδδ is a box in which a j ≤ δ j ≤ b j, j =
1, . . . , p. Let m j = (a j+b j)/2 denote the mid-point of the interval [a j,b j] and d j = (b j−a j)/2
half of its diameter. We then infer that

δ j ∈ [a j,b j] ⇐⇒ (δ j−m j)
2 ≤ d2

j ⇐⇒
(

δ j
1

)∗( −1 m j
m j d2

j −m2
j

)
︸ ︷︷ ︸ q j s j

s∗j r j



(
δ j
1

)
< 0.

Since (
Ek 0
0 Ek

)T (
∆(δ )

I

)
=

(
∑

m
l=1 ET

k El [δlI]ET
l

ET
k

)
=

(
δkI
I

)
ET

k

(due to ET
k El = 0 for k 6= l and ET

k Ek = I) we infer for D j < 0 that(
∆(δ )

I

)> p

∑
j=1

(
E j 0
0 E j

)(
q jD j s jD j
s jD j r jD j

)(
E j 0
0 E j

)>(
∆(δ )

I

)
=

=
p

∑
j=1

E j

(
δ jI
I

)>( q jD j s jD j
s∗jD j r jD j

)(
δ jI
I

)
E>j =

=
p

∑
j=1

E jD jE>j

(
δ j
1

)>( q j s j
s∗j r j

)(
δ j
1

)
< 0.

The fact that δ j is real can be expressed as

δ
∗
j +δ j = 0 or

(
δ j
1

)∗( 0 1
−1 0

)(
δ j
1

)
= 0.

Exactly the same computation as above reveals for any G j = G∗j that(
∆(δ )

I

)∗ p

∑
j=1

(
E j 0
0 E j

)(
0 G j
−G j 0

)(
E j 0
0 E j

)>(
∆(δ )

I

)
= 0.

169 Compilation: January 2015



170 6.3. ROBUST STABILITY AND THE FULL BLOCK S-PROCEDURE

This implies for the set of block-diagonal multipliers

Pd :=

{
p

∑
j=1

(
E j 0
0 E j

)(
q jD j s jD j +G j

s∗jD j−G j r jD j

)(
E j 0
0 E j

)>
: D j < 0, G j = G∗j

}

that Pd ⊂Pall. Note that the set Pd is explicitly parametrized by finitely many linear matrix
inequalities.

• Mixtures. Let us assume that ∆(δ ) is diagonal as in (6.1.6). Our discussion makes it possible
to construct sets of multipliers that are mixtures of those that have been listed already, as
illustrated for the real-parameter example

∆∆∆c = {diag(δ1I2,δ2,δ3,δ4I4) : δ1 ∈ [−1,1], δ2 ∈ [2,4], |δ3| ≤ 1−δ4, δ4 ≥−1} .

One can then work with the multiplier set of all

P =



−D1 0 0 0 G1 0 0 0
0 −D2 0 0 0 3D2 +G2 0 0
0 0 Q11 Q12 0 0 S11 S12
0 0 Q∗12 Q22 0 0 S21 S22
−G1 0 0 0 D1 0 0 0

0 −3D2−G2 0 0 0 −2D2 0 0
0 0 S∗11 S∗21 0 0 R11 R12
0 0 S∗12 S∗22 0 0 R∗12 R22


with

D1,≥ 0, D2 ≥ 0, G1 = G∗1, G2 = G∗2 and Q11 ≤ 0, Q22 ≤ 0

as well as
δ3 0
0 δ4I4
1 0
0 1


∗

Q11 Q12 S11 S12
Q∗12 Q22 S21 S22
S∗11 S∗21 R11 R12
S∗12 S∗22 R∗12 R22




δ3 0
0 δ4I4
1 0
0 1

≥ 0, (δ3,δ4) =

 (−2,−1)
(2,−1).
(0,1)

Of course it is straightforward to construct other block structures which all might lead to
different numerical results in actual computations.

With the various classes of multipliers we arrive at the chain of inclusions

Pn ⊂Pd ⊂Pfull ⊂Pfe ⊂Pall

which is briefly characterized as allowing the reduction of conservatism at the expense of increase
in complexity of their descriptions. As the main distinction, we stress that the number of LMI’s to
describe Pd grows linearly in the number p of parameters, whereas that for parametrizing Pfull
grows exponentially in p. This shows the practical relevance of allowing for mixed block structures
to be able to reduce conservatism while avoiding the explosion of computational complexity.
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Remark 6.9 In practice, instead of just testing feasibility of (6.3.4) for some multiplier class P ∈ PPP,
it is rather suggested to choose some ε > 0 and to infimize γ over P ∈ PPP with(

I 0
A B

)∗( Q S
S∗ R

)(
I 0
A B

)
+

(
0 I
C D

)∗( Qp Sp
S∗p Rp

)(
0 I
C D

)
≤ γ

(
εI 0
0 I

)
.

In this fashion the largest eigenvalue of the left-hand side is really pushed to smallest possible values.
If there exists some P ∈ PPP with (6.3.4) then, trivially, there exists some ε > 0 such that the infimal
value γ∗ is negative. It requires only slight modifications of the arguments to follow in order to show
that

∆?H is well-posed and
(

I
∆?H

)∗
Pp

(
I

∆?H

)
≤ γ∗I for all ∆ ∈ ∆∆∆c.

Hence the value of γ∗ provides an indication of distance to robust performance failure.

6.4 Some practical issues on LFR construction

6.4.1 Order reduction

It is of crucial importance to construct LFR’s with a reasonably sized parameter-block. If F(δ ) =
H ?∆(δ ), then it is desirable to systematically construct an LFR Hr ?∆r(δ ) whose parameter-block
∆r(δ ) is minimal in dimension and such that H ?∆(δ )=Hr ?∆r(δ ) for all δ for which both LFR’s are
well-posed. Unfortunately, this minimal representation problem does not admit a computationally
tractable solution.

One method to reduce dimension is the channel-by-channel scheme. Consider the LFR
ξ

z1
...

zp

=


A B1 · · · Bp

C1 D11 · · · D1p
...

...
. . .

...
Cp Dp1 · · · Dpp




η

w1
...

wp

 , w j = δ jz j, j = 1, . . . , p. (6.4.1)

For all channels j, associate with this LFR (via the substitution w j → x j, z j → ẋ j) the linear time-
invariant system 

ξ

z1
...

ẋ j
...

zp


=



A B1 · · · B j · · · Bp
C1 D11 · · · D1 j · · · D1p
...

...
. . .

...
. . .

...
C j D j1 · · · D j j · · · D jp
...

...
. . .

...
. . .

...
Cp Dp1 · · · Dm j · · · Dpp





η

w1
...

x j
...

wp


.
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Whenever non-minimal, this realization can be reduced to a controllable and observable system to
arrive at 

ξ

z1
...
˙̂x j
...

zp


=



A B1 · · · B̂ j · · · Bp

C1 D11 · · · D̂1 j · · · D1p
...

...
. . .

...
. . .

...
Ĉ j D̂ j1 · · · D̂ j j · · · D̂ jp
...

...
. . .

...
. . .

...
Cp Dp1 · · · D̂p j · · · Dpp





η

w1
...

x̂ j
...

wp


with x̂ j of smaller dimension than x j. If sequentially performing this reduction step for all j =
1, . . . , p we arrive at the LFR

ξ

ẑ1
...

ẑ j
...

ẑp


=



A B̂1 · · · B̂ j · · · B̂p

Ĉ1 D̂11 · · · D̂1 j · · · D̂1p
...

...
. . .

...
. . .

...
Ĉ j D̂ j1 · · · D̂ j j · · · D̂ jp
...

...
. . .

...
. . .

...
Ĉp D̂p1 · · · D̂p j · · · D̂pp





η

ŵ1
...

ŵ j
...

ŵp


(6.4.2)

with ẑ j and ŵ j of smaller size than z j and w j. A little reflection convinces us that (6.4.1) is indeed
equivalent to (6.4.2) for all δ for which both LFR’s are well-posed. Note that the algebraic variety
of δ for which the original LFR and the new LFR are well-posed are generally different. for an
illustration of how these schemes work in practice we consider an example.

6.4.2 Approximation

If exact reduction of a given LFR F(δ ) = H ?∆(δ ) is hard or impossible, one might consider con-
structing an approximation Ha ?∆a(δ ) with smaller-sized ∆a(δ ). Most LFR’s are typically used for
parameters δ that reside in some a priori given set δδδ . If both the original and the approximate LFR’s
are well-posed for all δ ∈ δδδ , we can use

sup
δ∈δδδ

‖H ?∆(δ )−Ha ?∆a(δ )‖

(with any matrix norm ‖·‖) as a measure for the distance of the two LFR’s, and hence as an indicator
for the approximation quality. We stress that the evaluation of the distance requires knowledge of
the values F(δ ) = H ?∆(δ ) at δ ∈ δδδ . Given F(δ ), this leads to the viable idea to construct LFR’s by
non-linear optimization. Among the various possibilities we would like to sketch one scheme that
will be successfully applied to our example. Choose a parameter-block ∆a(δ ) (of small size) which
depends linearly on δ together with finitely many distinct points δ1, . . . ,δN ∈ δδδ (which should be
well-distributed in δδδ ). Then the goal is to find Aa, Ba, Ca, Da such that

max
j=1,...,N

∥∥∥∥G(δ j)−
(

Aa Ba
Ca Da

)
?∆a(δ j)

∥∥∥∥ (6.4.3)
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is as small as possible. Clearly,

Vj =

(
Aa Ba
Ca Da

)
?∆a(δ j)−G(δ j) ⇐⇒

⇐⇒ ∃U j : Vj = Aa +U jCa−G(δ j), U j = Ba∆a(δ j)(I−Da∆a(δ j))
−1 ⇐⇒

⇐⇒ ∃U j : U j[Da∆a(δ j)− I]+Ba∆a(δ j) = 0, Aa +U jCa−G(δ j) =Vj ⇐⇒

⇐⇒ ∃U j : U j

(
Da∆a(δ j)− I

Ca

)
+

(
B∆a(δ j)

Aa−G(δ j)

)
=

(
0
Vj

)
.

Therefore we have to solve the nonlinear optimization problem

minimize max
j=1,...,N

‖U jCa +Aa−G(δ j)‖

subject to U j[Da∆a(δ j)− I]+Ba∆a(δ j) = 0, j = 1, . . . ,N.
(6.4.4)

in the variables Aa, Ba, Ca, Da, U j, j = 1, . . . ,N. It might be relevant to explicitly include the con-
straint that Da∆a(δ j)− I has to be invertible. Moreover we stress that it is immediate to formulate
variations which might considerably simplify the corresponding computations. For example if striv-
ing for LFR’s which are exact in δ1, . . . ,δN , one could solve the non-linear least-squares problem

inf
Aa,Ba,Ca,Da

U j , j = 1, . . . ,N

N

∑
j=1

∥∥∥∥U j

(
Da∆a(δ j)− I

Ca

)
+

(
Ba∆a(δ j)

Aa−G(δ j)

)∥∥∥∥
F
. (6.4.5)

Example 6.10 We continue Example 6.6 by constructing an LFR with nonlinear least-squares opti-
mization. One easily verifies that the denominator polynomial (δ2−1)(δ2 +δ 2

1 +δ1−1) is nonzero
on the box

δδδ = {(δ1,δ2) : −0.3≤ δ1 ≤ 0.3, −0.3≤ δ1 ≤ 0.3}.
With ∆(δ ) = diag(δ1,δ1,δ1,δ2,δ2,δ2) and the 49 points {−0.3+ 0.1 j : j = 0, . . . ,6}2 we solve
(6.4.5) to achieve a cost smaller than 1.3 · 10−9. The deviation (6.4.3) turns out to be not larger
than 8 · 10−5 on the denser grid {−0.3+ 0.01 j : j = 0, . . . ,60}2 with 3721 points. We have thus
constructed an approximate LFR of considerably reduced order (d1,d2) = (3,3). It can actually be
verified that

F(δ ) =


0 0 1 0 1 0
0 0 0 1 0 0
2 1 1 1 1 2
−1 1 1 0 1 1
−1 1 1 0 1 1

1 1 0 0 0 1

?


δ1 0 0 0
0 δ1 0 0
0 0 δ2 0
0 0 0 δ2


which could not be reconstructed with any of the suggested techniques! The Examples 6.6-6.10
demonstrate that it might be difficult to reconstruct this small-sized LFR from the corresponding
rational function with reasonable computational effort. A main lesson to be learnt here is that one
should keep track of how large-sized LFR’s are actually composed by smaller ones through inter-
connection in order not to loose essential structural information.
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6.4.3 Approximate LFR’s of non-rational functions.

The approximationn technique described in the previous subsection is only relying on the availability
of G(δ j) for j = 1, . . . ,N. This opens the path to determine LFR approximations for non-rational
matrix valued mappings or even for mappings that are just defined through look-up tables. As we
have seen, the direct construction of LFR’s then requires the solution of a generally non-convex
optimization problem.

Alternatively one could first interpolate the data matrices with multivariable polynomial or rational
functions, and then construct an LFR of the interpolant. With multivariable polynomial matrices
D(δ ) and N(δ ) of fixed degree and to-be-determined coefficients, this requires to solve the equation
D(δ j)

−1N(δ j) = G(δ j) which can be reduced to D(δ j)G(δ j)−N(δ j) = 0 (for all j = 1, . . . ,N) and
hence turns out to be a linear system of equations in the coefficient matrices.

As a further alternative one can rely on polynomial or rational approximation. This amounts to find-
ing polynomial matrices D, N which minimize max j=1,...,N ‖D(δ j)

−1N(δ j)−G(δ j)‖. For a fixed
denominator polynomial matrix D and for a fixed degree of N this is clearly a convex optimization
problem. Indeed, as an immediate consequence of the proof of Theorem 6.4, any such fixed denom-

inator function can be parameterized as
(

Aa Ba
Ca Da

)
?∆(δ )? with fixed Aa, Ca and free Ba, Da.

Then it is obvious that (6.4.4) is a convex optimization problem which can be reduced to an LMI-
problem if using any matrix norm whose sublevel sets admit an LMI-representation. For general
rational approximation one has to rely on solving the non-convex problem (6.4.4) with free Aa, Ba,
Ca, Da, or one could turn to the multitude of existing alternatives such as Padé approximation for
which we refer to the approximation literature.

6.4.4 Non-diagonal parameter-blocks

We have proved how to construct LFR’s of rational matrices with diagonal parameter-blocks in a
routine fashion. It is often possible to further reduce the size of LFR’s with the help of full non-
diagonal parameter-blocks which are only required to depend linearly on the parameters.

Example 6.11 At this point we disclose that the rational matrix in Examples 6.6-6.10 was actually
constructed as

F(δ ) =


0 0 1 0 0
0 0 0 1 −1
1 0 1 1 0
−1 1 1 0 1

1 1 0 0 1

?

 δ1 δ2 δ1
0 δ1 δ2
0 0 δ2


which is still smaller than all the LFR’s constructed so far.

Example 6.12 Let us illustrate how to actually find such reduced-sized LFR’s by means of the
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example

F(δ ) =
3δ 2

1 −2δ2

1−4δ1 +2δ1δ2−δ2
.

A key role is played by finding suitable (matrix) factorizations. Indeed ξ = F(δ )η if and only if

ξ = (3δ
2
1 −2δ2)η +(4δ1−2δ1δ2 +δ2)ξ =

(
δ1 δ2

)( 3δ1 4−2δ2
−2 1

)(
η

ξ

)
⇐⇒

⇐⇒ ξ = w1, w1 =
(

δ1 δ2
)

z1, z1 =

(
4ξ

−2η +ξ

)
+

(
1
0

)(
δ1 δ2

)( 3η

−2ξ

)
⇐⇒

⇐⇒ ξ = w1, w1 =
(

δ1 δ2
)

z1, z1 =

(
4ξ +w2
−2η +ξ

)
, w2 =

(
δ1 δ2

)
z2, z2 =

(
3η

−2ξ

)
which leads to the LFR

ξ

z1

z2

=


0 1 0
0 4 1
−2 1 0

3 0 0
0 −2 0


 η

w1
w2

 ,

(
w1
w2

)
=

(
δ1 δ2 0 0
0 0 δ1 δ2

)
z1

z2

 . (6.4.6)

We observe that this LFR has the structure ξ

z
ẑ

=

 A B
LA LB
C D

( η

w

)
, w =

(
∆(δ ) ∆̂(δ )

)( z
ẑ

)

with L =
(

0 −2 −4/3
)

and is, since ẑ = Lz, equivalent to

(
ξ

z

)
=

(
A B
C D

)(
η

w

)
, w = [∆(δ )+ ∆̂(δ )L]z.

Therefore (6.4.6) can be compressed to
ξ

z1

z2

=


0 1 0
0 4 1
−2 1 0

3 0 0


 η

w1
w2

( w1
w2

)
=

(
δ1 δ2 0
0 −2δ2 δ1−4/3δ2

) z1

z2



with a parameter-block of size 2× 3. Standard LFR’s can be obtained with orders (d1,d2) = (3,1)
or (d1,d2) = (2,2) which involves parameter-blocks of larger size 4×4.
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6.5 Numerical solution of robust linear algebra problems

6.5.1 Relaxations for computing upper bounds

Let us assume that the decision variable is v ∈ Rn, and suppose that

H(v) =
(

A B
C(v) D(v)

)
with C(v), D(v) depending affinely on v,

and

Pp(v) =
(

Qp(v) Sp
S∗p TpUp(v)−1T ∗p

)
with Qp(v), Up(v) depending affinely on v.

Moreover let ∆(δ ) be a parameter-block which is linear in δ , and δδδ is some subset of Rm.

With the linear cost functional defined by c ∈ Rn we consider the following paradigm problem.

Problem Infimize c∗v over all v which satisfy Up(v)� 0 and

det(I−A∆(δ )) 6= 0,
(

I
∆(δ )?H(v)

)T

Pp(v)
(

I
∆(δ )?H(v)

)
< 0 for all δ ∈ δδδ . (6.5.1)

Denote the optimal value by γopt ∈ [−∞,∞].

In various circumstances we have made explicit how to construct a set PPP with an LMI description
and such that (

∆(δ )
I

)∗
P
(

∆(δ )
I

)
< 0 for all δ ∈ δδδ . (6.5.2)

This allows to consider the following relaxation.

Problem Infimize c∗v over all v and P ∈ PPP with

Up(v)� 0,
(

I 0
A B

)∗
P
(

I 0
A B

)
+

(
0 I

C(v) D(v)

)∗
Pp(v)

(
0 I

C(v) D(v)

)
≺ 0.

Denote the optimal value by γrel ∈ [−∞,∞].

Since PPP has an LMI description, the linearization lemma ?? reveals that we can compute γrel by
solving a genuine LMI problem. The (simple) sufficiency conclusion in the full-block S-procedure
implies that v is feasible for Problem 6.5.1 if v and P ∈ PPP are feasible for Problem 6.5.1. We can
hence infer

γopt ≤ γrel,

including the cases γopt ∈ {−∞,∞} and γrel ∈ {−∞,∞} with the usual interpretations.

Unfortunately it is impossible to make a priori statements on the relaxation gap γrel− γopt in the
generality as discussed here. However, let us stress again that this gap can be possibly reduced by
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employing a larger (superset) of PPP, and that γopt ≤ γrel if δδδ is compact and if replacing PPP with the
set of all multipliers P that satisfy 6.5.2, just due to the full-block S-procedure. Summarizing, the
choice of an increasing family of multipliers PPP1 ⊂ PPP2 ⊂ ·· · leads to a family of LMI-relaxations
with non-increasing optimal values.

We conclude this section by stressing that the developed techniques allow an immediate extension
to multiple-objectives expressed by finitely many constraints as(

I
∆(δ )?H(v)

)T

Pp, j(v)
(

I
∆(δ )?H(v)

)
≺ 0 for all δ ∈ δδδ , j = 1, . . . , p.

These constraints are relaxed as follows: For all j = 1, . . . , p, there exists Pj ∈ PPP with(
I 0
A B

)∗
Pj

(
I 0
A B

)
+

(
0 I

C(v) D(v)

)∗
Pp, j(v)

(
0 I

C(v) D(v)

)
≺ 0.

It is hence essential to exploit the extra freedom to relax any individual constraint with its individual
multiplier in order to keep conservatism subdued. We remark as well that one could even allow the
LFR and the class of multipliers used for each relaxation vary from constraint to constraint without
introducing any extra complications.

6.5.2 When are relaxations exact?

We have seen in the previous section that multiplier relaxations typically cause a gap γrel− γopt. In
this section we formulate a general principle about a numerical verifiable sufficient condition for the
absences of this gap and hence for exactness of the relaxation.

One situation is simple: If the relaxation is strictly feasible and has optimal value γrel = −∞. This
certainly implies γopt = −∞ and there is no relaxation gap. Let us hence assume from now on that
γrel >−∞.

The key is to consider the dual of the suggested relaxations. For this purpose we first apply the
linearization lemma ?? in order to reformulate the relaxation as infimizing c∗ over v and P ∈ PPP with(

I 0 0
A B 0

)∗
P
(

I 0 0
A B 0

)
+

 0 C(v)∗S∗p C(v)∗Tp
SpC(v) SpD(v)+D(v)∗S∗p +Qp(v) D(v)∗Tp
T ∗p C(v) T ∗p D(v) −Up(v)

≺ 0.

With the standard basis vectors e1, . . . ,en of Rn and with e0 = 0 define

c j = c(e j), Wj =

 0 C(e j)
∗S∗p C(e j)

∗Tp
SpC(e j) SpD(e j)+D(e j)

∗S∗p +Qp(e j) D(e j)
∗Tp

T ∗p C(e j) T ∗p D(e j) −Up(e j)

 , j = 0,1, . . . ,n.

Then we have to infimize c∗x over x and P ∈ PPP subject to(
I 0 0
A B 0

)∗
P
(

I 0 0
A B 0

)
+W0 +∑

j
x jWj ≤ 0.
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For δδδ = conv{δ 1, . . . ,δ N} let us now consider the concrete class PPP of full block multipliers P which
are just implicitly described by the (strictly feasible) constraints(

I
0

)∗
P
(

I
0

)
≤ 0,

(
∆(δ j)

I

)∗
P
(

∆(δ j)
I

)
< 0 for all j = 1, . . . ,N.

With Lagrange multipliers M, M̂, M j, j = 1, . . . ,N, the Lagrangian hence reads as

n

∑
j=1

c jx j + 〈
(

I 0 0
A B 0

)∗
P
(

I 0 0
A B 0

)
,M〉+ 〈W0,M〉+

n

∑
j=1

x j〈Wj,M〉+

+ 〈
(

I
0

)∗
P
(

I
0

)
,M̂〉−

N

∑
j=1
〈
(

∆(δ j)
I

)∗
P
(

∆(δ j)
I

)
,M j〉

or, after ’sorting for primal variables’,

〈W0,M〉+
n

∑
j=1

(c j + 〈Wj,M〉)x j+

+〈P,
(

I 0 0
A B 0

)
M
(

I 0 0
A B 0

)∗
+

(
I
0

)
M̂
(

I
0

)∗
+

N

∑
j=1

(
∆(δ j)

I

)
M j

(
∆(δ j)

I

)∗
〉.

By standard duality we can draw the following conclusions:

(a) The primal is not strictly feasible (which just means γrel = ∞) iff there exist M < 0, M̂ < 0,
M j < 0 with 〈W0,M〉< 0, 〈Wj,M〉= 0, j = 1, . . . ,N and(

I 0 0
A B 0

)
M
(

I 0 0
A B 0

)∗
+

(
I
0

)
M̂
(

I
0

)∗
+

N

∑
j=1

(
∆(δ j)

I

)
M j

(
∆(δ j)

I

)∗
= 0.

(6.5.3)

(b) If the primal is strictly feasible and has finite optimal value there exists M < 0, M̂ < 0, M j < 0
which maximize 〈W0,M〉 under the constraints 〈Wj,M〉+c j = 0, j = 1, . . . ,N and (6.5.3). The
optimal value of this Lagrange dual problem equals γrel.

Theorem 6.13 If γrel = ∞ and if M in 1. has rank one then γopt = ∞. If γrel < ∞ and if M in 2. has
rank one then γopt = γrel.

It is convenient to summarize this result as follows: If there exists either an infeasibility certificate
or a dual optimizer such that M has rank one then the relaxation is exact.

Proof. If M has rank one, it can be decomposed as M = mm∗. Let us partition m as col(w,ξ ,ξe)
according to the columns of (A B 0) and define z = (A B 0)m = Aw+Bξ . The essential point is to
conclude from (6.5.3) that

w = ∆(δ 0)z for some δ
0 ∈ δδδ .

178 Compilation: January 2015



6.5. NUMERICAL SOLUTION OF ROBUST LINEAR ALGEBRA PROBLEMS 179

Indeed just by using the definitions we obtain with (6.5.3) the relation(
w
z

)(
w∗ z∗

)
+

(
I
0

)
M̂
(

I 0
)
−

N

∑
j=1

(
∆(δ j)

I

)
M j

(
∆(δ j)

I

)∗
= 0.

From zz∗ = ∑
N
j=1 M j we infer that z∗x = 0 implies M jx = 0 for all j such that there exist α j with

M j = zα jz∗. If z 6= 0 have α j ≥ 0 and ∑
N
j=1 α j = 1. Now wz∗=∑

N
j=1 ∆(δ j)M j = 0 allows to conclude

by right-multiplication with z and division by z∗z 6= 0 that

w =
N

∑
j=1

∆(δ j)zα j = ∆

(
N

∑
j=1

α jδ
j

)
z = ∆(δ 0)z with δ

0 :=
N

∑
j=1

α jδ
j ∈ δδδ .

If z = 0 we infer M j = 0 and hence ww∗ + M̂ = 0 which implies w = 0 (and M̂ = 0) such that
w = ∆(δ 0)z holds for an arbitrary δ 0 ∈ δδδ .

Let us now assume γrel = ∞. In can happen that I−A∆(δ 0) is singular. This implies that Problem
6.5.1 is not feasible and hence γopt = ∞.

Let us continue under the hypothesis that I−A∆(δ 0) is non-singular which implies w = ∆(δ 0)(I−
A∆(δ 0))−1Bξ (due to z = Aw+Bξ and w = ∆(δ 0)z). We infer for all x ∈ Rn:

ξ
∗
(
∗
∗

)∗( Q(x) S
S∗ TU(x)−1T ∗

)(
I

D(x)+C(x)∆(δ 0)(I−A∆(δ 0))−1B

)
ξ =

=

(
w
ξ

)∗( 0 I
C(x) D(x)

)∗( Q(x) S
S∗ TU(x)−1T ∗

)(
0 I

C(x) D(x)

)(
w
ξ

)
=

= max
η

 w
ξ

η

∗ 0 C(x)∗S∗p C(x)∗Tp
SpC(x) SpD(x)+D(x)∗S∗p +Qp(x) D(x)∗Tp
T ∗p C(x) T ∗p D(x) −Up(x)

 w
ξ

η

<

<

 w
ξ

ξe

∗ 0 C(x)∗S∗p C(x)∗Tp
SpC(x) SpD(x)+D(x)∗S∗p +Qp(x) D(x)∗Tp
T ∗p C(x) T ∗p D(x) −Up(x)

 w
ξ

ξe

=

= m∗W0m+
n

∑
j=1

x jm∗Wjm.

By hypothesis we have

0≤ 〈W0,M〉+
n

∑
j=1

x j〈Wj,M〉= m∗W0m+
n

∑
j=1

x jm∗Wjm for all x ∈ Rn.

From the above-derived chain of inequalities we can hence infer that no x ∈ Rn can ever be feasible
for (6.5.1), which implies again that γopt = ∞ and thus γopt = γrel.

Let us now assume γrel < ∞. Since problem 6.5.1 is strictly feasible it is guaranteed that I−A∆(δ 0)
is nonsingular, and the above-derived chain of inequalities is again true. Let us apply this chain of
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inequalities for any x that is feasible for Problem 6.5.1 to infer

0 < m∗W0m+
n

∑
j=1

x jm∗Wjm.

Just due to 〈W0,M〉= γrel and c j = 〈Wj,M〉 we can conclude

n

∑
j=1

c jx j = γrel−〈W0,M〉−
n

∑
j=1

x j〈Wj,M〉= γrel−m∗W0m−
n

∑
j=1

x jm∗Wjm

and hence c∗x ≥ γrel. Since v was an abitrary feasible point of Problem 6.5.1 we infer γ∗ ≥ γrel and
thus γ∗ = γrel.

It is interesting to note that the proof reveals how one can construct a worst-case parameter uncer-
tainty from a rank one dual multiplier! In a similar fashion it is possible to apply the novel principle
to a whole variety of other problems which is reveals its charming character.

In one specific case with one-dimensional uncertainty one can in fact always construct a dual multi-
plier of rank one.

Theorem 6.14 Suppose that δδδ = conv{δ 1,δ 2}. Then γrel = γopt.

Proof. Let us first investigate the constraint (6.5.3) in the specific case N = 2. Left-multiplication
with

(
I −∆(δ 1)

)
and right-multiplication with

(
I −∆(δ 2)

)∗ leads with

U :=
(

I −∆(δ 1)
)( I 0 0

A B 0

)
and V :=

(
I −∆(δ 2)

)( I 0 0
A B 0

)
to the relation UMV ∗+ M̂ = 0. This implies UMV ∗+V ∗MU = −M̂ ≤ 0 and UMV ∗−V ∗MU = 0
which can be expressed as(

U∗

V ∗

)∗( 0 −M
−M 0

)(
U∗

V ∗

)
< 0,

(
U∗

V ∗

)∗( 0 M
−M 0

)(
U∗

V ∗

)
= 0. (6.5.4)

Now choose an arbitrary x ∈ Rn. Since M 6= 0 (???), we can apply Lemma ?? to infer the existence
of a vector m 6= 0 (possibly depending on x) with

m∗
(

W0 +
n

∑
j=1

x jWj

)
m≥ 〈W0 +

n

∑
j=1

x jWj,M〉. (6.5.5)

and (
m∗U∗

m∗V ∗

)∗( 0 −1
−1 0

)(
m∗U∗

m∗V ∗

)
< 0,

(
m∗U∗

m∗V ∗

)∗( 0 1
−1 0

)(
m∗U∗

m∗V ∗

)
= 0.
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If we partition m again as col(w,ξ ,ξe) and if we define z = Aw+Bξ we infer Um = w−∆(δ 1)z and
V m = w−∆(δ 2)z. If V m = 0 we conclude w = ∆(δ 2)z. If V m 6= 0 there exists, by Lemma ??, some
α ≤ 0 with w−∆(δ 1)z = αw−α∆(δ 2)z or

w =

(
1

1−α
∆(δ 1)− α

1−α
∆(δ 2)

)
z = ∆

(
1

1−α
δ

1− α

1−α
δ

2
)

z.

Therefore in both cases w = ∆(δ 0)z for some δ 0 ∈ conv{δ 1,δ 2}.

If γrel = ∞, we can infer 〈W0 + ∑
n
j=1 x jWj,M〉 < 0 and hence with (6.5.5) we obtain m∗W0m +

∑
n
j=1 x jm∗Wjm < 0. This allows to finish the proof as above.

If γrel < ∞, and if x is chosen feasible for Problem ??, we infer again 0 < m∗W0m+∑
n
j=1 x jm∗Wjm.

Now we exploit (6.5.5) to conclude 0 < 〈W0 +∑
n
j=1 x jWj,M〉 or c∗x < γrel. We conclude again that

γopt ≥ γrel, and thus equality.

Remarks. This is a novel result on the absence of a relaxation gap for robust semi-definite programs
with implicitly described full-block multipliers. Only slight modifications of our arguments lead to
the same insights for block-diagonal multipliers, which reveals that we have provided generalizations
of the result from [?] and [?]. It is important to stress that full-block multipliers are in general
expected to lead to less conservative results. We can conclude, however, that the one parameter case
allows the restriction to the diagonal multiplier class without introducing conservatism. In case of
complex uncertainties as appearing in SSV-theory we will be able to easily derive similar insights in
a considerable more general setting in the sections to follow.

6.6 Further reading

We refer to [64] for a variety of operations and configurations on linear fractional representations.
The practical construction of LFR’s is supported by a very helpful, professionally composed and
freely available Matlab LFR-Toolbox developed by Francois Magni. See [14, 27].

6.7 Exercises

Exercise 1
Suppose that F(δ ) = D(δ )−1N(δ ) with multivariable polynomial matrices D(δ ) and N(δ ) such that
D(0) is invertible. If (D −N) admits an LFR with parameter-block ∆(δ ), prove that G admits as well
an LFR with the same parameter-block. Formulate a corresponding result for right-factorizations
F(δ ) = N(δ )D(δ )−1.

Exercise 2
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Determine an LFR of

F(δ ) =
−2δ2 +3δ 2

1 −2δ1δ2 +3δ 3
1 −2δ 2

2 +3δ 2
1 δ2

1−3δ1−3δ1δ2−4δ 2
1 +2δ 2

1 δ2 +2δ1δ 2
2 −δ 2

2
.

Is it possible to reduce the size of the resulting LFR through channel-by-channel reduction? Show
that 1+ δ1 + δ2 is a common factor of numerator and denominator. Use this insight to construct a
smaller sized LFR.

Exercise 3
Suppose 0 ∈ ∆∆∆c. Derive exact LMI test for verifying the following two conditions:

•
(

I−∆M
N

)
has full column rank for all ∆ ∈ ∆∆∆c.

• N−M∆ has full column rank for all ∆ ∈ ∆∆∆c (under hypothesis 0 ∈ ∆∆∆c).

Exercise 4
Suppose we are given a system ẋ = Ax+Bw, z =Cx+Dw with

A =


−1 0 0 1
0 −1 4 −3
1 −3 −1 −3
0 4 2 −1

 , B =


0 1
0 0
−1 0
0 0

 , C =

(
−1 0 1 0
0 1 0 1

)
, D =

(
0 1
0 0

)
.

(a) Let all coefficients of C deviate from their nominal values by 100%.

(i) Determine the worst-case H∞-norm. (Please argue how this can be done!)
(ii) Compute the worst case H∞-norm with a common quadratic storage function.

(iii) Can you explain the difference?

(b) Now suppose that only the elements of A deviate from their nominal value by 5%. Let us try
to compute a bound on the H∞ norm with a common quadratic storage function.

(i) If describing this uncertainty as A ∈ conv{A1, . . . ,AN}, how many generators N do you
need? Is the direct approach as in the previous exercise expected to be tractable?

(ii) Determine an LFR: Find a representation of the uncertain system as ẋ
z1
z

=

 A0 B1 B2
C1 D11 D12
C2 D21 D22

 w
w1
w

 , z1 = diag(δ1I, . . . ,δ12I)w1.

(iii) Consider the LMI problem of minimizing γ such that

X � 0,


I 0 0

A0 B1 B2
0 I 0

C1 D11 D12
0 0 I

C2 D21 D22




0 X 0 0 0 0
X 0 0 0 0 0
0 0 −Q S 0 0
0 0 ST Q 0 0
0 0 0 0 −γ2I 0
0 0 0 0 0 I




I 0 0

A0 B1 B2
0 I 0

C1 D11 D12
0 0 I

C2 D21 D22

≺ 0
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where Q = diag(Q1, . . . ,Q12) � 0 and S = diag(S1, . . . ,S12) is skew-symmetric. Why
does this compute a bound on the worst-case H∞-norm? (Don’t forget stability.)

(iv) Compute such an optimal bound for the given system.

Exercise 5 (MIMO circle criterion and extensions)
Consider the nonlinear system

ẋ = Ax+Bw, z =Cx, w = ∆(t,z) (6.7.1)

where ∆ :R×Rl→Rk is any Lipschitz continuous function that satisfies, for two matrices K, L, the
multi-variable sector condition

[∆(t,z)−Kz]>[∆(t,z)−Lz]≤ 0 for all (t,z) ∈ R×Rl . (6.7.2)

(a) Find a symmetric matrix P such that(
∆(z, t)

z

)T

P
(

∆(z, t)
z

)
≥ 0 for all z, t.

(b) Formulate an LMI test for proving global exponential stability of (6.7.1).

(c) With M(s) =C(sI−A)−1B define G(s) = (I−LM(s))(I−KM(s))−1. Show that the LMI you
found has a solution if and only if

A+BKC is stable and G(iω)∗+G(iω)� 0 for all ω ∈ R.

Is stability of A required for your arguments?

Hint: try a congruence transformation with
(

I 0
KC I

)
.

(d) Consider now the saturation nonlinearity

∆(t,z) =


1 for z≥ 1
z for |z| ≤ 1
−1 for z≤−1

.

Show that it satisfies the sector condition (7.8.2) with K = 0 and L = 1.

(e) Is (6.7.1) with the saturation nonlinearity and

C(sI−A)−1B = G(s) =
4

(s+1)( 1
2 s+1)( 1

3 s+1)

globally exponentially stable?
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(f) Let us now suppose that the system is excited by an L2-disturbance d as

ẋ = Ax+B(w+d), z =Cx, w = ∆(t,z).

Use the multiplier τP with τ ≥ 0 to set up an LMI optimization problem which minimizes a
guaranteed bound γ on the L2-gain of the nonlinear system with input d and output e.

(g) Compute such an optimal bound for the saturation nonlinearity in 4. and the system in 5.

Exercise 6 (Exactness of standard S-procedure)
Consider the functions f j : Rn → R with j = 0,1, . . . ,m. The S-procedure tries to give verifiable
characterizations for the validity of the implication

x ∈ Rn, f1(x)≤ 0, . . . , fm(x)≤ 0 ⇒ f0(x)≥ 0.

Note that geometrically this condition is equivalent to {x ∈ Rn : f0(x) ≥ 0} covering {x ∈ Rn :
f j(x)≤ 0, j = 1, . . . ,m}. In terms of optimization, the implication holds if and only if

inf
f j(x)≤0, j=1,...,m

f0(x) is non-negative. (6.7.3)

The purpose of the following exercises is to relate this property to the following relaxation:

∃ τ1, . . . ,τm ≥ 0 : f0(x)+ τ1 f1(x)+ · · ·+ τm fm(x)≥ 0 for all x ∈ Rn. (6.7.4)

As a general hint one should recall the general discussion of Lagrange duality.

(a) Prove that (6.7.4) implies (6.7.3) without any hypotheses.

(b) Suppose that all f j are convex and that there exists some x0 ∈ Rn with f j(x0) < 0 for j =
1, . . . ,m. Show that (6.7.3) is equivalent to (6.7.4).

(c) Let f j be quadratic functions represented as

f j(x) =
(

x
1

)∗
Fj

(
x
1

)
with Fj =

(
Q j s j
s∗j r j

)
for j = 0,1, . . . ,m.

Show that (6.7.4) can be verified by solving an LMI.
Hint: Prove and use the following auxiliary fact:(

x
1

)∗
F
(

x
1

)
≥ 0 for all x ∈ Rn if and only if F ≥ 0.

(d) Consider two quadratic functions f j, j = 0,1 (m = 1) and suppose there exists some x0 with
f1(x0)< 0. Prove that (6.7.3) implies (6.7.4) (without any convexity hypothesis).
Hints: Show that the value of (6.7.3) equals inf{z∗F0z : z∈Rn+1, z∗F1z≤ 0}. Then prove that
the latter equals inf{〈Z,F0〉 : Z ≥ 0, 〈Z,F1〉 ≤ 0} by using Lemma ?? for two real matrices.
Finally apply Lagrange dualization to this LMI problem.
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(e) Let f j :Cn→R for j = 0,1,2 be again quadratic functions defined with complex data matrices
F0, F1, F2. Suppose that there exists some x0 ∈ Cn with f1(x0)< 0 and f2(x0)< 0. Prove that
(6.7.3) implies (6.7.4) (without any convexity hypothesis).
Hint: Follow the proof of the previous exercise and apply Lemma ?? for three complex matri-
ces.
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Chapter 7

Integral quadratic constraints

One of the main considerations in control is to study how signals are processed by dynamical systems
and how this processing can be influenced in order to achieve a certain desired behavior. For that
purpose one has to specify the signals (time series, trajectories) of interest. This is done by deciding
on the set of values taken by the signals (such as Rn) and on the time set on which they are defined
(such as the full time axis R, the half axis [0,∞) or the corresponding discrete time versions Z and
N). In our exposition, a dynamical system is then nothing but a mapping that assigns to a certain
input signal some output signal. Very often, such mappings are defined by differential equations
with fixed initial conditions or by an integral equation, which amounts to considering systems with
a specific and explicit description or representation.

The purpose of this chapter is to discuss robust stability and performance of system interconnections
in a rather abstract setting. It is our major goal to develop the theory of integral quadratic constraints
which provides a unifying framework that covers the more classical approach based on stability
multipliers. Particular emphasis is put on stability and performance characterizations that can be
rephrased in terms of an LMI optimization problem.

7.1 Basic notions

Let us first describe the concrete ingredients that are required to develop the general theory. We
assume some familiarity with elementary concepts of functional analysis, such as normed and inner
product spaces and linear operators defined thereon. An excellent source for a precise exposition
of most mathematical concepts in this chapter is [?] while [?] covers all the required somewhat
advanced topics in a complete manner. From an engineering perspective it is helpful to consult [?]
in which, in particular, some of the measure theoretic concepts are discussed in an elementary yet
insightful fashion.
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7.1.1 Signal spaces

The basis for defining signal spaces is formed by L n, the linear space of all time-functions or
signals x : [0,∞)→ Rn which are Lebesgue-measurable. Without bothering too much about the
exact definition, one should recall that all continuous or piece-wise continuous signals are contained
in L n. Moreover, without causing harm for our discussion, we ignore the fact that signals in L n are
only defined almost everywhere.

For any x ∈L n one can calculate the energy integral

‖x‖ :=
√∫

∞

0
‖x(t)‖2d t

which is either finite or infinite. The collection of all signals with finite energy is typically denoted
by

L n
2 := {x ∈L n | ‖x‖< ∞}.

It can be shown that L n
2 is a linear space, that ‖ · ‖ is a norm on L n

2 , and that L n
2 is complete or a

Banach space. The quantity ‖x‖ is often called L2-norm (or energy) of the signal x.

Actually L n
2 admits an additional structure. Indeed, let us define the bilinear form

〈x,y〉=
∫

∞

0
x(t)>y(t)d t

on L n
2 ×L n

2 . Bilinearity means that 〈·,y〉 is linear for each y ∈ L n
2 and 〈x, ·〉 is linear for each

x ∈L n
2 . It is not difficult to see that 〈·, ·〉 defines an inner product on L n

2 and that the energy and
the inner product are related in the standard fashion by ‖x‖2 = 〈x,x〉. As a complete inner product
space L n

2 is in fact a Hilbert space.

For any x ∈L n
2 one can determine the Fourier transform x̂ which is a Cn-valued function defined on

the imaginary axis C0 and which has the property that∫
∞

−∞

x̂(iω)∗x̂(iω)dω is finite.

A fundamental results in the theory of the Fourier transformation on L2-spaces, Parseval’s theorem,
states that ∫

∞

0
x(t)>y(t)d t =

1
2π

∫
∞

−∞

x̂(iω)∗ŷ(iω)dω.

For more advanced concepts and a detailed discussion on the relation to the so-called Hardy spaces
the reader is referred to [?, ?, 64].

Roughly speaking, stability of systems is related to the property that it maps any input signal of
bounded energy into an output signal which also has bounded energy. Since it is desired to deal
with unstable systems, we cannot confine ourselves to signals with finite energy only. This is the
motivation for introducing a larger class of signals that have finite energy on finite intervals only.
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For that purpose it is convenient to define, for each T > 0, the truncation operator which assigns to
any signal x ∈L n the signal xT that is identical to x on [0,T ] and that vanishes on (T,∞):

xT (t) :=

{
x(t) for t ∈ [0,T ]
0 for t ∈ (T,∞).

Note that L n is a linear space and that truncation is a linear operator on that space with the additional
property that (xT )T = xT for all T > 0. Hence truncation is a projection.

Now it is straightforward to define the so-called extended space L n
2e, consisting of all signals x∈L n

such that xT has finite energy for all T > 0:

L n
2e := {x ∈L n | xT ∈L n

2 for all T > 0}.

Hence any x ∈L n
2e has the property that

‖xT‖=
∫ T

0
‖x(t)‖2d t is finite for every T > 0.

We observe that ‖xT‖ does not decrease if T increases. Therefore, ‖xT‖ viewed as a function of T
either stays bounded for T →∞ and then converges, or it is unbounded and then it diverges to ∞. For
any x ∈L n

2e we can hence conclude that ‖xT‖ is bounded for T → ∞ if and only if x is contained in
L n

2 . Moreover,
x ∈L n

2 implies ‖x‖= lim
T→∞
‖xT‖.

For the interpretation of some stability results to follow, we like to stress that the spaces L n
2 and L n

2e
are indistinguishable on finite intervals. More precisely,

(L n
2 )T = {xT | x ∈L n

2 }= {xT | x ∈L n
2e}= (L n

2e)T = L2[0,T ] for all T > 0,

with the latter equation being interpreted as a Hilbert-space isomorphism.

Example 7.1 The signal defined by x(t) = et is contained in L2e but not in L2. The signal defined
by x(0) = 0 and x(t) = 1/t for t > 0 is not contained in L2e. In general, since continuous or piece-
wise continuous signals are bounded on [0,T ] for every T > 0, they are all contained in L n

2e.

7.1.2 Systems

A dynamical system S is a mapping
S : L k

2e −→ L l
2e

which takes any input u ∈ L k
2e into the output y = S(u) ∈ L l

2e. The system S is called linear if
the map is, and the output is then often denoted by Su (leaving out the brackets in the notation). A
general system S is said to be causal if it satisfies

S(u)T = S(uT )T for all T > 0, u ∈L k
2e.
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It is easily seen that this mathematical definition matches the intuitive notion of causality: If u and v
are two input signals that are identical on [0,T ], uT = vT , then S(u) and S(v) are also identical on the
same time-interval, S(u)T = S(v)T . In other words, future values of an input do not have any effect
on the past values of the corresponding output.

Example 7.2 Consider the linear time-invariant (LTI) system{
ẋ = Ax+Bu, x(0) = x0

y =Cx+Du
(7.1.1)

with A ∈ Rn×n, B ∈ Rn×k, C ∈ Rl×n, D ∈ Rl×k and x0 ∈ Rn. A standard fact in the theory of
differential equations reveals that any u ∈L k

2e leads to a unique response y ∈L l
2e. Therefore (7.1.1)

defines a system S : L k
2e→L l

2e. The variation-of-constants formula

y(t) =CeAtx0 +
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) for t ≥ 0

reveals that S is causal. If x0 = 0 then S is linear.

Our main interest in this abstract setting is to characterize stability of systems and their interconnec-
tions. Among the many possibilities to define stability, those based on the gain or the incremental
gain have turned out to be of prominent importance.

Definition 7.3 The L2-gain ‖S‖ of the system S is the infimal real number γ ≥ 0 for which there
exist some real γ0 with

‖S(u)T‖ ≤ γ‖uT‖+ γ0 for all T > 0, u ∈L k
2e. (7.1.2)

If ‖S‖ is finite then S is said to be bounded or to have a finite L2-gain.

It is elementary to show that ‖S‖ ≥ 0, ‖αS‖ = |α|‖S‖ (α ∈ R), ‖S+T‖ ≤ ‖S‖+‖T‖ and ‖ST‖ ≤
‖S‖‖T‖ for bounded systems S and T . However ‖ ·‖ only defines a semi-norm since ‖S‖ can vanish
even if S 6= 0.

For inputs with finite energy, the property (7.1.2) implies, in particular, that

‖S(u)‖ ≤ γ‖u‖+ γ0 for all u ∈L k
2 . (7.1.3)

Therefore S maps inputs of finite energy into outputs of finite energy, with an explicit bound of the
output energy that is affine in the input energy. If S is causal, the converse is true as well and (7.1.3)
implies (7.1.2). Indeed, for u ∈ L k

2e we infer by causality that ‖S(u)T‖ = ‖S(uT )T‖ ≤ ‖S(uT )‖;
since uT ∈L k

2 we can use (7.1.3) to conclude ‖S(uT )‖ ≤ γ‖uT‖+ γ0 which proves (7.1.2).

For causal systems S, the L2-gain ‖S‖ is hence equal to the infimal γ ≥ 0 for which there exists γ0
such that (7.1.3) holds true. In other words, stability properties of causal systems can be character-
ized in terms of their action on finite energy signals only.
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If S is linear one can prove that (7.1.2) actually implies that

‖S(u)T‖ ≤ γ‖uT‖ for all T > 0, u ∈L k
2e. (7.1.4)

Hence, for linear systems ‖S‖ and the concept of boundedness can be defined by setting γ0 = 0
without loss of generality. Consequently, ‖S‖ actually equals the minimal γ for which (7.1.4) is true,
which can as well be expressed as

‖S‖= sup
T>0,u∈L k

2e,‖uT ‖6=0

‖S(u)T‖
‖uT‖

.

In the sequel we will make tacit use of

‖S(u)T‖ ≤ ‖S‖‖uT‖ for all T > 0, u ∈L k
2e or ‖S(u)‖ ≤ ‖S‖‖u‖ for all u ∈L k

2 .

Example 7.4 In continuing Example 7.2, one can prove that the output of (7.1.1) has finite energy
for all u ∈L k

2 if and only if the corresponding transfer matrix C(sI−A)−1B+D has all its poles
in the open left-half plane. If (A,B) is stabilizable and (A,C) is detectable, this is equivalent to A
being Hurwitz. If (7.1.1) maps L k

2 into L l
2 , it has finite L2-gain which is know to be equal to the

H∞-norm of the transfer matrix C(sI−A)−1B+D.

Example 7.5 With the function φ : R→ R let us define the static nonlinear system

S(u)(t) := φ(u(t)) for t ≥ 0. (7.1.5)

The function φ is said to satisfy a sector condition defined by real numbers α ≤ β if its graph is
located in the conic sector enclosed by the lines {(x,y) ∈ R2 | y = βx} and {(x,y) ∈ R2 | y = αx}.
One can express this property as

φ(0) = 0 and α ≤ φ(x)
x
≤ β for x ∈ R\{0}.

Alternatively, φ(x)− αx and βx− φ(x) have the same sign for all x ∈ R, which translates into
(φ(x)−αx)(βx−φ(x))≥ 0 or(

φ(x)
x

)>( −1 1
2 (α +β )

1
2 (α +β ) −αβ

)(
φ(x)

x

)
≥ 0 for all x ∈ R. (7.1.6)

With γ = max{|α|, |β |} it is easily checked that

|φ(x)| ≤ γ|x| for all x ∈ R,

which in turn implies that S : L2e→L2e is causal and that ‖S‖ ≤ γ .

Proof. If x > 0 we infer φ(x) ≤ βx and hence |φ(x)| ≤ |β ||x| which implies |φ(x)| ≤ γ|x| for
γ = max{|α|, |β |}. This implies φ(0) = 0. A similar argument shows |φ(x)| ≤ |α||x| ≤ γ|x| for
x < 0. Hence

|φ(x)| ≤ γ|x| for all x ∈ R.
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If u ∈L2e then

S(uT )(t) = φ(uT (t)) =
{

φ(u(t)) for t ∈ [0,T ]
0 for t > T

}
= S(uT )T (t)

which proves causality. Moreover we have

‖S(uT )‖2 =
∫ T

0
|φ(u(t))|2 dt ≤ γ

2
∫ T

0
|u(t)|2 dt ≤= γ

2‖uT‖2.

Since the choice of u ∈L2e was arbitrary we have ‖S‖ ≤ γ .

Sometimes it is more convenient to characterize the L2-gain of a system by squared norms, as is
possible without loss of generality.

Lemma 7.6 The L2-gain of S equals the infimal γ ≥ 0 for which there exists some γ0 with

‖S(u)T‖2 ≤ γ
2‖uT‖2 + γ0 for all T > 0, u ∈L k

2e. (7.1.7)

Proof. Note that (7.1.7) implies

‖S(u)T‖ ≤
√

γ2‖uT‖2 + γ0 ≤
√

γ2‖uT‖2 + |γ0| ≤ γ‖uT‖+
√
|γ0|

for all T > 0, u ∈L k
2e. Therefore the infimum defined in the lemma is not smaller than ‖S‖. Now

suppose ‖S‖< γ . Then one can choose ε ∈ (0,1) with (1+ ε)‖S‖< γ and there exists γ0 such that,
for all T > 0 and u ∈L k

2e, (1+ ε)‖S(u)T‖ ≤ γ‖uT‖+ γ0 or

(1+ ε)2‖S(u)T‖2 ≤
(

1
‖uT‖

)>(
γ2

0 γ0γ

γ0γ γ2

)(
1
‖uT‖

)
.

Since γ2 < (1+ ε)2γ2 and as a consequence of the Schur lemma, there exists some γ̂0 with(
γ2

0 γ0γ

γ0γ γ2

)
4

(
γ̂0 0
0 (1+ ε)2γ2

)
.

Therefore

(1+ ε)2‖S(u)T‖2 ≤
(

1
‖uT‖

)>(
γ̂0 0
0 (1+ ε)2γ2

)(
1
‖uT‖

)
= (1+ ε)2

γ
2‖uT‖2 + γ̂0

and hence ‖S(u)T‖2 ≤ γ2‖uT‖2 + γ̂0/(1+ ε)2 for all T > 0 and u ∈ L k
2e. This implies that the

infimum defined in the lemma is not larger than γ and, in turn, not larger than ‖S‖.

For nonlinear systems it is often more useful to compare the distance of two different input signals
u, v with the distance of the corresponding output signals S(u), S(v). This leads to the notion of
incremental L2-gain.
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Definition 7.7 The incremental L2-gain ‖S‖i of the system S : L k
2e→L l

2e is defined as the infimal
γ such that

‖S(u)T −S(v)T‖ ≤ γ‖uT − vT‖ for all T > 0, u,v ∈L k
2e.

If ‖S‖i < ∞ then S is said to have finite incremental L2-gain or incrementally bounded.

Again it is not hard to show that ‖S‖i ≥ 0, ‖αS‖i = |α|‖S‖i (α ∈ R), ‖S+T‖i ≤ ‖S‖i + ‖T‖i and
‖ST‖i ≤ ‖S‖i‖T‖i. However ‖ · ‖i is certainly not a norm since, for example, constant nonzero
systems have incremental gain zero. Note that, in general, we have

‖S‖i = sup
T>0,u,v∈L k

2e,‖uT−vT ‖6=0

‖S(u)T −S(v)T‖
‖uT − vT‖

.

If S is causal, we can again infer that ‖S‖i equals the minimal γ ≥ 0 such that

‖S(u)−S(v)‖ ≤ γ‖u− v‖ for all u,v ∈L k
2 , (7.1.8)

and thus

‖S‖i = sup
u,v∈L k

2 ,‖u−v‖6=0

‖S(u)−S(v)‖
‖u− v‖ .

Example 7.8 Let the function φ in Example 7.5 satisfy the incremental sector condition(
φ(x1)−φ(x2)

x1− x2

)>( −1 1
2 (α +β )

1
2 (α +β ) −αβ

)(
φ(x1)−φ(x2)

x1− x2

)
≥ 0 for all x1,x2 ∈ R.

(7.1.9)
We have seen that this can be expressed by

α ≤ φ(x1)−φ(x2)

x1− x2
≤ β for all x1,x2 ∈ R, x1 6= x2, (7.1.10)

which boils down to imposing the bounds α and β on the slope of φ if it is differentiable. With
γ = max{|α|, |β |} one can infer that

|φ(x1)−φ(x2)| ≤ γ|x1− x2| for all x1,x2 ∈ R.
Hence the mapping defined by (7.1.5) has finite incremental L2-gain which is bounded by γ . Note,
however, that one cannot guarantee S to have finite L2-gain; just consider φ(x) = 1 which maps the
L2-function u(t) = 0 into φ(u(t)) = 1 not contained in L2. As revealed by this example, the key
difficulty is the fact that φ(0) 6= 0 which implies S(0) 6∈L2.

It just follows from the definitions that

‖S‖ ≤ ‖S‖i in case that S(u0) ∈L l
2 for some u0 ∈L k

2 .

Hence, systems with a finite incremental L2-gain which map at least one finite energy signal back
into L l

2 do also have a finite L2-gain. Systems with S(0) = 0 form prominent examples. In general,
the converse is not true. However,

|S‖= ‖S‖i if S is linear.
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Figure 7.1: Specific feedback interconnection

7.2 Robust input-output stability

In general, robustness analysis is nothing but an investigation of the sensitivity of a relevant system
property against (possibly large) perturbations that are known to belong to an a priori specified class
of perturbations. In general, one can argue that robustness questions form center stage in most
natural sciences, in engineering and in mathematics. In control, many robustness properties can
conveniently be rephrased as stability or performance properties of interconnected systems in which
specific components are perturbed. The purpose of this section is to develop tools for guaranteeing
the stability of an interconnection of a linear time-invariant system against rather general classes of
system perturbations or uncertainties.

7.2.1 A specific feedback interconnection

In previous chapters we have investigated the stability of interconnections if the system components
are linear time-invariant. We established how to reduce stability analysis to an investigation of the
particular feedback interconnection as depicted in Figure 7.1. In this chapter the main concern is
to extend the earlier developed stability analysis techniques to such interconnections in which ∆

is allowed to be a time-invariant or time-varying system which might be linear or non-linear. We
develop conditions which are based on relatively simple arguments involving quadratic constraints
but which result in far-reaching computational techniques for the specialization to so-called integral
quadratic constraints.

Let us consider the interconnection in Figure 7.1 for systems

M : L k
2e→L l

2e and ∆ : L l
2e→L k

2e which are causal.

This configuration translates into the algebraic relations z = M(w)+d, w = ∆(z) or

z−M∆(z) = d, w = ∆(z). (7.2.1)
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Here the signal d ∈L l
2e is considered to be an external disturbance of the interconnection, while z

(and w) are viewed as its response to this external stimulus.

The feedback interconnection is said to be well-posed if for each disturbance d ∈L l
2e there exists a

unique response z ∈L k
2e with

(I−M∆)(z) = z−M∆(z) = d

such that z depends causally on d. This is captured in the following formal definition.

Definition 7.9 The interconnection (7.2.1) as depicted in Figure 7.1 is well-posed if the system
I−M∆ : L l

2e→L l
2e has a causal inverse.

The verification of well-posedness often boils down to the application of results from the theory of
differential equations, as illustrated in the following example.

Example 7.10 Recall from Example 7.2 that M : L k
2e→L k

2e defined by{
ẋ = Ax+Bu x(0) = x0

y =Cx

is causal. Moreover suppose ∆ : L k
2e→L k

2e is given by

∆ν(z)(t) := φν(zν(t)) for t ≥ 0, ν = 1, . . . ,k,

where φν : R→ R are continuously differential functions which satisfy the sector condition

(
φν(x)

x

)>( −1 αν+βν

2
αν+βν

2 −αν βν

)(
φν(x)

x

)
≥ 0 for all x ∈ R, ν = 1, . . . ,k (7.2.2)

with constants αν ≤ βν . Observe that ∆ can be addressed as a static diagonal nonlinearity. In view
of Example 7.5, the system ∆ is causal and its L2-gain is bounded by max{|α1|, |β1|, . . . , |αk|, |βk|}.

The map which takes z into d = (I−M∆)(z) is described by ẋ = Ax+B∆(z), d = z−Cx, x(0) = x0
which is equivalent to {

ẋ = Ax+B∆(Cx+d), x(0) = x0,

z =Cx+d.
(7.2.3)

Checking well-posedness requires to show that, for every d ∈L k
2e, the initial value problem in (7.2.3)

has a unique solution on [0,∞) such that z ∈L k
2e. It is a consequence of classical results from the

Carathéodory theory of differential equations that the properties on ∆ do indeed guarantee well-
posedness in this sense. The book [?] still is an excellent source for much more refined existence
and uniqueness results for nonlinear differential equations under considerably weaker hypotheses.
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7.2.2 Definition of (incremental) stability

In general terms, stability of feedback systems is related to whether or not one can impose a bound
on the interconnection response in terms of the sizes of the external stimuli. This requires the speci-
fication of the external signals and the response signals for a particular stability analysis question of
interest.

Concretely, the interconnection (7.2.1) is said to be stable if it is well-posed and if there exist con-
stants γ ≥ 0 and γ0 such for all d ∈L l

2e with the corresponding response z one has

‖zT‖ ≤ γ‖dT‖+ γ0 for all T > 0.

Similarly incremental stability is characterized with some γi by

‖(z1)T − (z2)T‖ ≤ γi‖(d1)T − (d2)T‖ for all T > 0

and for all external disturbances d1,d2 ∈ L l
2e with related responses z1,z2. The following formal

definition is an equivalent reformulation.

Definition 7.11 The interconnection (7.2.1) shown in Figure 7.1 is (incrementally) stable if I−M∆

has a causal inverse which is (incrementally) bounded.

Although not explicitly included in the definition, the to-be-developed tests for interconnection sta-
bility will typically require that M and ∆ are themselves causal and (incrementally) bounded. If M,
∆ and (I−M∆)−1 are casual and bounded, the same then holds for w = ∆(I−M∆)−1(d) in (7.2.1).
Note, however, that we will have the opportunity to consider different versions of stability properties,
for example by confining the external disturbances to some subset D of L l

2 or even by dispensing
with well-posedness.

Remark 7.12 If M is linear it is important to notice the consequences of our definitions of well-
posedness and stability for the interconnection in Figure 7.2 which is described as

w = ∆(z)+d1 and z = Mw+d2. (7.2.4)

With w̄ = w−d1 the interconnection is seen to be equivalent to

w̄ = ∆(z) and z = Mw̄+Md1 +d2.

If M and ∆ are causal, existence and causality of (I−M∆)−1 then imply that the interconnection
(7.2.4) responds with the unique

z = (I−M∆)−1(Md1 +d2) and w = ∆(I−M∆)−1(Md1 +d2)+d1

and with causal dependence to the external disturbances d1 and d2. If (I −M∆)−1 is, in addi-
tion, bounded, this interconnection defines a causal and bounded map from (d1,d2) ∈ L k

2e×L l
2e

to (w,z) ∈L k
2e×L l

2e. This is the main reason why we base our definitions of well-posedness and
stability on I−M∆ only.
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Figure 7.2: Specific feedback interconnection II

In the sequel we will typically assume well-posedness and provide results that allow to (computa-
tionally) conclude boundedness of (I−M∆)−1. The classical small-gain theorem is a simple but
eminently useful result that serves this purpose: If (7.2.1) is well-posed, stability of (7.2.1) follows
from

‖M‖‖∆‖< 1. (7.2.5)

Although it will be a specialization of more general results discussed later, we nevertheless provide
the elementary small-gain arguments in order to illustrate the concepts developed so far. Indeed,
since ‖M∆‖ ≤ ‖M‖‖∆‖< 1 there exist γ ∈ (0,1) and γ0 with ‖M∆(uT )‖ ≤ γ‖uT‖+ γ0 for all T > 0
and u ∈L l

2e. If d ∈L l
2e and z = (I−M∆)−1(d) we infer z = M∆(z)+d, and due to 1− γ > 0, we

hence conclude for all T > 0 that

‖zT‖= ‖M∆(z)T +dT‖ ≤ γ‖zT‖+‖dT‖+ γ0 or ‖zT‖ ≤
1

1− γ
‖dT‖+

γ0

1− γ
.

As a matter of motivation for the subsequent development, let us reformulate (7.2.5) in a form that
opens the avenue for substantial generalizations. Clearly (7.2.5) holds iff there exists some γ > 0
such that

‖M‖< γ and ‖∆‖< 1
γ
.

Introduce the abbreviation

Πγ :=
( −γI 0

0 1
γ
I

)
.

By Lemma 7.6, a little reflection shows that ‖M‖ < γ implies the existence of m0 and ε > 0 such
that 1

γ
‖M(w)T‖2− γ‖wT‖2 ≤−ε‖wT‖2 +m0 or

∫ T

0

(
w(t)

M(w)(t)

)T

Πγ

(
w(t)

M(w)(t)

)
d t ≤−ε‖wT‖2 +m0 for all T > 0, w ∈L k

2 . (7.2.6)

Somewhat more directly, since ‖∆‖< 1/γ there exists δ0 with γ‖∆(z)T‖2 ≤ 1
γ
‖zT‖2 +δ0 or

∫ T

0

(
∆(z)(t)

z(t)

)T

Πγ

(
∆(z)(t)

z(t)

)
dt ≥−δ0 for all T > 0, z ∈L l

2 . (7.2.7)
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Let us go one step further and introduce, with any Π = ΠT ∈R(k+l)×(k+l), the integral quadratic map

ΣΠ(x) :=
∫

∞

0
x(t)T

Πx(t)dt for x ∈L k+l
2 .

Then (7.2.6) and (7.2.7) can be respectively expressed as

ΣΠγ

(
wT

M(w)T

)
≤−ε‖wT‖2 +m0 for all T > 0, w ∈L k

2 (7.2.8)

and

ΣΠγ

(
∆(z)T

zT

)
≥−δ0 for all T > 0, z ∈L l

2 . (7.2.9)

Let us summarize what we have achieved:

• The small-gain condition (7.2.5) has been re-expressed as (7.2.8) and (7.2.9). This somewhat
more involved formulation of the hypotheses allows for extensions of the small-gain theorem,
by simply replacing ΣΠγ

with quadratic maps from a far richer class. For example (and as
discussed later) if using (

0 I
I 0

)
rather than Πγ , the validity of (7.2.8) and (7.2.9) still guarantee that (I−M∆)−1 is bounded,
which is the so-called passivity theorem for stability.

• Note that (7.2.8) imposes an integral quadratic constraint expressed with ΣΠγ
on the truncated

signals in the graph of M as defined in the usual fashion by{(
w

M(w)

)
: w ∈L k

2

}
.

This inequality is ’strict’ due to the perturbation term involving ε . Similarly (7.2.9) imposes
an integral quadratic constraint with the very same ΣΠγ

applied to the truncated signals in the
inverse graph of ∆ given by {(

∆(z)
z

)
: z ∈L l

2

}
,

and with the reversed direction of the inequality.

• Suppose that δ0 = m0 = 0. For signals in the intersection of these two graphs we infer from
(7.2.8) and (7.2.9) that w = 0 and hence z = 0; geometrically this means that the two graphs
only intersect trivially. This provides some flavor of guaranteeing stability in terms of graph
separation as thoroughly developed in [?], although we will not rely on this geometric inter-
pretation in this book.

After these motivating remarks we are ready to introduce the class of quadratic maps which will be
used in our general theory.
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7.2.3 Integral quadratic constraints

With any symmetric matrix Π ∈ Rn×n we have seen the relevance of the quadratic form

ΣΠ(x) = 〈x,x〉Π for x ∈L n
2

that is defined on the basis of the bilinear form

〈u,v〉Π =
∫

∞

0
u(t)T

Πv(t)dt for u,v ∈L n
2 .

The following definition captures an important generalization.

Definition 7.13 The map 〈·, ·〉 : L n
2 ×L n

2 → R is bi-additive if

〈u+ v,w〉= 〈u,w〉+ 〈v,w〉 and 〈u,v+w〉= 〈u,v〉+ 〈u,w〉 for all u,v,w ∈L n
2 .

It is bounded if there exists a c ∈ R with

|〈u,v〉| ≤ c‖u‖‖v‖ for all u,v ∈L n
2 .

If Σ : L n
2 → R is defined with such a bi-additive bounded map as

Σ(x) = 〈x,x〉 for x ∈L n
2 ,

we say that Σ is a .

It is easy to check that Σ(u+ v) = Σ(u)+ 〈u,v〉+ 〈v,u〉+Σ(v) and hence, with boundedness, we
arrive at the following to-be-exploited crucial property of Σ:

Σ(u+ v)−Σ(u)≤ 2c‖u‖‖v‖+ c‖v‖2 for all u,v ∈L n
2 . (7.2.10)

The particular map ΣΠ introduced above does indeed have this property.

Lemma 7.14 ΣΠ is a bounded quadratic map.

Proof. Bi-additivity of 〈·, ·〉Π follows from linearity of integration. Moreover for u,v ∈L n
2 observe

that

|〈u,v〉Π|=
∣∣∣∣∫ ∞

0
u(t)T

Πv(t)dt
∣∣∣∣≤ ∫ ∞

0
|u(t)T

Πv(t)|dt ≤
∫

∞

0
‖Π‖‖u(t)‖‖v(t)‖dt ≤

‖Π‖
√∫

∞

0
‖u(t)‖2 dt

√∫
∞

0
‖v(t)‖2 dt ≤ ‖Π‖‖u‖‖v‖,

with the fourth step being a consequence of the familiar Cauchy-Schwartz inequality for scalar
functions. This implies boundedness with the constant c = ‖Π‖.
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More generally, for some (measurable) Hermitian-valued bounded function Π defined on the imagi-
nary axis introduce

ΣΠ(x) :=
∫

∞

−∞

x̂(iω)∗Π(iω)x̂(iω)dω for x ∈L n
2 ,

where the hat indicates taking the Fourier-transform. ΣΠ is a bounded quadratic form since it results
from 〈u,v〉Π =

∫
∞

−∞
û(iω)∗Π(iω)v̂(iω)dω for u,v∈L n

2 . Indeed 〈·, ·〉Π is easily seen to be bi-additive
and bounded with constant c where ‖Π(iω)‖ ≤ c for all ω ∈ R∪{∞}. If Π does not depend on
frequency, Parseval’s theorem implies that the two given definitions in time- and frequency-domain
do actually coincide.

We finally introduce the following terminology. If Σ is bounded quadratic we say that

Σ(x)≤ σ0 imposes a quadratic constraint (QC) on the signal x ∈L n
2 and

Σ(xT )≤ σ0 for all T > 0 is a hard quadratic constraint on x ∈L n
2 .

If Σ = ΣΠ, these are called (hard) integral quadratic constraints (IQCs) on the signal x∈L n
2 with

frequency-dependent multiplier Π.

Example 7.15 Let us reconsider the static diagonal nonlinearity from Example 7.10. With φν :R→
R define

Φ(x) = col(φ1(x1), . . . ,φk(xk)) and ∆(z)(t) := Φ(z(t)) for t ≥ 0, z ∈L k
2e.

We now illustrate how to derive integral quadratic constraints for this nonlinearity that are useful
for stability and performance analysis. For this purpose observe that (7.2.2) persists to hold if we
multiply each of them with λν ≥ 0 and take the sum over ν = 1, . . . ,k. With

Π(λ ) =

(
diag(−λ1, . . . ,−λk) diag(λ1

α1+β1
2 , . . . ,λk

αk+βk
2 )

diag(λ1
α1+β1

2 , . . . ,λk
αk+βk

2 ) diag(−λ1α1β1, . . . ,−λkαkβk)

)
we get(

Φ(x)
x

)T

Π(λ )

(
Φ(x)

x

)
=

k

∑
ν=1

λν

(
φν(xν)

xν

)T
(
−1 αν+βν

2
αν+βν

2 −αν βν

)(
φν(xν)

xν

)
.

We hence conclude that(
Φ(x)

x

)T

Π(λ )

(
Φ(x)

x

)
≥ 0 for all x ∈ Rk, λ ∈ Rk, λ ≥ 0.

This clearly implies∫ T

0

(
Φ(z(t))

z(t)

)T

Π(λ )

(
Φ(z(t))

z(t)

)
≥ 0 for all T > 0, z ∈L k

2 , λ ∈ Rk, λ ≥ 0

which is nothing but

ΣΠ(λ )

(
∆(z)T

zT

)
≥ 0 for all T > 0, z ∈L k

2 , λ ∈ Rk, λ ≥ 0.

200 Compilation: January 2015



7.3. HARD QUADRATIC CONSTRAINTS 201

Note that we have actually derived a whole family of hard IQCs with the multipliers Π(λ ) which are
linearly parameterized by λ ∈ Rk that are in turn constrained as λ ≥ 0.

In the case that ∆ is defined with functions φν which satisfy the incremental sector condition(
φν(x1)−φν(x2)

x1− x2

)>( −1 αν+βν

2
αν+βν

2 −αν βν

)(
φν(x1)−φν(x2)

x1− x2

)
≥ 0 for all x1,x2 ∈ R

(7.2.11)
and for all ν = 1, . . . ,k, we arrive at the validity of the incremental quadratic constraint

ΣΠ(λ )

(
∆(z1)T −∆(z1)T

(z1− z2)T

)
≥ 0 for all T > 0, z1,z2 ∈L k

2 , λ ∈ Rk, λ ≥ 0. (7.2.12)

7.3 Hard quadratic constraints

In this section we discuss how to guarantee stability with hard quadratic constraints on the graph of M
and the inverse graph of ∆, respectively. We also reveal that incremental quadratic constraints imply
incremental stability. Moreover we provide the link to dissipation theory and frequency domain
inequalities which render these tests computational.

7.3.1 Stability

Let us come back to the interconnection in Figure 7.1 (see Section 7.2.1) as described by

z = M(w)+d, w = ∆(z). (7.3.1)

Let us now formulate our first fundamental stability result which substantially generalizes the classi-
cal small-gain theorem. We allow the external disturbances to be confined to some set D ⊂L l

2e. It is
stressed that well-posedness is neither assumed nor concluded. Instead, the conclusion is formulated
for all those disturbances d ∈D for which the feedback interconnection does have a response.

Theorem 7.16 Suppose that M : L k
2e→L l

2e is causal and bounded, ∆ : L l
2e→L k

2e is causal, Σ is
a bounded quadratic form, D ⊂L l

2e, and that

• there exist ε > 0 and m0 such that

Σ

(
wT

M(w)T

)
≤−ε‖wT‖2 +m0 for all T > 0, w ∈L k

2 ; (7.3.2)

• there exists δ0 with

Σ

(
∆(z)T

zT

)
≥−δ0 for all T > 0, z ∈M(L k

2 )+D . (7.3.3)
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Then there exist γ > 0 and γ0 such for any d ∈D with response z ∈L l
2e satisfying (7.3.1):

‖zT‖2 ≤ γ
2‖dT‖2 + γγ0 for all T > 0. (7.3.4)

If M is linear one can choose γ0 = m0 +δ0.

Proof. Step 1. Since M is bounded, ‖M(w)T‖2 ≤ γ̃2‖wT‖2 + γ̃2
0 (for some γ̃, γ̃0 ≥ 0) and thus∥∥∥∥( wT

M(w)T

)∥∥∥∥≤√(1+ γ̃2)‖wT‖2 + γ̃2
0 ≤

√
(1+ γ̃2)‖wT‖+ γ̃0 for all T > 0, w ∈L k

2e.

Applying (7.2.10) to u = col(wT ,M(w)T ) and v = col(0,dT ) hence leads to

Σ

(
wT

M(w)T +dT

)
−Σ

(
wT

M(w)T

)
≤ 2c

(√
(1+ γ̃2)‖wT‖+ γ̃0

)
‖dT‖+ c‖dT‖2 =

=

 1
‖wT‖
‖dT‖

> 0 0 σ13
0 0 σ23

σ13 σ23 σ33

 1
‖wT‖
‖dT‖

 (7.3.5)

for all T > 0 and (w,d) ∈L k
2e×L l

2e, with σi j only depending on M and Σ. If M is linear one can
choose γ̃0 = 0 which implies σ13 = 0.

Step 2. In this crucial step we show that there exist γ > 0 and γ̂0 such that

Σ

(
wT

M(w)T +dT

)
+

1
γ
‖M(wT )T +dT‖2− γ‖dT‖2 ≤ γ̂0 (7.3.6)

for all T > 0 and (w,d) ∈L k
2e×L l

2e as follows. Add (7.3.5) and (7.3.2) to get

Σ

(
wT

M(w)T +dT

)
≤

 1
‖wT‖
‖dT‖

T  m0 0 σ13
0 −ε σ23

σ31 σ32 σ33

 1
‖wT‖
‖dT‖

 (7.3.7)

for all T > 0 and (w,d) ∈L k
2e×L l

2e. With ‖M(w)T‖ ≤ γ̃‖wT‖+ γ̃0 and the triangle inequality we
infer for all γ > 0 that

1
γ
‖M(w)T +dT‖2− γ‖dT‖2 ≤ 1

γ
(γ̃‖wT‖+ γ̃0 +‖dT‖)2− γ‖dT‖2 =

=

 1
‖wT‖
‖dT‖

T  m11/γ m12/γ m13/γ

m12/γ m22/γ m23/γ

m13/γ m23/γ m33/γ− γ

 1
‖wT‖
‖dT‖

 (7.3.8)

for all T > 0 and (w,d)∈L k
2e×L l

2e, where mi j ∈R do not depend upon γ . For any γ̂0 > m0 observe
that there exists some (sufficiently large) γ > 0 for which m0 0 σ13

0 −ε σ23
σ31 σ32 σ33

+

 m11/γ m12/γ m13/γ

m12/γ m22/γ m23/γ

m13/γ m23/γ m33/γ− γ

4

 γ̂0 0 0
0 0 0
0 0 0

 . (7.3.9)
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If we add (7.3.7) and (7.3.8), we can exploit (7.3.9) to arrive at (7.3.6). If M is linear we can choose
γ̃0 = 0 which implies m11 = m12 = m13 = 0. We can then take γ̂0 = m0.

Step 3. To finish the proof choose d ∈ D and a corresponding response z ∈L l
2e of (7.3.1). Then

wT =∆(z)T and zT =M(w)T +dT . Now observe that the inequality in (7.3.3) holds for v :=M(wT )+
d ∈M(L k

2 )+D . On the other hand, by causality we have vT = M(wT )T +dT = M(w)T +dT = zT
and ∆(v)T = ∆(vT )T = ∆(zT )T = ∆(z)T = wT . This allows to combine (7.3.3) with (7.3.6) in order
to infer (7.3.4) for γ0 = γ̂0 +δ0 (which equals m0 +δ0 if M is linear).

Before giving examples in the next sections let us reflect on the ingredients of this result:

• The proof reveals that the constants γ and γ0 only depend on M and Σ. In particular, they are
independent from ∆ which is relevant for robust stability analysis.

• If d ∈ D is of finite energy, d ∈L l
2 , then (7.3.4) implies that z ∈L k

2 for any response of the
feedback system.

• If I −M∆ has a causal inverse, the conclusion (7.3.4) is valid for all d ∈ D and z = (I −
M∆)−1(d). If, in addition, D = L l

2 it translates into ‖(I−M∆)−1‖ being bounded by γ .

• In the practically relevant case D = L l
2 we just have M(L k

2 )+D = L l
2 and the quadratic

constraint in (7.3.3) has to be verified for all z ∈L l
2 .

• In applications we will concentrate on linear M which allows to choose m0 = 0 in (7.3.2)
without loss of generality. Indeed let us prove that (7.3.2) for some m0 6= 0 implies the validity
of the same inequality for m0 = 0 as follows. Fix w ∈L k

2e and T > 0; for ν = 1,2, . . . we infer
from (7.3.2) that

Σ

(
(νw)T

M(νw)T

)
≤−ε‖(νw)T‖2 +m0;

since M is linear and Σ(νx) = ν2Σ(x) (because Σ is defined by a bi-additive form and ν is a
positive integer) we get

Σ

(
wT

M(w)T

)
≤−ε‖wT‖2 +

m0

ν2
ν→∞−→ −ε‖wT‖2;

since w ∈L k
2 and T > 0 were arbitrary we arrive at (7.3.2) for m0 = 0.

7.3.2 Small-gain and passivity theorems

Throughout this section we assume that M and ∆ are causal and bounded and that I−M∆ has a
causal inverse. Moreover we choose D = L l

2 .
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We have already seen that Theorem 7.16 captures versions of the classical small-gain theorem by
specializing Σ to

ΣΠµ

(
w
z

)
=
∫

∞

0

(
w(t)
z(t)

)T ( −µI 0
0 1

µ
I

)(
w(t)
z(t)

)
dt =

∫
∞

0

1
µ

z(t)T z(t)− γw(t)T w(t)dt.

Let us formulate and prove one version explicitly.

Corollary 7.17 (Small Gain Theorem) If ‖M‖‖∆‖< 1 then (I−M∆)−1 is bounded.

Proof. Due to ‖M‖‖∆‖< 1 there exists some µ > 0 with ‖M‖< µ and ‖∆‖< 1
µ

. With Σ= ΣΠµ
, the

former condition implies that there exists some ε > 0 and m0 with (7.3.2), while the latter guarantees
the existence of δ0 with (7.3.3). This allows to apply Theorem 7.16 to reach to the conclusion.

Similarly the choice

Σ

(
w
z

)
=
∫

∞

0

(
w(t)
z(t)

)T ( 0 1
2 I

1
2 I 0

)(
w(t)
z(t)

)
dt =

∫
∞

0
z(t)T w(t)dt

leads to a version of the celebrated passivity theorem. Indeed (7.3.3) just translates into

∫ T

0
z(t)T (∆z)(t)dt ≥ δ0 for all T > 0, z ∈L l

2

which means, in classical terms, that ∆ is passive. Moreover, (7.3.2) reads as

∫ T

0
w(t)T (Mw)(t)dt ≤−ε

∫ T

0
w(t)T w(t)dt +m0 for all T > 0, w ∈L k

2

which translates into −M being strictly passive. We will sometimes say that M is strictly anti-
passive.

Corollary 7.18 (Passivity Theorem) If −M is strictly passive and ∆ is passive then (I−M∆)−1 is
bounded.

Note that the positive feedback interconnection with M considered in this chapter can be seen as a
negative feedback interconnection with −M. The last result can be loosely summarized by saying
that a passive system in negative feedback with a strictly passive system leads to a stable interconnec-
tion. With ease we have obtained the classical small-gain and passivity theorem which are usually
formulated and proved independently. As an example application of the passivity theorem we will
recall in Section 7.4.4 the standard proof of the Popov criterion.
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7.3.3 LTI systems in the forward path

The power of the developed framework for actual computations can be particularly well-illustrated
for the situation that M is described by an LTI system. More specifically let us consider the inter-
connection 

ẋ = Ax+Bw, x(0) = x0

w = ∆(z)+d1

z =Cx+Dw+d2

(7.3.10)

with A being Hurwitz. For any trajectory of (7.3.10) the variation-of-constants formula

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bw(τ)dτ for t ≥ 0

reveals that x(t) = x̄(t)+d0(t) where d0(t) = eAtx0 and x̄ is the state-response of the interconnection
˙̄x = Ax̄+Bw, x̄(0) = 0
w = ∆(z)+d1

z =Cx̄+Dw+(Cd0 +d2)

(7.3.11)

with zero initial condition. To fix notations suppose that

y = Mu is described by

{
˙̄x = Ax̄+Bu x̄(0) = 0
y =Cx̄+Du

. (7.3.12)

Then (7.3.11) is exactly the interconnection in Figure 7.2 with d2 replaced by Cd0 +d2. In view of
Remark 7.12 the interconnection (7.3.10) hence translates with

x̄ = x−d0, w̄ = w−d1 and d0(t) = eAtx0, d =Cd0 +Md1 +d2

into the standard configuration of Figure 7.1 as described by
˙̄x = Ax̄+Bw̄, x̄(0) = 0
w̄ = ∆(z)
z =Cx̄+Dw̄+d

(7.3.13)

Clearly well-posedness of (7.3.13) is equivalent to the fact that (7.3.10) has for all x0, d1, d2 unique
responses w and z that depend causally on d1 and d2. If well-posed, let us now analyze the conse-
quence of (7.3.13) being stable. For this purpose note that

‖d0‖ ≤
√∫

∞

0
‖eAtx0‖2d t ≤ γA‖x0‖ with γA :=

√∫
∞

0
‖eAt‖2d t (7.3.14)

where we use the spectral matrix norm in the definition of γA. Below we will also exploit that the
state-responses of ẋ = Ax+Bw, x(0) = x0, can be estimated for all w ∈L k

2 as

‖x‖ ≤ γAB‖w‖+ γA‖x0‖ with γAB := ‖(sI−A)−1B‖∞. (7.3.15)
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If (7.3.13) is shown to be stable there exists constants γ ≥ 0, γ0 such that ‖zT‖ ≤ γ‖dT‖+ γ0 =
γ‖(Cd0)T +(Md1)T +(d2)T‖+ γ0 or

‖zT‖ ≤ (γγA‖C‖)‖x0‖+(γ‖M‖)‖(d1)T‖+ γ ‖(d2)T‖+ γ0 for all T > 0. (7.3.16)

This very same inequality also holds for the trajectories of (7.3.10); it is actually compatible with
our abstract stability definition if viewing both d and x0 as inputs to the interconnection. In the case
that d1 ∈L k

2 and d2 ∈L l
2 it is particularly relevant to observe that (7.3.16) implies z ∈L l

2 and thus
w = ∆(z)+d1 ∈L k

2 and hence x ∈L n
2 as well as ẋ ∈L n

2 due to (7.3.10), which in turn leads to

lim
t→∞

x(t) = 0.

Moreover (7.3.16) implies

‖z‖ ≤ (γγA‖C‖)‖x0‖+(γ‖M‖)‖d1‖+ γ ‖d2‖+ γ0.

Due to (7.3.15) and ‖w‖ ≤ ‖∆‖‖z‖+‖d1‖, we infer the existence of constants γ̃ , γ0, γ1, γ2 (that can
be expressed in terms of γ , ‖∆‖ and ‖M‖, γA, γAB) such that

‖x‖ ≤ γ̃‖x0‖+ γ1‖d1‖+ γ2‖d2‖+ γ0.

Therefore input-output stability of (7.3.13) makes it possible to conclude all these input-to-output
and input-to-state stability properties for (7.3.10), irrespective of the nature of ∆ and independently
from the technique how stability of (7.3.13) has been verified.

In summary, in this section we have demonstrated how the stability analysis of (7.3.10) with non-
zero initial conditions and two external inputs can be generically reduced to analyzing the stability
of (7.3.13) with zero initial conditions in which the external disturbance d is possibly restricted to
some domain of definition D .

7.3.4 Circle criteria

For a concrete stability analysis problem let us come back to Example 7.10, the interconnection of a
strictly proper stable LTI system (defining a causal and bounded linear M for x0 = 0) and a diagonal
sector bounded nonlinearly (defining the causal and bounded ∆) which had been shown to be well-
posed. In Example 7.15 we have obtained a whole family of valid hard IQCs with ΣΠ(λ ) for all
λ ∈ Rk satisfying λ ≥ 0 and for any such nonlinearity.

Let us now emphasize the key element which renders all the stability tests in this chapter computa-
tional. For this purpose we only need to recall that (7.3.2) is related to a strict dissipativity constraint.
With the system’s transfer matrix T (s) =C(sI−A)−1B we have proved that (7.3.2) is equivalent to
the frequency domain inequality(

I
T (iω)

)∗
Π(λ )

(
I

T (iω)

)
≺ 0 for all ω ∈ R∪{∞} (7.3.17)
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Figure 7.3: Saturation nonlinearity in feedback interconnection

or, due to the KYP-lemma, to the existence of some X with(
AT X +XA XB

BT X 0

)
+

(
0 I
C D

)T

Π(λ )

(
0 I
C D

)
≺ 0. (7.3.18)

This leads to the following version of a multi-loop circle criterion.

Corollary 7.19 (Circle Criterion) Suppose there exists some λ ∈ Rk with λ ≥ 0 and X = XT sat-
isfying (7.3.18). Then the system (7.2.3) defining d→ z has finite L2-gain.

Proof. Clearly (7.3.3) is satisfied with δ0 = 0 for Σ = ΣΠ(λ ) and all λ . If (7.3.18) is feasible for
some particular λ∗ ≥ 0, we infer that (7.3.2) is valid for Σ= ΣΠ(λ∗) and some ε > 0 as well as m0 = 0.
By Theorem 7.16 we infer that (I−M∆)−1 which is described by (7.2.3) is bounded.

Let us briefly touch upon the relation to the classical circle criterion. If k = 1 then T is a SISO
transfer function and (7.3.17) translates with α = α1 and β = β1 into(

1
T (iω)

)∗( −1 α+β

2
α+β

2 −αβ

)(
1

T (iω)

)
≺ 0 for all ω ∈ R∪{∞}.

This just means that {T (iω) : ω ∈ R∪{∞}} is contained in a circle in the complex plane that is
defined by (α,β ), and which might degenerate to a half plane. For example if α = 0 we obtain the
well-known condition

Re(T (iω))<
1
β

for all ω ∈ R∪{∞}

on the Nyquist curve of T for interconnection stability. Those readers acquainted with the classical
results might realize the ease with which we obtained the multi-loop extension without referring to
any technical tricks such as loop transformations.

From this example we can extract why we have actually obtained a robust stability result. Indeed,
we have specified a whole class of nonlinear maps ∆ described in terms of the sector parameters
(αν ,βν) for ν = 1, . . . ,k. This enabled us to determine a family of quadratic constraints that are valid
for the inverse graph of all these nonlinearities ∆. If any of the quadratic constraints for the graph
of the system M is also satisfied, we have proved stability of the feedback interconnection. For LTI
systems M the latter condition translates into the FDI (7.3.18) or, in turn, into feasibility of the LMI
(7.3.18). Since the multipliers Π(λ ) are nicely parameterized (because λ enters (7.3.18) affinely and
is only subject to the LP constraint λ ≥ 0), the search for a suitable multiplier to render the quadratic
constraint for M satisfied just translates into an LMI problem. This is a particular version of the
generic procedure of robust stability and performance analysis with (integral) quadratic constraints.

Example 7.20 For the family of transfer functions

M(s) =
(a− s)s

s3 + s2 +2s+1
, a ∈ [0.2,2]
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a 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
bcir 2.19 1.6 1.24 1 0.83 0.705 0.611 0.537
bpar 4.55 2.91 2.1 1.62 1.31 1.09 0.925 0.803

Table 7.1: Computed stability margins in Example 7.20.

and the saturation

φ(x) =

{
bx for |x| ≤ 1

bsign(x) for |x|> 1

with b > 0, consider the interconnection in Figure 7.3. We are interested in finding the largest value
of b for which one can prove stability of the interconnection. Clearly φ satisfies a sector condition
with constants α = 0 and β = b. The largest b for which the circle criterion guarantees stability
equals the largest b for which there exists some λ ≥ 0 such that the LMI (7.3.18) with

Π(λ ) =

(
−λ λ

b
2

λ
b
2 0

)
is feasible. Since the LMI is strict, we can restrict the search to λ > 0. Moreover by homogeneity
we can divide by λ and b/2 and check feasibility of the very same LMI with Π(λ ) substituted by(

µ 1
1 0

)
with µ :=−2

b
.

Since µ now enters the LMI linearly, it is possible to directly maximize µ over the resulting LMI
constraint to obtain µ∗. In this fashion one computes with bcir = −2/µ∗ the largest possible b for
which stability can be assured by the circle criterion. Note that it is easy to also determine bpar, the
largest b > 0 such that the interconnection is stable for all linear functions φ(x) = δx with δ ∈ [0,b].
Numerical results are given in Table 7.1. They confirm the obvious inequality bcir ≤ bpar while
the quality of the bound bcir remains unclear. We will indeed confirm by improved tests that the
interconnection remains stable for saturation parameters b > bcir.

At this point we can nicely illustrate the generic idea of how to reduce conservatism of such stability
analysis results for multivariable nonlinearities. So far we have constructed diagonal multipliers
which share their structure with the nonlinearity. It is rather pleasing that indirectly described full
block multipliers can be employed as well, with the benefit of reducing conservatism at the cost of
higher computational complexity. Indeed let us introduce the abbreviation ∆(δ ) = diag(δ1, . . . ,δk)
and consider the set of multipliers

ΠΠΠ =

{
Π ∈ R2k×2k :

(
∆(δ )

I

)T

Π

(
∆(δ )

I

)
< 0, Πνν ≤ 0 for δν ∈ {αν ,βν}, ν = 1, . . . ,k

}
(7.3.19)

which is LMIable and which we encountered earlier for parametric uncertainties.
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Lemma 7.21 If Π ∈ΠΠΠ then(
Φ(x)

x

)T

Π

(
Φ(x)

x

)
≥ 0 for all x ∈ Rk.

Proof. Choose any x ∈ Rk. Let us define

δν :=

{
φν (xν )

xν
∈ [αν ,βν ] if xν 6= 0,

any δν ∈ [αν ,βν ] if xν = 0.

We then infer that δν xν = φν(xν) for all ν = 1, . . . ,k which in turn implies(
∆(δ )

I

)
x =

(
∆(δ )x

x

)
=

(
Φ(x)

x

)
.

Now recall from the discussion of parametric uncertainties that Π ∈ΠΠΠ implies(
∆(δ )

I

)>
Π

(
∆(δ )

I

)
< 0 and hence

(
∆(δ )x

x

)>
Π

(
∆(δ )x

x

)
≥ 0.

Literally as argued in Example 7.15 we conclude that ΣΠ for Π ∈ ΠΠΠ satisfies (7.3.3) for all sector
bounded nonlinearities under consideration. This proves the following less conservative version of
the multi-loop circle criterion.

Corollary 7.22 (Full Block Multiplier Circle Criterion) Suppose there exists some Π ∈ ΠΠΠ and
X = XT with (

A>X +XA XB
B>X 0

)
+

(
0 I
C D

)>
Π

(
0 I
C D

)
≺ 0. (7.3.20)

Then the system (7.2.3) defining d→ z has finite L2-gain.

These ideas point towards a multitude of extensions which require only minor modifications of the
arguments. Here is a selection of some possibilities:

• All given results remain valid for sector bounded nonlinearities that explicitly depend on time
(with technical properties only dictated by guaranteeing well-posedness).

• Full block multiplier stability results are easy to derive for possibly non-diagonal nonlineari-
ties Φ : Rk× [0,∞)→ Rk for which{

diag
(

Φ1(x, t)
x1

, . . . ,
Φk(x, t)

xk

)
: (x, t) ∈ Rk× [0,∞), xν 6= 0, ν = 1, . . . ,k

}
is contained in some compact polytope of Rk×k.
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• For systems with k inputs and l outputs one can even further expand to nonlinear feedbacks
Φ : Rl× [0,∞)→ Rk that satisfy the multivariable sector constraints

(Φ(x, t)−Kν x)T (Lν x−Φ(x, t))≥ 0 for all (x, t) ∈ Rl× [0,∞), ν = 1, . . . ,N

with Kν ∈ Rl×k and Lν ∈ Rl×k. Stability is assured with the LMI class of multipliers

conv
{(

−2I Lν +Kν

LT
ν +KT

ν −KT
ν Lν −LT

ν Kν

)
: ν = 1, . . . ,N

}
.

• The feedback loop can be defined in terms of multi-valued nonlinearities, with (7.3.3) replaced
by a quadratic constraint on the correspondingly defined inverse graph. The investigation of
well-posedness then requires extra attention.

Let us summarize our findings if M is an LTI system with realization given by (A,B,C,D) in which
A is stable. In order to guarantee stability of the feedback interconnection (7.3.1), the main effort
was devoted to finding a suitable class Σ’s for which (7.3.3) is satisfied. If this class is parameterized
as ΣΠ with Π = ΠT ∈ R(k+l)×(k+l) constrained by LMIs, stability is guaranteed by feasibility of
the dissipation LMI (7.3.20) subject to the respective constraints on Π. This generic construction
of stability tests will be shown to systematically extend to multipliers that involve dynamics which
often results in considerably reduced conservatism.

7.3.5 Incremental stability

For the feedback interconnection (7.3.1) let us now derive a criterion for incremental stability. This
requires to impose hard quadratic constraints on the incremental graph of M and the inverse incre-
mental graph of ∆ as made precise in the following result.

Theorem 7.23 Let M : L k
2e→L l

2e be causal and incrementally bounded, ∆ : L l
2e→L k

2e be causal,
Σ be a bounded quadratic form and D ⊂L l

2e. Suppose that there exists ε > 0 with

Σ

(
(w1−w2)T

M(w1)T −M(w2)T

)
≤−ε‖(w1−w2)T‖2 for all T > 0, w1,w2 ∈L k

2 (7.3.21)

and that

Σ

(
∆(z1)T −∆(z2)T

(z1− z2)T

)
≥ 0 for all T > 0, z1,z2 ∈M(L k

2 )+D . (7.3.22)

Then there exists some γ > 0 (only depending on M and Σ) such that d1,d2 ∈ D implies for all
corresponding responses z1,z2 of the feedback interconnection (7.3.1) that

‖(z1− z2)T‖ ≤ γ‖(d1−d2)T‖ for all T > 0. (7.3.23)

Proof. The proof is almost identical to that of Theorem 7.16.
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Step 1. Since M is incrementally bounded there exists some γ̃ ≥ 0 with∥∥∥∥( (w1−w1)T
M(w1)T −M(w2)T

)∥∥∥∥≤√1+ γ̃2 ‖(w1−w2)T‖ for all T > 0, w1,w2 ∈L k
2e.

Using (7.2.10) for u = col((w1−w2)T ,M(w1)T −M(w2)T ) and v = col(0,(d1−d2)T ) shows

Σ

(
(w1−w2)T

M(w1)T −M(w2)T +(d1−d2)T

)
−Σ

(
(w1−w2)T

M(w1)T −M(w2)T

)
≤

≤ 2c
(√

1+ γ̃2 ‖(w1−w2)T‖
)
‖(d1−d2)T‖+ c‖(d1−d2)T‖2 =

=

(
‖(w1−w2)T‖
‖(d1−d2)T‖

)T ( 0 σ12
σ12 σ22

)(
‖(w1−w2)T‖
‖(d1−d2)T‖

)
(7.3.24)

for all T > 0 and (w1,d1),(w2,d2) ∈L k
2e×L l

2e, with σ12,σ22 only depending on M and Σ.

Step 2. Again with incremental boundedness of M we infer for all γ > 0 that

1
γ
‖M(w1)T −M(w2)T +(d1−d2)T‖2− γ‖(d1−d2)T‖2 ≤

≤ 1
γ
(γ̃‖(w1−w2)T‖+‖(d1−d2)T‖)2− γ‖(d1−d2)T‖2 =

=

(
‖(w1−w2)T‖
‖(d1−d2)T‖

)T ( m11/γ m12/γ

m12/γ m22/γ− γ

)(
‖(w1−w2)T‖
‖(d1−d2)T‖

)
(7.3.25)

for all T > 0 and (w1,d1),(w2,d2) ∈L k
2e×L l

2e, with mi j independent from γ . Now choose γ > 0
so large that (

−ε σ12
σ12 σ22

)
+

(
m11/γ m12/γ

m21/γ m22/γ− γ

)
4 0.

If we then add (7.3.24) with (7.3.21) and (7.3.25) we arrive at

Σ

(
(w1−w2)T

M(w1)T −M(w2)T +(d1−d2)T

)
+

+
1
γ
‖M(w1)T −M(w2)T +(d1−d2)T‖2− γ‖(d1−d2)T‖2 ≤ 0 (7.3.26)

for all T > 0 and (w1,d1),(w2,d2) ∈L k
2e×L l

2e.

Step 3. To finish the proof choose d j ∈ D and some corresponding responses z j ∈L l
2e of (7.3.1)

for j = 1,2. Then (w j)T = ∆(z j)T and (z j)T = M(w j)T +(d j)T . Now observe that the inequal-
ity in (7.3.22) holds for v j := M((w j)T )+ d j ∈ M(L k

2 )+D . On the other hand we have (v j)T =
M((w j)T )T +(d j)T =M(w j)T +(d j)T =(z j)T and hence ∆(v j)T =∆((v j)T )T =∆((z j)T )T =∆(z j)T =
(w j)T . This allows to combine (7.3.22) with (7.3.26) in order to infer (7.3.23).

Consequently, if d1 and d2 are disturbances for which d1−d2 is of finite energy, any two responses
z1 and z2 also have this property. Moreover if d1 and d2 are close to each other (‖d1−d2‖ is small),
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the same holds for z1 and z2 (‖z1− z2‖ is small as well). This important continuity property is the
most relevant benefit of incremental stability results at this point.

Again, if I−M∆ has a causal inverse, the conclusion (7.3.4) is valid for all d ∈ D , and in case of
D = L l

2 it translates into ‖(I−M∆)−1‖i ≤ γ . If, in addition, M(0) = 0 and ∆(0) = 0, one easily
checks that (I−M∆)−1(0) = 0 and one can as well conclude ‖(I−M∆)−1‖ ≤ γ .

Let us look back to the circle criterion in Corollary 7.22. If the nonlinearities of the feedback
interconnection in Example 7.10 do satisfy an incremental sector condition, we have seen that the
incremental IQC (7.2.12) is valid. Since M is linear, (7.3.2) for m0 = 0 is identical to (7.3.21).
Therefore feasibility of the very same LMI (7.3.18) implies incremental stability of the system d→ z
defined by (7.2.3) with x0 = 0.

7.4 Soft quadratic constraints

In the interconnection of Figure 7.1 (see Section 7.2.1) we now assume that M is linear. In contrast
to the previous section, we intend to prove stability by just imposing the soft versions of quadratic
constraints on un-truncated L2 signals. We have to pay the price that well-posedness as well as the
constraint on the possibly nonlinear system have to be checked for all τ∆ with τ ∈ [0,1]. This leads
to the benefit of stronger stability characterizations as will be seen in examples.

7.4.1 Simple version of main QC stability result

Theorem 7.24 Let M : L k
2e→L l

2e and ∆ : L l
2e→L k

2e be causal and bounded, M be linear and Σ

be a bounded quadratic form. Suppose that

• I− τM∆ has a causal inverse for each τ ∈ [0,1];

• there exists ε > 0 such that

Σ

(
w

Mw

)
≤−ε‖w‖2 for all w ∈L k

2 ; (7.4.1)

• there exists δ0 such that

Σ

(
τ∆(z)

z

)
≥−δ0 for all τ ∈ [0,1], z ∈L l

2 . (7.4.2)

Then (I−M∆)−1 is bounded.

Proof. For τ ∈ [0,1] let us introduce the abbreviation Sτ = (I− τM∆)−1.
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Step 1. Only in proving the following key fact we make use of the quadratic constraints: There
exists a (τ-independent) γ > 0 such that

τ ∈ [0,1] and Sτ(L
k

2 )⊂L l
2 imply ‖Sτ‖ ≤ γ. (7.4.3)

In other words, whenever Sτ maps L k
2 into signals of finite energy, the quadratic constraints just

guarantee the existence of a bound on ‖Sτ‖ that is uniform in τ .

As in Step 1 of the proof of Theorem 7.16 one shows that there exist σ12,σ22 ∈ R with

Σ

(
w

Mw+d

)
−Σ

(
w

Mw

)
≤
(
‖w‖
‖d‖

)T ( 0 σ12
σ12 σ22

)(
‖w‖
‖d‖

)
(7.4.4)

for all w ∈L k
2 , d ∈L l

2 . Similarly, for any γ > 0 we have

1
γ
‖Mw+d‖2− γ‖d‖2 ≤ 1

γ
(‖M‖‖w‖+‖d‖)2− γ‖d‖2 =

=

(
‖w‖
‖d‖

)T ( m11/γ m12/γ

m12/γ m22/γ− γ

)(
‖w‖
‖d‖

)
for all w ∈L k

2 , d ∈L l
2 , (7.4.5)

where mi j only depend on ‖M‖. If we add (7.4.1), (7.4.4) and (7.4.5) we infer as in Step 1 of the
proof of Theorem 7.16 that there exists some γ > 0 with

Σ

(
w

Mw+d

)
+

1
γ
‖Mw+d‖2− γ‖d‖2 ≤ 0 for all w ∈L k

2 , d ∈L l
2 . (7.4.6)

Now fix d ∈ L l
2 . We can use the hypothesis in (7.4.3) to infer z := Sτ(d) ∈ L l

2 and hence also
w := τ∆(z) ∈L k

2 . Since z = Mw+d we can combine (7.4.6) with (7.4.2) in order to arrive at

1
γ
‖Sτ(d)‖2− γ‖d‖2 =

1
γ
‖Mw+d‖2− γ‖d‖2 ≤ δ0.

Since d ∈L l
2 was arbitrary we end up with ‖Sτ‖ ≤ γ .

Step 2. Choose any ρ0 > 0 which satisfies ρ0 < 1/(‖M∆‖γ). Then

τ ∈ [0,1], τ +ρ ∈ [0,1], |ρ| ≤ ρ0, Sτ(L
l

2)⊂L l
2 imply Sτ+ρ(L

l
2)⊂L l

2 . (7.4.7)

For any ρ , τ as in (7.4.7) note that ‖Sτ‖≤ γ by (7.4.3). Moreover if d ∈L l
2 , observe that z= Sτ+ρ(d)

iff z− τM∆(z)−ρM∆(z) = d iff z− τM∆(z) = ρM∆(z)+d iff

v = ρM∆(z)+d, z = Sτ(v),

as illustrated in Figure 7.4. We are now in the position to just apply the small-gain theorem: Since
‖ρM∆‖‖Sτ‖ ≤ ρ0‖M∆‖γ < 1 we conclude v ∈L l

2 and hence z = Sτ(v) ∈L l
2 and thus in turn also

Sτ+ρ(d) = z ∈L k
2 .
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v

z
ρM∆

+
d

M
v

z

+

τ∆ ρM∆

+
d

Sτ
M

d

z
+

+

τ∆

z
ρ∆

Figure 7.4: Interconnection in proof of Theorem 7.35.

Step 3. Clearly S0(L
l

2) ⊂L l
2 . Since ρ0 in Step 2 does not depend on τ , we can inductively apply

(7.4.7) in order to infer Sτ(L l
2)⊂L l

2 for τ ∈ [0,νρ0]∩ [0,1] and all ν = 1,2, . . ., and thus in partic-
ular for τ = 1. Then (7.4.3) implies that S1 = (I−M∆)−1 is bounded.

The proof actually reveals that there exist some γ only depending on M and Σ such that

‖(I−M∆)−1(d)‖2 ≤ γ
2‖d‖+ γδ0 for all d ∈L l

2 .

The fact that γ does not depend on ∆ is useful for checking robustness of stability.

Remark 7.25 For any fixed z ∈L 2
2 it is often not difficult to analyze the dependence of

Σ

(
τ∆(z)

z

)
(7.4.8)

on the parameter τ . For bounded quadratic Σ’s it can be shown that this is just a polynomial of degree
two in τ . If the dependence of (7.4.8) is concave then (7.4.2) only needs to be verified for τ = 0 and
τ = 1.

7.4.2 Zames-Falb multipliers

This section serves to illustrate the advantage of soft IQCs versus hard IQCs by developing the
theory around the classical and celebrated Zames-Falb multipliers. For this purpose let us consider

ẋ = Ax+Bφ(Cx+d), x(0) = 0 (7.4.9)
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with A being Hurwitz and with φ : R→ R. Recall from Section 7.3.3 that well-posedness and
stability of this standard feedback interconnection (Figure 7.1) implies the same for non-zero initial
conditions.

We assume that φ(0)= 0 and that φ satisfies the somewhat strengthened incremental sector condition

α ≤ φ(x1)−φ(x2)

x1− x2
≤ sup

x,y∈R,x 6=y

φ(x)−φ(y)
x− y

< β for all x1,x2 ∈ R, x1 6= x2 (7.4.10)

for constants α ≤ 0≤ β . This latter constraints makes sure that τφ satisfies the very same properties
for all τ ∈ [0,1].

Since φ is globally Lipschitz the interconnection (7.4.9) is well-posedness. Moreover, (7.4.10) also
implies that φ is almost everywhere differentiable with α ≤ φ ′(x)≤ esssupx∈R φ ′(x)< β for almost
all x ∈ R. Recall as well that φ satisfies a regular sector condition due to φ(0) = 0.

The following two inequalities are key for the further development.

Lemma 7.26 For σ ∈ R and z ∈L2 the signals(
p
q

)
=

(
φ(z)−αz
β z−φ(z)

)
= Πα,β

(
φ(z)

z

)
with Πα,β =

(
1 −α

−1 β

)
(7.4.11)

satisfy ∫
∞

−∞

p(t)q(t)dt ≥
∫

∞

−∞

p(t)q(t−σ)dt. (7.4.12)

If φ is odd (which means φ(−x) =−φ(x) for all x ∈ R) then∫
∞

−∞

p(t)q(t)dt ≥
∣∣∣∣∫ ∞

−∞

p(t)q(t−σ)dt
∣∣∣∣ . (7.4.13)

Proof. Since the derivative of x→ βx−φ(x) is positive, this function is strictly increasing and has
a strictly increasing inverse which is denoted by ρ . Since x→ φ(x)−αx is non-decreasing, the same
holds for

f (ξ ) := φ(ρ(ξ ))−αρ(ξ ).

If ε > 0 is chosen with φ ′(x)≤ β − ε for almost all x ∈ R we can conclude that

f ′(ξ ) = [φ ′(ρ(ξ ))−α]ρ ′(ξ ) =
φ ′(ρ(ξ ))−α

β −φ ′(ρ(ξ ))

{
≥ 0

≤ β−α

ε

}
for all ξ ∈ R. (7.4.14)

The first inequality implies that the primitive F(x) =
∫ x

0 f (ξ )dξ of f is convex on R. Therefore
F(η)≥ F(ξ )+F ′(ξ )(η−ξ ) and hence

f (ξ )(ξ −η)≥ F(ξ )−F(η) for all ξ ,η ∈ R. (7.4.15)
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The second relation in (7.4.14) and f (0) = 0 imply with γ = (β −α)/ε that | f (ξ )| ≤ γ|ξ | for all
ξ ∈ R. Hence F(0) = 0 and (7.4.15) for η = 0 lead to F(ξ ) ≤ f (ξ )ξ ≤ | f (ξ )ξ | ≤ γ|ξ |2. Due to
F(ξ )≥ 0 we get

|F(ξ )| ≤ γ|ξ |2 for all ξ ∈ R. (7.4.16)

Moreover, if we substitute ξ = βx− φ(x) and η = βy− φ(y) in (7.4.15) we can exploit ρ(ξ ) = x
and f (ξ ) = φ(x)−αx to arrive at

(φ(x)−αx)[(βx−φ(x))−(βy−φ(y))]≥ F(βx−φ(x))−F(βy−φ(y)) for all x,y∈R. (7.4.17)

Let us now choose σ ∈ R and any z ∈ L2. Since φ satisfies a regular sector condition we infer
φ(z)∈L2 and hence also q = β z−φ(z)∈L2 and also q(·−σ)∈L2(−∞,∞). The relation (7.4.16)
allows to conclude F(q) ∈L1(−∞,∞) and F(q(·−σ)) ∈L1(−∞,∞) with L1(−∞,∞) denoting the
Lebesgue space of real-valued absolutely integrable functions on R. This implies∫

∞

−∞

F(q(t))dt−
∫

∞

−∞

F(q(t−σ))dt = 0.

If we substitute x = z(t) and y = z(t−σ) in (7.4.17) we get

p(t)q(t)− p(t)q(t−σ)≥ F(q(t))−F(q(t−σ)) for all t ∈ R

which leads to (7.4.12) after integration.

If φ is odd the same holds for x→ βx− φ(x) and hence also for its inverse ρ . Therefore f is odd
and F is even. If we substitute x = z(t) and y =−z(t−σ) in (7.4.17) we hence

p(t)q(t)+ p(t)q(t−σ)≥ F(q(t))−F(q(t−σ)) for all t ∈ R.

If integrating and combining with (7.4.12) we arrive at (7.4.13).

How do we arrive at an IQC? By Parseval’s theorem and since the time-shift corresponds to multi-
plication with the exponential function in the frequency domain, inequality (7.4.12) reads as∫

∞

−∞

p̂(iω)∗q̂(iω)dω ≥
∫

∞

−∞

p̂(iω)∗(e−iωσ )q̂(iω)dω. (7.4.18)

Let us now conically combine these IQCs. This just means to multiply any nonnegative function h,
h(σ)≥ 0 for all σ ∈ R, and integrate. In order to make sure that the involved integrals are finite we
actually take h ∈L1(−∞,∞). Let us then recall that

‖h‖1 =
∫

∞

−∞

|h(σ)|dσ and ĥ(iω) =
∫

∞

−∞

h(σ)e−iωσ dσ

denote the L1-norm and the Fourier transform of h respectively. Then (7.4.18) implies∫
∞

−∞

p̂(iω)∗‖h‖1q̂(iω)dω ≥
∫

∞

−∞

p̂(iω)∗ĥ(iω)q̂(iω)dω. (7.4.19)
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If φ is odd then (7.4.13) leads to∫
∞

−∞

p̂(iω)∗q̂(iω)dω ≥
∣∣∣∣∫ ∞

−∞

p̂(iω)∗(e−iωσ )q̂(iω)dω

∣∣∣∣ .
For any real-valued h ∈L1(−∞,∞) we can multiply with |h| to infer∫

∞

−∞

p̂(iω)∗|h(σ)|q̂(iω)dω ≥

≥
∣∣∣∣∫ ∞

−∞

p̂(iω)∗(h(σ)e−iωσ )q̂(iω)dω

∣∣∣∣≥ ∫ ∞

−∞

p̂(iω)∗(h(σ)e−iωσ )q̂(iω)dω.

Integration over σ ∈ (−∞,∞) leads again to the very same inequality (7.4.19). If conically combining
the IQC (7.4.18) with the static IQCs from (7.15) we finally arrive at the following celebrated family
of Zames-Falb multipliers.

Theorem 7.27 Suppose that φ : R→ R with φ(0) = 0 satisfies the incremental sector condition
(7.4.10) for α ≤ 0≤ β . If the nonnegative function h∈L1(−∞,∞) and g∈R are related as ‖h‖1≤ g
then ∫

∞

−∞

(
τφ̂(z)(iω)

ẑ(iω)

)∗
Π

T
α,β

(
0 g− ĥ(iω)

g− ĥ(iω)∗ 0

)
Πα,β

(
τφ̂(z)(iω)

ẑ(iω)

)
dω ≥ 0

for all τ ∈ [0,1] and all z ∈L2. In the case that φ is odd the inequality remains true even if h is not
sign-constrained.

Proof. With w = τφ(z) and
(

p̂
q̂

)
= Πα,β

(
ŵ
ẑ

)
the integrand can be written as

(
ŵ
ẑ

)∗
Π

T
α,β

[(
0 g−‖h‖1

g−‖h‖1 0

)
+

(
0 ‖h‖1− ĥ

‖h‖1− ĥ∗ 0

)]
Πα,β

(
ŵ
ẑ

)
=

= (g−‖h‖1)

(
ŵ
ẑ

)∗( −1 α+β

2
α+β

2 −αβ

)(
ŵ
ẑ

)
+ p̂∗(‖h‖1− ĥ)q̂+ q̂∗(‖h‖1− ĥ∗)p̂.

After integration over frequency and using Parseval’s theorem, we get

2π(g−‖h‖1)
∫

∞

0

(
w(t)
z(t)

)T
(
−1 α+β

2
α+β

2 −αβ

)(
w(t)
z(t)

)
dt+2

∫
∞

−∞

p̂(iω)∗(‖h‖1− ĥ(iω))q̂(iω)dω

where we exploited the fact that the latter integral is real. Non-negativity is obtained from Example
7.15 and (7.4.19).

Stability is guaranteed if we can find g and h with the properties as in Theorem 7.27 which satisfy,
for some ε > 0, (7.4.1) or equivalently the FDI(

1
T (iω)

)∗
Π

T
α,β

(
0 g− ĥ(iω)

g− ĥ(iω)∗ 0

)
Πα,β

(
1

T (iω)

)
4−εI for all ω ∈ R.
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Since both T (iω) and ĥ(iω) (by the Riemann-Lebesgue Lemma) are continuous in ω ∈ [0,∞] this
condition can be equivalently replaced by(

1
T (iω)

)∗
Π

T
α,β

(
0 g− ĥ(iω)

g− ĥ(iω)∗ 0

)
Πα,β

(
1

T (iω)

)
≺ 0 for all ω ∈ R∪{∞}.

(7.4.20)

Remark 7.28 Suppose that g ∈R and h ∈L1(−∞,∞) satisfy (7.4.20) and ‖h‖1 ≤ g. For reasons of
continuity we can replace g by some slightly larger value without violating (7.4.20). Without loss of
generality the stability test can hence be based on ‖h‖1 < g.

Now suppose that, in addition, h(t)≥ 0 for all t ∈R. Let us argue why this can be replaced with the
strict inequality h(t)> 0 for t ∈ R. For this purpose recall that

‖ĥ1− ĥ2‖∞ = max
ω∈R∪{∞}

∣∣ĥ1(iω)− ĥ2(iω)
∣∣≤ ‖h1−h2‖1 for h1,h2 ∈L1(−∞,∞).

For example with hδ (t) = δe−|t|, δ > 0, we have h(t)+hδ (t)> 0 for all t ∈ R; moreover ‖ĥ− (ĥ+
ĥδ )‖∞ ≤ ‖hδ‖1→ 0 for δ → 0, which reveals that (7.4.20) persists to hold for h+hδ if only δ > 0
is sufficiently small.

In summary, for computations we can impose without loss of generality the constraints

h ∈L1(−∞,∞), g ∈ R, ‖h‖1 < g (and h(t)> 0 for all t ∈ R).

The choice h = 0 leads to the previously derived tests based on static IQCs, just because

Π
T
α,β

(
0 g
g 0

)
Πα,β =

(
−2g g(α +β )

g(α +β ) −2gαβ

)
and g > 0.

Let us now generalize the search to rational functions ĥ which must be strictly proper (since ĥ
vanishes at infinity for h ∈L1(−∞,∞) due to the Riemann-Lebesgue Lemma). Let ψ be any vector
of strictly proper rational functions without pole on the imaginary axis. We then parameterize ĥ as
cψ with real row vectors c. If we define

H(c,g) =

 0 g −c
g 0 0
−cT 0 0

 and Ψ =

 1 0
0 1
0 ψ

Πα,β (7.4.21)

we clearly have

Π
T
α,β

(
0 g− ĥ(iω)

g− ĥ(iω)∗ 0

)
Πα,β = Ψ

∗H(c,g)Ψ.

Therefore the set of Zames-Falb multipliers is actually described by a fixed (typically tall) transfer
matrix Ψ and a family of structured real symmetric (indefinite) matrices H(c,g) that depend affinely
on (c,g). With a state-space realization of Ψcol(1,T ), the FDI (7.4.20) can be translated into an
LMI constraint on (c,g). If ψ̌ denotes the inverse Fourier transform of ψ , it then remains to turn
g > ‖cψ̌‖1 (and cψ̌(t) > 0 for all t ∈ R if the nonlinearity is not odd) into an LMI constraint for
actual computations. Note that [?, Table 1] provides a list of suitable basis functions that can be
employed in this context.
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a 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
bcir 2.19 1.6 1.24 1 0.83 0.705 0.611 0.537
bzfc 3.12 2.21 1.67 1.32 1.08 0.905 0.776 0.677

bzf = bpar 4.55 2.91 2.1 1.62 1.31 1.09 0.925 0.803

Table 7.2: Computed stability margins in Example 7.29.

Example 7.29 We continue Example 7.20. Let us parameterize the multipliers either with

ψ(s) =
1

s+1
or with ψ(s) =

1
s−1

that both satisfy ‖ψ̌‖1 = 1. Since the saturation is odd-monotonous, we need to impose the con-
ditions g−‖cψ̌‖1 = g− |c| > 0 on the real constants g and c which is LMIable. Observe that the
former multiplier is causal while the latter is non-causal. In classical papers some of the main dif-
ficulties in proofs arise from non-causality since the reduction to an application of the passivity
theorem requires somewhat deeper results from factorization theory. The IQC approach avoids all
these difficulties and applies to both multiplier parameterizations directly. The computed stability
margins bzfc and bzf for the causal and non-causal versions are given in Table 7.29. We observe
that causal dynamics improve over the circle criterion, while non-causal dynamics hit the parametric
stability margin bpar. This implies that bzf is indeed the largest possible value of b for which the
interconnection of Example 7.20 can be stable, no matter which other technique might be applied.

We conclude this section by providing a general parameterization of the set of Zames-Falb multipli-
ers that is amenable to LMI computations. For this purpose let us collect some key classical facts
from approximation theory. Fix a > 0. It is then well-known that

e−at p(t) with p being any polynomial

can approximate functions in L2[0,∞) and L2 arbitrarily closely [?]. It is relevant to observe that
non-negative functions L2[0,∞) can be approximated in this fashion with positive polynomials p.
We owe the proof of this fact to Jonathan Partington [?].

Lemma 7.30 Let h ∈L2[0,∞) satisfy h(t) ≥ 0 for t ≥ 0. For all ε > 0 there exists a polynomial p
such that, with q(t) = e−at p(t), we have

‖h−q‖1 < ε and p(t)> 0 for all t ≥ 0.

Proof. If h(t)≥ 0 we can define the function f (t) =
√

h(t) which is in L2. Hence there exists some
polynomial p̃ such that the L2 norm of f (t)− p̃(t)e−at/2 is smaller than

√
ε +‖ f‖2−‖ f‖. Then

219 Compilation: January 2015



220 7.4. SOFT QUADRATIC CONSTRAINTS

the L2-norm of f (t)+ p̃(t)e−at/2 is not larger than
√

ε +‖ f‖2 +‖ f‖. Therefore∫
∞

0
|h(t)− p̃(t)2e−at |dt =

∫
∞

0
| f (t)− p̃(t)e−at/2| | f (t)+ p̃(t)e−at/2|dt ≤

≤
√∫

∞

0
| f (t)− p̃(t)e−at/2|2 dt

√∫
∞

0
| f (t)+ p̃(t)e−at/2|dt <

< (
√

ε +‖ f‖2−‖ f‖)(
√

ε +‖ f‖2 +‖ f‖) = ε.

For a sufficiently small ε̃ this persists to hold for p := p̃2 + ε̃ which is a polynomial that is positive
on [0,∞) as required.

We will as well make beneficial use of a specialization of a less commonly known result on one-sided
L2-approximations that is due to Géza Freud [?, ?].

Lemma 7.31 Let p be any polynomial and define q(t) = e−at |p(t)|. For any ε > 0 there exists some
p̃ such that, with q̃(t) = e−at p̃(t), we have

‖q− q̃‖1 < ε and |p(t)|< p̃(t) for all t ≥ 0.

Let us now describe a generic parameterization of Zames-Falb multipliers. For this purpose we
denote by JN the standard upper triangular Jordan block of dimension N×N with eigenvalue zero
and define the Hurwitz matrix AN =−aIN + JN . If BN is the column vector of length N whose only
non-zero component is 1 in the last position, we use the abbreviations

PN(t) = eJN tBN = col
(

tN−1

(N−1)!
, . . . ,

t2

2!
, t,1

)
and QN(t) := eAN tBN = e−atPN(t).

Since −A−1
N BN equals the all-ones vector EN let us record for later purpose that∫

∞

0
QN(t)dt = EN . (7.4.22)

Clearly the components of PN form a basis of the space of all polynomials with degree at most
N− 1. Hence for N ∈ N and a free row vector C ∈ R1×N , the functions CQN(t) = e−atCPN(t) are
those exponentially weighted polynomials that were discussed in our introductory remarks. This
motivates the parameterization of h ∈L2[0,∞) as

CeAN tBN =CQN(t) for t ≥ 0. (7.4.23)

Positivity is guaranteed if CPN is positive on [0,∞). Due to (7.4.22), the L2[0,∞)-norm of (7.4.23)
is then smaller than g iff CT EN < g. Hence (7.4.23) serves as a Zames-Falb multiplier for general
non-linearities if the coefficient vector C satisfies the additional constraints

CPN(t)> 0 for all t ≥ 0 and CT EN < g. (7.4.24)

These constraints can be turned into LMIs. Moreover the suggested parametrization is tight in the
following sense.
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Lemma 7.32 Suppose that there exist g > 0 and h ∈L2[0,∞) with h(t)> 0 for t ≥ 0 and ‖h‖1 < g
that satisfy the FDI (7.4.20). Then there exist N ∈ N and C ∈ R1×N with (7.4.24) such that the FDI
(7.4.20) is valid for h =CQN .

Proof. Let h be as described. Then there exists some δ > 0 such that the FDI (7.4.20) persists to
hold for all other functions in L2[0,∞) whose Fourier transform deviates by at most δ from h̃ in
the peak-norm over frequency. We can choose δ sufficiently small to also guarantee ‖h‖1 < g− δ .
By Lemma 7.30 there exist N ∈ N and C ∈ R1×N with ‖h−CQN‖1 < δ and CQN(t) > 0 for all
t ≥ 0. Hence ‖CQN‖1 ≤ ‖CQN − h‖1 + ‖h‖1 < g which implies (7.4.24). Moreover we infer from
‖h̃−ĈQN‖∞ < δ that ĈQN satisfies (7.4.20).

If h is not constrained in sign one needs to translate∫
∞

0
|CQN(t)|dt < g

into an LMI constraint. This is assured if there exists some D ∈ R1×N with

|CPN(t)|< DPN(t) for t ≥ 0 and DT EN < g. (7.4.25)

Indeed the first relation implies |CQN(t)|< DQN(t) for all t ≥ 0; since DQN(t) is positive for t ≥ 0
we can use (7.4.22) to infer ‖DQN‖1 = DT EN and hence, by the second relation, ‖DQN‖1 < g. It is
not difficult to see that, again, this parameterization is tight.

Lemma 7.33 Suppose that there exist g > 0 and h ∈L2[0,∞) with ‖h‖1 < g that satisfy the FDI
(7.4.20). Then there exist N ∈ N and C,D ∈ R1×N with (7.4.24) such that the FDI (7.4.20) is valid
for h =CQN .

Proof. Let h be as described and choose δ as in the proof of Lemma 7.4.18. Then there exist M ∈N
and C ∈ R1×M with ‖h−CQM‖1 < δ/2. Hence (7.4.20) persists to hold for ĥ being replaced by
ĈQM and ‖CQM‖1 ≤ ‖CQM−h‖1+‖h‖1 < g−δ/2. By Lemma 7.31 we can then find some N ≥M
and DM ∈ R1×M with ‖|CQM| −DQN‖1 < δ/2 and CPM(t) < DPN(t) for all t ≥ 0. We then infer
‖DQN‖1 ≤ ‖DQN −|CQM|‖1 + ‖CQM‖1 < g which implies (7.4.25) due to (7.4.22). The proof is
finished by observing that CQM can be written as CQN by padding C with zeros.

The parameterization of h ∈L1(−∞,∞) is obtained by concatenating functions in L1(−∞,0) with
functions in L1[−∞,0) as

h(t) =

{
C−e−AMtBM for t < 0

C+eAN tBN for t ≥ 0

for M,N ∈ N and C− ∈ R1×M , C+ ∈ R1×N . Let us introduce the abbreviations

c =
(

C− C+

)
, ψ(s) =

(
−(sI +AM)−1BM
(sI−AN)

−1BN

)
, p(t) =

(
PM(−t)
PN(t)

)
, e =

(
EM
EN

)
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M

∆+
d1

w
M

∆
z

Md1 + d2
+

z

d2
+

Figure 7.5: Specific Feedback Interconnection III

and again (7.4.21). Then the Fourier-transform of h is

ĥ(iω) =−C−(iωI +AM)−1BM +C+(iωI−AN)
−1BN = cψ(iω).

Therefore, (7.4.20) reads as(
1

T (iω)

)∗
Ψ(iω)∗H(c,g)Ψ(iω)

(
1

T (iω)

)
≺ 0 for all ω ∈ R∪{∞}

which can be translated into an LMI constraint on (c,g) with the KYP-Lemma. Moreover, for
general non-linearities we can assure ‖h‖1 < g and h(t)> 0 for all t ∈ R by

ce < g and cp(t)> 0 for t ≥ 0.

Finally for odd-monotone nonlinearities the sole constraint ‖h‖1 < g is guaranteed if there exists
some d ∈ R1×(M+N) with |cp(t)|< d p(t) or

de < g and
(

d p(t) cp(t)
cp(t) d p(t)

)
� 0 for t ≥ 0.

All these constraints are LMIable.

7.4.3 General version of main QC stability result

The purpose of this section is to generalize Theorem 7.24 in various respects. We consider the
configuration in Figure 7.5 as described by

w = ∆(z)+d1 and z = Mw+d2,

which reduces to the earlier interconnection

z = Mw+(Md1 +d2) and w = ∆(z)

with external input d = Md1 +d2.
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Figure 7.6: Specific Feedback Interconnection IV

In precise terms we assume that M : L k
2e→L l

2e and ∆ : L l
2e→L k

2e are causal and bounded while
M is linear. The external disturbance d is supposed to be confined to the set ML k

2e +NVe with some
bounded linear filter N and some subset Ve ⊂ L m

2e . Consistently with the convention up to now
we denote by V := Ve ∩L m

2 the finite energy signals in Ve. Note that it is not excluded to have
V ⊂L m

2 which implies Ve = V . The feedback system under consideration as depicted in Figure
7.6 is described by

z−M∆(z) = Mu+Nv with (u,v) ∈L k
2e×Ve. (7.4.26)

Let us introduce the notions of well-posedness and stability that is used in this context.

Definition 7.34 The interconnection (7.4.26) is well-posed if for each (u,v)∈L k
2e×Ve there exists a

unique z∈L l
2e satisfying z−M∆(z) = Mu+Nv and such that the correspondingly defined response

map (u,v)→ z = S(u,v) is causal in the first argument:

S(u,v)T = S(uT ,v)T for all T > 0, (u,v) ∈L k
2e×Ve.

The feedback system (7.4.26) is stable if, in addition, S : L k
2 ×V →L l

2e is bounded.

Well-posedness is clearly a consequence of I −M∆ having a causal inverse since then S(u,v) =
(I−M∆)−1(Mu+Nv). Stability is in turn implied by boundedness if (I−M∆)−1.

For the map Σ we now only require the existence of σi j ∈ R with

Σ

(
w

Mw+Mu+Nv

)
−Σ

(
w

Mw

)
≤

≤

 ‖w‖‖u‖
‖v‖

T  0 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 ‖w‖‖u‖
‖v‖

 for all w,u ∈L k
2 , v ∈ V . (7.4.27)

This is indeed true if Σ is a bounded quadratic form as easily seen along the lines of the first step in
the proof of Theorem 7.24.

Theorem 7.35 Suppose that

• the feedback system (7.4.26) is well-posed for all τ∆ with τ ∈ [0,1];

• there exists ε > 0 such that

Σ

(
w

Mw

)
≤−ε‖w‖2 for all w ∈L k

2 ; (7.4.28)
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• there exists δ0 : V → R with

Σ

(
τ∆(z)

z

)
≥−δ0(v) for all τ ∈ [0,1], z = Mu+Nv, (u,v) ∈L k

2 ×V . (7.4.29)

Then there exists some γ > 0 (only depending on M and Σ) such that

‖S(u,v)‖2 ≤ γ
2 (‖u‖2 +‖v‖2)+ γδ0(v) for all u ∈L k

2 , v ∈ V . (7.4.30)

Proof. For τ ∈ [0,1] let z= Sτ(u,v) denote the response of (7.4.26) if ∆ is replaced by τ∆. Moreover
abbreviate D := L k

2 ×V and De := L k
2e×Ve.

Step 1. Only for proving the following key fact we make use the properties of Σ and the two
hypothesized quadratic constraints: There exists a (τ-independent) γ > 0 such that

τ ∈ [0,1] and Sτ(D)⊂L l
2 imply

‖Sτ(u,v)‖2 ≤ γ
2 (‖u‖2 +‖v‖2)+ γδ0(v) for all (u,v) ∈D . (7.4.31)

Observe for all γ > 0 and all w ∈L k
2 , (u,v) ∈D that

1
γ
‖Mw+Mu+Nv‖2− γ

(
‖u‖2 +‖v‖2)≤

≤ 1
γ
(‖M‖‖w‖+‖M‖‖u‖+‖N‖‖v‖)2− γ

(
‖u‖2 +‖v‖2)=

=

 ‖w‖‖u‖
‖v‖

T  m11/γ m12/γ m13/γ

m12/γ m22/γ− γ m23/γ

m13/γ m23/γ m33/γ− γ

 ‖w‖‖u‖
‖v‖

 , (7.4.32)

where mi j only depend on ‖M‖ and ‖N‖. If we add (7.4.27), (7.4.28) and (7.4.32) one shows exactly
as in Step 1 of the proof of Theorem 7.16 that there exists some γ > 0 with

Σ

(
w

Mw+Mu+Nv

)
+

1
γ
‖Mw+Mu+Nv‖2− γ

(
‖u‖2 +‖v‖2)≤ 0 (7.4.33)

for all w ∈L k
2 , (u,v) ∈D .

Now fix any (u,v) ∈D . Due to the hypothesis in (7.4.31), we infer that z := Sτ(u,v) satisfies z ∈L l
2

and thus also w := τ∆(z) ∈L k
2 . Since we also have z = Mw+Mu+Nv by (7.4.26), we can exploit

(7.4.33) to get

Σ

(
τ∆(M(w+u)+Nv)

M(w+u)+Nv

)
+

1
γ
‖Sτ(u,v)‖2− γ

(
‖u‖2 +‖v‖2)≤ 0. (7.4.34)

Since w+u∈L k
2 and v∈ V it remains to use (7.4.29) in order to obtain from (7.4.34) the inequality

in (7.4.31).
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Step 2. There exists δ̃ > 0, δ̃0 ≥ 0 such that ‖∆(z)T‖ ≤ δ̃‖zT‖+ δ̃0 for all T > 0, z ∈L l
2e. With

γ > 0 from Step 1 fix any ρ0 > 0 with γρ0δ̃ < 1. In this step we show that

τ ∈ [0,1], τ +ρ ∈ [0,1], |ρ| ≤ ρ0, Sτ(D)⊂L l
2 imply Sτ+ρ(D)⊂L l

2 . (7.4.35)

Fix ρ and τ as in (7.4.35) and any (u,v) ∈ D . We have to show that z = Sτ+ρ(u,v) ∈L l
2 . Observe

that z− τM∆(z)−ρM∆(z) = Mu+Nv or z− τM∆(z) = M(ρ∆(z)+u)+Nv or

z = Sτ(ρ∆(z)+u,v).

Again the key idea is to just employ a small-gain argument based on 1− γρ0δ̃ > 0 as follows. The
hypothesis in (7.4.35) allows to exploit (7.4.31); if we recall that Sτ is causal in the first argument,
we infer with γ0 =

√
γδ0(v) for T > 0 that

‖zT‖= ‖Sτ(ρ∆(z)+u,v)T‖= ‖Sτ(ρ∆(z)T +uT ,v)T‖ ≤
≤ ‖Sτ(ρ∆(z)T +uT ,v)‖ ≤ γ‖ρ∆(z)T +uT‖+ γ‖v‖+ γ0 ≤

≤ γ|ρ|(δ̃‖zT‖+ δ̃0)+ γ‖uT‖+ γ‖v‖+ γ0 ≤
≤ (γρ0δ̃ )‖zT‖+ γ‖u‖+ γ‖v‖+ γρ0δ̃0 + γ0.

Hence (1− γρ0δ̃ )‖zT‖ ≤ γ‖u‖+ γ‖v‖+ γρ0δ̃0 + γ0 for all T > 0 which implies z ∈L l
2 .

Step 3. Clearly S0(D) ⊂L l
2 . Since ρ0 in Step 2 does not depend on τ , we can inductively apply

(7.4.35) in order to infer Sτ(D)⊂L l
2 for τ ∈ [0,νρ0]∩ [0,1] and all ν = 1,2, . . ., and thus in partic-

ular also for τ = 1. Hence (7.4.31) implies (7.4.30).

Let us highlight the important specialization to V = L k
2e if N and S are causal. If δ0(v) = δ0 is con-

stant, (7.4.30) just implies that the whole response map S is bounded. With a further specialization
to N = I a little reflection reveals that one recovers Theorem 7.24.

Remark 7.36

• Hence Theorem 7.24 is just a corollary to Theorem 7.35, with the proof of the former being
very similar and not considerable harder than that of the latter. We opted to separate both the
formulation of the theorems and their proofs for didactical reasons only. It should be stressed
that Theorem 7.24 is the precise analogue of the main result of [?] as formulated for IQCs,
while Theorem 7.35 extends [?], which is devoted to an IQC theorem with Popov multipliers,
to an abstract setting.

• The proof of the theorem proceeds via a homotopy argument in order to show that Sτ(L k
2 ,V )

does not leave the space L l
2 if τ moves from 0 to 1. Generalizations in which one replaces

the line-segment {τ∆ : τ ∈ [0,1]} between 0 and ∆ with any continuous curve in the set of
bounded casual operators are easy to formulate and to prove. In a similar vein, we stress that
advanced readers should be in the position to generalize the arguments in the proof to more
sophisticated stability question that are not directly covered by Theorem 7.35.225 Compilation: January 2015
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7.4.4 Popov criteria

As a matter of motivation for the Popov criterion let us consider the nonlinear system

ẋ = Ax+Bφ(Cx), x(0) = x0 (7.4.36)

with A being Hurwitz and with φ : R→ R being continuously differentiable and satisfying a sector
condition with constants α = 0 and β > 0. Our goal is improve on the circle criterion based on static
IQCs by the inclusion of suitable dynamics in the multiplier.

Classically, the key idea is based on the following observation. For any λ ≥ 0 the series intercon-
nection of the filter 1/(λ s+1) with the non-linearity φ as described by

ξ (0) = ξ0, λ ξ̇ =−ξ +u, y = φ(ξ ) (7.4.37)

is passive. In order to show this property let us introduce

Iφ (x) =
∫ x

0
φ(s)ds with satisfies

d
dx

Iφ (x) = φ(x) and Iφ (x)≥ 0 for all x ∈ R,

the latter being a consequence of φ(s)≥ 0 for s≥ 0 and φ(s)≤ 0 for s≤ 0 due to the sector condition.
For any trajectory of (7.4.37) we hence have ξ (t)φ(ξ (t))≥ 0 which allows to infer for all T > 0:

∫ T

0
u(t)y(t)d t =

∫ T

0
[λ ξ̇ (t)+ξ (t)]φ(ξ (t))dt ≥ λ

∫ T

0
ξ̇ (t)φ(ξ (t))dt =

= λ

∫ T

0

d
dt

Iφ (ξ (t))dt = λ Iφ (ξ (T ))−λ Iφ (ξ (0))≥−λ Iφ (ξ0).

We now observe, for any trajectory of (7.4.36) and with z := Cx and w := φ(z), that ζ := λ
d
dt z+ z

satisfies ζ = (λCA+C)x+λCBw. Moreover z(0) = Cx0. Therefore the x-trajectories of (7.4.36)
are same as those of{

ẋ = Ax+Bw, x(0) = x0

ζ = (λCA+C)x+λCBw
interconnected with

{
λ ξ̇ =−ξ +ζ , ξ (0) =Cx0

w = φ(ξ )

(7.4.38)
By the passivity theorem (and in view of Section 7.3.3), interconnection stability is guaranteed if the
former LTI system is strictly anti-passive for some λ ≥ 0. With T (s) = C(sI−A)−1B observe that
its transfer function is (1+λ s)T (s). Strict anti-passivity hence translates into the FDI

Re[(1+λ iω)T (iω)]< 0 for all ω ∈ R∪{∞}

which is in turn equivalent to feasibility of the LMI(
AT X +XA XB

BT X 0

)
+

(
0 1

λCA+C λCB

)T ( 0 1
1 0

)(
0 1

λCA+C λCB

)
≺ 0.
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We have derived some classical version of the Popov criterion for (7.4.36) which is based on hard
IQCs that require the parameter λ to be non-negative.

Let us now discuss how soft IQCs allow to overcome this limitation with ease. In fact we derive a
general version of the Popov criterion for

ẋ = Ax+Bw, x(0) = x0

w = ∆(z)+u
z =Cx

(7.4.39)

with A being Hurwitz and with the sector-bounded diagonal nonlinearity ∆ in Example 7.15. Since
(7.4.39) is a specialization of (7.3.10), we define (7.3.12) and investigate the stability of (7.3.13)
with the set-up of Section 7.4.3 and the choices

N(v) =Cv and V = {eA·x0}.

Again in view of the discussion in Section 7.3.3 and by Example 7.10, the required well-posedness
property is assured for all τ∆ with τ ∈ [0,1] and for all x0 ∈ Rn. Moreover the input-output and
input-state stability properties of Section 7.3.3 hold if one can show the existence of constants γ and
γ0 such that all trajectories of (7.4.39) satisfy

‖z‖2 ≤ γ
2‖u‖2 + γ

2
0‖x0‖2. (7.4.40)

Let us note that z = Mu+Nv for u ∈L k
2 and v ∈ V satisfies ξ̇

z
ż

=

 A B
C 0

CA CB

( ξ

u

)
+

 0
N

NA

v, ξ (0) = 0. (7.4.41)

Hence z ∈L l
2 is differentiable and ż ∈L l

2 . For any λ ∈ Rk and as motivated by our preliminary
considerations we can hence define the map

Σ
Popov
λ

(
w
z

)
=
∫

∞

0
w(t)T diag(λ )ż(t)dt =

∫
∞

−∞

ŵ(iω)∗ diag(λ )(iω)ẑ(iω)dω =

=
∫

∞

−∞

(
ŵ(iω)
ẑ(iω)

)∗
Π

Popov
λ

(iω)

(
ŵ(iω)
ẑ(iω)

)
dω for w ∈L l

2 , z ∈ML k
2 +NV

with the non-proper multiplier

Π
Popov
λ

(s) :=
(

0 diag(λ )s
−diag(λ )s 0

)
.

Note that neither Σ
Popov
γ (as a map) nor Π

Popov
λ

(as a function on the imaginary axis) are bounded.
Still it is not difficult to show (7.4.27). Indeed with γAB := ‖(sI−A)−1B‖∞ the response of (7.4.41)
satisfies

‖ż‖ ≤ ‖CA‖‖ξ‖+‖CB‖‖u‖+‖CA‖‖v‖ ≤ (γAB‖CA‖+‖CB‖)‖u‖+‖CA‖‖v‖.
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Therefore

Σ
Popov
λ

(
w

Mw+Mu+Nv

)
−Σ

Popov
λ

(
w

Mw

)
= Σ

Popov
λ

(
w

Mu+Nv

)
=

=
∫

∞

0
w(t)T diag(λ )ż(t)dt ≤ ‖diag(λ )‖‖w‖ [(γAB‖CA‖+‖CB‖)‖u‖+‖CA‖‖v‖]

and the right-hand side is a quadratic form in ‖w‖, ‖u‖, ‖v‖ not depending on ‖w‖2.

Let us now verify (7.4.29). With z = Mu+Nv ∈ML k
2 +NV and τ ∈ [0,1] we infer

Σ
Popov
λ

(
τ∆(z)

z

)
=

k

∑
ν=1

∫
∞

0
τλν φν(zν(t))żν(t)d t =

=
k

∑
ν=1

τλν

∫
∞

0

d
dt

Iφν
(zν(t))dt =−

k

∑
ν=1

τλν Iφν
(zν(0)).

If we recall |φν(x)| ≤max{|αν |, |βν |}|x| and hence |Iφν
(x)| ≤ 1

2 max{|αν |, |βν |}|x|2 as well as zν(0)=
Cν v(0) (where Cν denotes the ν-th row of C) we conclude

Σ
Popov
λ

(
τ∆(z)

z

)
≥−δ0‖v(0)‖2 with δ0 :=

k

∑
ν=1

1
2
|λν |max{|αν |, |βν |}‖Cν‖2.

Let us finally consider (7.4.28). If w ∈L k
2 and z = Mw we clearly have ẑ = T ŵ and hence

Σ
Popov
λ

(
w

Mw

)
=
∫

∞

−∞

ŵ(iω)∗
(

I
T (iω)

)∗
Π

Popov
λ

(iω)

(
I

T (iω)

)
ŵ(iω)dω.

Since T is strictly proper, (7.4.28) is equivalent to the FDI(
I

T (iω)

)∗
Π

Popov
λ

(iω)

(
I

T (iω)

)
≺ 0 for all ω ∈ R∪{∞}. (7.4.42)

Whenever there exists some λ ∈ Rk which satisfies this FDI, Theorem 7.35 allows to infer the
existence of some γ > 0 such that, together with (7.3.14),

‖z‖2 ≤ γ
2‖u‖2 + γ‖v‖2 + γδ0(v)≤ γ

2‖u‖2 +(γγ
2
A + γδ0)‖x0‖2.

This is the stability property which we intended to show.

Clearly (7.4.42) is a generalization of the classical Popov criterion as considered in the motivating
introduction to multiple nonlinearities. Since T is strictly proper, the FDI is equivalent to an LMI
constraint on λ ∈ Rk. It is a crucial observation that we can easily combine these Popov multipliers
with those obtained earlier, such as the full block-multipliers (7.3.19) introduced in the discussion
of the circle criterion. Indeed with Π ∈ΠΠΠ and λ ∈ Rk we infer that (7.4.29) persists to hold for

Σ = ΣΠ +Σ
Popov
λ

with multiplier Π+Π
Popov
λ

(iω)
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a 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
bcir 2.19 1.6 1.24 1 0.83 0.705 0.611 0.537

bpopc 2.19 1.6 1.24 1 0.83 0.705 0.611 0.537
bpop 2.99 2.27 1.8 1.48 1.24 1.06 0.918 0.802
bzfc 3.12 2.21 1.67 1.32 1.08 0.905 0.776 0.677
bcom 3.43 2.47 1.9 1.52 1.26 1.06 0.924 0.803

bzf = bpar 4.55 2.91 2.1 1.62 1.31 1.09 0.925 0.803

Table 7.3: Computed stability margins in Example 7.38.

which involves the FDI(
I

T (iω)

)∗ [( Q S
ST R

)
+

(
0 diag(λ )(iω)

(iω)∗ diag(λ ) 0

)](
I

T (iω)

)
=

=

 I
T (iω)

(iω)T (iω)

∗ Q S diag(λ )
ST R 0

diag(λ ) 0 0

 I
T (iω)

(iω)T (iω)

≺ 0 for all ω ∈ R∪{∞}

and hence the LMI

(
AT X +XA XB

BT X 0

)
+

 0 I
C 0

CA CB

T  Q S diag(λ )
ST R 0

diag(λ ) 0 0

 0 I
C 0

CA CB

≺ 0.

(7.4.43)

Corollary 7.37 (Full Block Multiplier Popov Criterion) Suppose there exist Π ∈ ΠΠΠ, λ ∈ Rk and
X = XT satisfying (7.4.43). Then there exist constants γ and γ0 with (7.4.40).

One can surely specialize Π to the smaller class of multipliers in Example 7.15 in order to reduce
computational complexity while possible introducing conservatism. It is stressed that the Popov
multipliers should be always applied in combination with those from the circle criterion in order to
avoid overly conservative tests.

Example 7.38 Let us continue Examples 7.20 and 7.29. Table 7.3 displays the stability margins
bpopc and bpop for the classical and the more general Popov criterion. For reasons of comparison
we display as well bcom for a combination of the general Popov criterion with causal Zames-Falb
multipliers. The examples nicely illustrate the expected relations bcir ≤ bpopc ≤ bpop ≤ bcom ≤ bpar
and bcir ≤ bzfc ≤ bzf ≤ bpar as well as bzfc ≤ bcom, while the Zames-Falb tests with fixed basis
functions is not comparable to the Popov test. For this example, it is interesting to observe that the
classical Popov criterion does not lead to an improvement over the circle criterion, while a negative
Popov multiplier allows to prove stability for a significantly larger parameter b. Moreover, the
combination of Popov and causal Zames-Falb multipliers beats the pure version and is beaten by a
Zames-Falb analysis with a simple non-causal multiplier.
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7.4.5 Extension to incremental stability and well-posedness

Let us consider assume that M, N, Σ, Ve and V have the same properties as described in Section 7.6,
while

∆ : L l
2e→L k

2e is causal and incrementally bounded.

In particular for some nonlinear ∆ it is relevant to analyze interconnection stability “around a given
trajectory". If (7.4.26) is well-posed and (u0,v0) ∈L k

2e×V is an external disturbance let us denote
the nominal response by z0 = S(u0,v0). For (u,v) ∈L k

2 ×V and z = S(u0 + u,v0 + v) it is then of
interest to bound the norm of the increment

z̄ := z− z0 = S(u0 +u,v0 + v)−S(u0,v0)

in terms of those of the disturbance increment (u,v). With w0 = ∆(z0), we note for this purpose that
z0 = Mw0 +Mu0 +Nv0 and z = M∆(z)+M(u0 +u)+N(v0 + v) and hence

z̄ = M(∆(z0 + z̄)−∆(z0))+Mu+Mv.

This can in turn be interpreted as

z̄ = Mw̄+Mu+Nv interconnected with w̄ = ∆(z0 + z̄)−∆(z0).

Therefore we can directly apply Theorem 7.35 with ∆(·) replaced by ∆(z0 + ·)− ∆(z0) in order
to guarantee incremental stability. Since ∆ is causal and incrementally bounded, let us stress that
∆(z0 + ·)−∆(z0) is causal and bounded such that Theorem 7.35 leads to the following incremental
quadratic stability result.

Corollary 7.39 Suppose that ∆ is causal and incrementally bounded and that (u0,v0) ∈L k
2e×Ve.

If there exists ε > 0 and δ0 : V → R with (7.4.28) and

Σ

(
τ∆(z0 +Mu+Nv)− τ∆(z0)

Mu+Nv

)
≥−δ0(v) for all τ ∈ [0,1], (u,v) ∈L k

2 ×V

then there exists some γ > 0 such that

‖S(u0 + v,v0 + v)−S(u0,v0)‖2 ≤ γ
2(‖u‖2 +‖v‖2)+ γδ0(v) for all (u,v) ∈L k

2 ×V .

This result involves an incremental version of the quadratic constrain on ∆, without any modification
of the quadratic constraint on M. The main goal of this section is to show that validity of this
incremental quadratic constraint for all (u0,v0) ∈ L k

2e×Ve does also imply well-posedness. We
can hence get rid of the assumption that the interconnection (7.4.26) is well-posed and actually
conclude it as a result. We require the mild extra hypothesis that 0 ∈ V which is of course true in
the important case that Ve is a subspace of L m

2e .

Theorem 7.40 Suppose that
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• there exist ε > 0 such that

Σ

(
w

Mw

)
≤−ε‖w‖2 for all w ∈L k

2 ; (7.4.44)

• 0 ∈ V and there exists δ0 : V → R with δ0(0) = 0 and such that

Σ

(
τ∆(z+Mu+Nv)− τ∆(z)

Mu+Nv

)
≥−δ0(v)

for all τ ∈ [0,1], u ∈L k
2 , v ∈ V , z ∈ML k

2e +NVe. (7.4.45)

Then the feedback system (7.4.26) is well-posed. Moreover there exists some γ > 0 such that the
response map S satisfies

‖S(u0 +u,v0 + v)−S(u0,v0)‖2 ≤ γ
2(‖u‖2 +‖v‖2)+ γδ0(v)

for all (u,v) ∈L k
2 ×V , (u0,v0) ∈L k

2e×Ve. (7.4.46)

Proof. We use again the abbreviations De := L k
2e×Ve and D := L k

2 ×V , and with τ ∈ [0,1] we
consider (7.4.26) for τ∆ replacing ∆. Whenever the corresponding interconnection is well-posed,
the response map De 3 (u,v)→ z ∈L l

2e is denoted by Sτ . For ease of exposition we express well-
posedness by just saying that Sτ exists. As a means of reference for the proof of the following three
steps let us finally introduce the property

Sτ exists and satisfies Sτ((u0,v0)+D)−Sτ(u0,v0)⊂L l
2 for all (u0,v0) ∈De. (7.4.47)

Step 1. There exists some (τ-independent) γ such that (7.4.47) for τ ∈ [0,1] implies

‖Sτ(u0 +u,v0 + v)−Sτ(u0,v0)‖2 ≤ γ
2 (‖u‖2 +‖v‖2)+ γδ0(v)

for all (u,v) ∈D , (u0,v0) ∈De. (7.4.48)

Indeed, in view of unchanged hypotheses on M and Σ one can still conclude as in Step 1 of the proof
of Theorem 7.35 that there exists some γ > 0 with (7.4.33) for all w∈L k

2 , (u,v)∈D . If w,w0 ∈L l
2e

satisfy w−w0 ∈L k
2 we infer for all (u,v) ∈D that

Σ

(
w−w0

M(w−w0)+Mu+Nv

)
+

+
1
γ
‖M(w−w0)+Mu+Nv‖2− γ

(
‖u‖2 +‖v‖2)≤ 0. (7.4.49)

For (u0,v0) ∈ De and (u,v) ∈ D set z0 := Sτ(u0,v0) and z := Sτ(u0 + u,v0 + v). Then z− z0 ∈L l
2

by (7.4.47). Hence w0 := τ∆(z0) and w := τ∆(z) satisfy w−w0 ∈L k
2 since ∆ has finite incremental
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gain. Due to z0 = Mw0 +Mu0 +Nv0 and z = Mw+M(u0 + u)+N(v0 + v) we note that z− z0 =
M(w−w0)+Mu+Nv. Therefore (7.4.49) implies

Σ

(
τ∆(z)− τ∆(z0)

z− z0

)
+

1
γ
‖Sτ(u0 +u,v0 + v)−Sτ(u0,v0)‖2− γ

(
‖u‖2 +‖v‖2)≤ 0.

On the other hand, because z0 = M(w0 + u0) +Nv0 ∈ ML k
2e +NVe and z = z0 +Mũ+Nv with

ũ = w−w0 +u ∈L k
2 , v ∈ V , we can apply (7.4.45) in order to arrive at (7.4.48).

Step 2. With γ from Step 1 choose any ρ0 > 0 for which ρ0 < 1/(γ‖∆‖i). Then

(7.4.47) holds for τ ∈ [0,1], τ +ρ ∈ [0,1], |ρ| ≤ ρ0

=⇒ (7.4.47) holds for τ +ρ replacing τ. (7.4.50)

Fix ρ and τ as in (7.4.50). Existence of Sτ+ρ involves solving z− (τ +ρ)M∆(z) = Mu+Nv for z ∈
L l

2e. This equation can be rewritten as z− τM∆(z) = M(ρ∆(z)+u)+Nv or as z = Sτ(ρ∆(z)+u,v)
since Sτ is assumed to exist. This motivates to introduce the map

F(u,v) : L l
2e→L l

2e, F(u,v)(z) := Sτ(ρ∆(z)+u,v) for any (u,v) ∈De.

As just seen we are lead to the following crucial equivalence for (u,v) ∈De and z ∈L l
2e:

z− (τ +ρ)M∆(z) = Mu+Nv iff z = F(u,v)(z). (7.4.51)

Moreover, if exploiting causality of ∆ and of Sτ in the first argument, it is easy to check that F(u,v) is
causal; indeed for all T > 0 we get

F(u,v)(z)T = Sτ(ρ∆(z)+u,v)T = Sτ(ρ∆(z)T +uT ,v)T =

= Sτ(ρ∆(zT )T +uT ,v)T = Sτ(ρ∆(zT )+u,v)T = F(u,v)(zT )T .

Due to (ρ∆(z)+u)T = (ρ∆(z)+uT )T = (ρ∆(zT )+u)T we actually have

F(u,v)(z)T = F(uT ,v)(z)T = F(u,v)(zT )T . (7.4.52)

Now choose (u0,v0)∈De and (u,v)∈D as well as z1,z2 ∈L l
2e. For T > 0 we infer from (ρ∆(z1)T +

(u0)T ,v0) ∈De and (ρ∆(z2)T −ρ∆(z1)T +uT ,v) ∈D together with the assumption (7.4.47) that

Sτ(ρ∆(z2)T +(u0 +u)T ,v0 + v)−Sτ(ρ∆(z1)T +(u0)T ,v0) ∈L l
2 .

If again exploiting causality and with (7.4.48) we get

‖F(u0+u,vo+v)(z2)T −F(u0,v0)(z1)T‖=
= ‖Sτ(ρ∆(z2)+u0 +u,v0 + v)T −Sτ(ρ∆(z1)+u0,v0)T‖=

= ‖[Sτ(ρ∆(z2)T +(u0 +u)T ,v0 + v)−Sτ(ρ∆(z1)T +(u0)T ,v0)]T‖ ≤
≤ ‖Sτ(ρ∆(z2)T +(u0 +u)T ,v0 + v)−Sτ(ρ∆(z1)T +(u0)T ,v0)‖ ≤

≤ γ‖ρ∆(z2)T −ρ∆(z1)T +uT‖+ γ‖v‖+
√

γδ0(v)≤
≤ γ‖ρ∆(z1)T −ρ∆(z1)T‖+ γ‖uT‖+ γ‖v‖+

√
γδ0(v)≤

≤ γρ0‖∆‖i‖(z2)T − (z1)T‖+ γ‖u‖+ γ‖v‖+
√

γδ0(v). (7.4.53)
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After having collected all required properties of the map F(u,v), let us now fix (u0,v0) ∈ De and
T1 > 0. If we recall γρ0‖∆‖i < 1, we infer from (7.4.53) for (u,v) = (0,0) and with δ0(0) = 0 that
the map z→ F(u0,v0)(z)T1 is a strict contraction on the the space (L l

2e)T1 which can be identified with
L l

2 [0,T1] and is hence complete. By Banach’s fixed-point theorem there exists a unique z1 ∈ (L l
2e)T1

with F(u0,v0)(z1)T1 = z1.

For any diverging sequence T1 < T2 < · · · denote the unique fixed-point corresponding to Tν by zν .
Note that zν = (zν)Tν

. If ν < µ we also infer with Tν < Tµ and causality that

F(u0,v0)((zµ)Tν
)Tν

= F(u,v)(zµ)Tν
= [F(u0,v0)(zµ)Tµ

]Tν
= (zµ)Tν

.

Due to uniqueness of zν as a fixed point, we can conclude

(zµ)Tν
= zν for ν ≤ µ.

A little reflection shows that the signal z̃ ∈L l
2e is hence well-defined by the assignment

z̃Tν
= zν for ν = 1,2, . . . .

Based on this construction we are now ready to prove existence of Sτ+ρ , which means that (7.4.26)
is well-posed for (τ +ρ)∆ replacing ∆.

• Existence of response. Again by causality,

F(u0,v0)(z̃)Tν
= F(u0,v0)(z̃Tν

)Tν
= F(u0,v0)(zν)Tν

= zν = (zν)Tν
= z̃Tν

for all ν = 1,2, . . . . This implies F(u0,v0)(z̃) = z̃ and hence z̃− (τ +ρ)M∆(z̃) = Mu0 +Nv0 by
(7.4.51).

• Uniqueness of response. If ẑ ∈ L l
2e satisfies ẑ− (τ + ρ)M∆(ẑ) = Mu0 +Nv0 we have ẑ =

F(u0,v0)(ẑ) and thus ẑTν
= F(u0,v0)(ẑ)Tν

= F(u0,v0)(ẑTν
)Tν

and thus (ẑ)Tν
= zν = z̃Tν

due to fixed-
point uniqueness. Since ν was arbitrary we infer ẑ = z̃.

• Definition of response map. We have just shown that z̃ is the unique feedback response to
(u0,v0) ∈De. Since (u0,v0) ∈De was arbitrary, we conclude that the feedback response map
Sτ+ρ is well-defined.

• Causality. It remains to show that Sτ+ρ is causal in the first argument. Let T > 0 and ẑ =
Sτ+ρ((u0)T ,v0). Then ẑ = F((u0)T ,v0)(ẑ) and hence with (7.4.52) we have

ẑT = F((u0)T ,v0)(ẑ)T = F(u0,v0)(ẑT )T an clearly also z̃T = F(u0,v0)(z̃T )T .

Fixed-point uniqueness implies ẑT = z̃T and thus Sτ+ρ((u0)T ,v0)T = Sτ+ρ(u0,v0)T .

Let us now finish the proof of Step 2. For (u0,v0) ∈ De and (u,v) ∈ D set z0 = Sτ+ρ(u0,v0) and
z = Sτ+ρ(u0 +u,v0 + v) which are both in L l

2e. With (7.4.53) we obtain

(1− γρ0‖∆‖i)‖(z1)T − (z2)T‖ ≤ γ‖u‖+ γ‖v‖+
√

γδ0(v)
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for all T > 0. Since the right-hand side is bounded for T →∞ and since (1−γρ0‖∆‖i)> 0, we arrive
at z1− z2 ∈L l

2 .

Step 3. Clearly (7.4.47) holds for τ = 0. Since ρ0 in Step 2 does not depend on τ , we can inductively
apply (7.4.50) in order to infer that (7.4.47) persists to hold for τ ∈ [0,νρ0]∩ [0,1] and all ν = 1,2, . . .,
and thus also for τ = 1. Then (7.4.48) leads to (7.4.46).

The following easy-to-prove variant allows to draw conclusions about causality of the response map
in the input v ∈ Ve.

Corollary 7.41 In addition to all hypotheses in Theorem 7.40 suppose that N is causal and that
V = L m

2e . Then the response S is causal.

Proof. We only point out the minor variations that are required in the proof of Theorem 7.40.
Existence of Sτ involves causality in both arguments. In Step 2 one can then reason as for (7.4.52)
that Fu,v(z)T = Fu,v(z)T . This allows to to apply the same arguments as in the proof in order to show
that Sτ+ρ is causal in the second argument, which in turn implies causality of Sτ+ρ . We exploit
causality of N in order to guarantee that S0 is causal in Step 3.

Remark 7.42

• Even if considering nonlinear systems ∆ they often are guaranteed to have the property ∆(0) =
0. If we can apply Theorem 7.40, we infer that (0,0) ∈ D has the response z = 0 and hence,
due to well-posedness, S(0,0) = 0. Then (7.3.23) boils down to the conclusion of Theorem
7.35 and the feedback interconnection is also stable.

• If ∆ is affine or even linear, the hypothesis of Theorem 7.40 are identical to those of Theorem
7.35. Then the latter indeed guarantees well-posedness, stability and incremental stability of
the feedback interconnection at once. If ∆ might be infinite-dimensional (such as systems
described by partial differential equations or a delay in continuous-time) it could be very
beneficial that it is not required to verify well-posedness at the outset.

• We have made use of a rather straightforward application of the global version of Banach’s
fixed-point theorem. As variants on could work with well-established local versions thereof.
We stress again that the presented technique of proof allows the derivation of variants that are
not covered by Theorem 7.40.

234 Compilation: January 2015



7.5. ROBUST STABILITY ANALYSIS 235

7.5 Robust stability analysis

7.6 Integral quadratic constraints

7.6.1 Stability tests with integral quadratic constraints

In this section we assume that the uncertainties ∆ are general but that z=Mw is defined with a proper
stable rational matrix M̂ as

ẑ(iω) = M̂(iω)ŵ(iω), iω ∈ C0.

Recall that x̂ denotes the Fourier transform of the signal x ∈L2.

Instead of general quadratically continuous mappings, let us consider so-called integral quadratic
forms. Suppose Π : iω → Π(iω) is any (measurable) mapping that assigns to every iω ∈ C0 a
Hermitian matrix Π(iω) of dimension (k+ l)× (k+ l) that is bounded:

‖Π(iω)‖ ≤ p for all iω ∈ C0.

(Note that we will consider in most cases mappings that are defined with a rational matrix valued
function Π(s); then it is just required that this rational matrix is Hermitian on the imaginary axis,
and that it has neither a pole in C0 nor at infinity such that it is proper.)

For any x,y ∈L k+l
2 we can define with their Fourier transforms x̂, ŷ the mapping

〈x,y〉 :=
∫

∞

−∞

x̂(iω)∗Π(iω)ŷ(iω)dω

which satisfies (??) with bound σ = p.

Condition (??) then amounts to∫
∞

−∞

ŵ(iω)∗
(

I
M̂(iω)

)∗
Π(iω)

(
I

M̂(iω)

)
ŵ(iω)dω ≤− ε

2π

∫
∞

−∞

ŵ(iω)∗ŵ(iω)dω

for all w ∈L k
2 . This is obviously implied by the frequency domain inequality (FDI)(

I
M̂(iω)

)∗
Π(iω)

(
I

M̂(iω)

)
≤− ε

2π
I for all iω ∈ C0.

It is not required for our arguments and not difficult to see that the converse holds as well; both
characterization are in fact equivalent.

Lemma 7.43 Suppose Π is a (measurable) bounded Hermitian valued mapping on C0. Then the
following two statements are equivalent:
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•
∫

∞

−∞

x̂(iω)∗Π(iω)x̂(iω)dω ≤−α

∫
∞

−∞

x̂(iω)∗x̂(iω)dω for all x ∈L2.

• Π(iω)≤−αI for all iω ∈ C0.

The reason for this re-formulation: the frequency domain inequality is easier to check.

Now we get as immediate corollaries to Theorems ?? and ?? the following stability results using
integral quadratic constraints (IQC’s).

Theorem 7.44 Suppose that, for all ∆ ∈ ∆∆∆, IM(∆) is well-posed and that∫
∞

−∞

(
∆̂(z)(iω)

ẑ(iω)

)∗
Π(iω)

(
∆̂(z)(iω)

ẑ(iω)

)
dω ≥ 0 for all z ∈L l

2 . (7.6.1)

If there exists an ε > 0 with(
I

M̂(iω)

)∗
Π(iω)

(
I

M̂(iω)

)
≤−εI for all ω ∈ R, (7.6.2)

then the L2-gain of I −1
M (∆) is bounded uniformly in ∆ ∈ ∆∆∆.

Theorem 7.45 Suppose that any ∆ ∈ ∆∆∆ has finite incremental L2-gain and satisfies∫
∞

−∞

(
∆̂(z1)(iω)− ∆̂(z2)(iω)

ẑ1(iω)− ẑ2(iω)

)∗
Π(iω)

(
∆̂(z1)(iω)− ∆̂(z2)(iω)

ẑ1(iω)− ẑ2(iω)

)
dω ≥ 0 (7.6.3)

for all z1,z2 ∈L l
2 . If there exists an ε > 0 with (7.6.2), then IM(∆) is well-posed, and the incre-

mental L2-gain of its inverse is uniformly bounded in ∆ ∈ ∆∆∆.

Remark 7.46 • One should read ∆̂(z)(iω) correctly: Take z, let it pass through ∆ to get the
signal ∆(z), take its Fourier transform ∆̂(z), and evaluate this Fourier transform at iω to obtain
∆̂(z)(iω). Therefore, the signal z with power distribution ẑ is mapped into the signal ∆(z)
with power distribution ∆̂(z). (In general, of course, there is no nice operation - such as the
multiplication by a transfer matrix - that maps ẑ directly into ∆̂(z). However, since we only
transform signals, no complication arises).
The inequality (7.6.1) defined via Π hence restricts how the power distribution of z can and
cannot be rearranged in ∆̂(z); (7.6.1) could be called a power distribution constraint. The
constraint (7.6.3) admits the same interpretation for increments.

• In principal, the inequality (7.6.2) is easy to verify: one just needs to plot the largest eigenvalue
of the left-hand side over frequency and read of the maximum that this curve takes. This could
be viewed as a generalization of plotting the largest singular values of a certain transfer matrix
to apply the small-gain theorem.
If Π is real-rational and proper, the Kalman-Yakubovich-Popov Lemma allows to reduce this
condition to the solvability of a linear matrix inequality; this is the reason why IQC’s play
such prominent role in the LMI approach to robust control. We will elaborate on these points
in Section ??.
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7.6.2 The philosophy for applying IQC’s

So far we have considered one quadratically continuous mapping Σ and one IQC to characterize
stability. For small-gain and passivity conditions, this was sufficient to arrive at standard stability
results. However, if one has a more detailed picture about the uncertainty, one can often find more
than one IQC that are satisfied by the uncertainties.

For the purpose of illustration let us look at a simple example. Consider the structured nonlinear
uncertainties ∆ : L l

2e→L k
2e that are defined for fixed partitions

z =

 z1

...
zm

 , w =

 w1

...
wm


(where the signals z j and w j can have different sizes) with the causal mappings ∆ j : L2e → L2e,
∆ j(0) = 0, as

w = ∆(z), ∆(

 z1

...
zm

) =

 ∆1(z1)
...

∆m(zm)

 .

Furthermore, it is assumed that ‖∆ j‖2i ≤ 1 such that, as well, ‖∆ j‖2 ≤ 1.

Note that the set of all these uncertainties is star-shaped. Due to ‖∆‖2i ≤ 1, the incremental small-
gain theorem applies. Then ‖M̂‖∞ < 1 implies that IM(∆)−1 exists, is causal, and uniformly in-
crementally bounded. However, this also holds for the much larger class of all uncertainties ∆ with
‖∆‖2i ≤ 1, even if they do not have the specific structure considered here.

Hence we should find more IQC’s that provide a way to capture this structure. Motivated by µ-
theory, we consider the IQC’s defined with the constant matrices Π given as

Π =

(
Q S
ST R

)
, S = 0, Q = diag(−r1I, . . . ,−rmI), R = diag(r1I, . . . ,rmI), r j > 0 (7.6.4)

where the sizes of the identity blocks in Q and R correspond to the sizes of the signals w j and z j

respectively. We infer

∫
∞

0

(
∆(z1)(t)−∆(z2)(t)

z1(t)− z2(t)

)T

Π

(
∆(z1)(t)−∆(z2)(t)

z1(t)− z2(t)

)
dt =

=
∫

∞

0

m

∑
j=1
−r j‖∆ j(z1)(t)−∆ j(z2)(t)‖2 + r j‖z1(t)− z2(t)‖2 dt =

=
m

∑
j=1

∫
∞

0
r j[‖z1(t)− z2(t)‖2−‖∆ j(z1)(t)−∆ j(z2)(t)‖2]dt ≥ 0

such that the incremental IQC’s (7.6.3) hold for all uncertainties and for all Π.
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We have found a whole family of IQC’s for our class of uncertainties, parameterized by the numbers
r j. If we just find among these infinitely many IQC’s one for which, in addition, the FDI (7.6.2)
holds, we conclude exactly the same stability properties of IM(∆) as before.

Again, we stress that all IQC’s (7.6.3) must be satisfied by the uncertainties, but only for one IQC
we need to assure (7.6.2)! Hence, the more IQC’s we find for the uncertainties, the more freedom
we have if trying to fulfill the FDI and the better the chances are to verify robust stability.

Let us now have a more detailed look at (7.6.2) for the specific scalings (7.6.4). The inequality
simply reads as

M̂(iω)∗RM̂(iω)−R < 0 for all ω ∈ R∪{∞}. (7.6.5)

(Since we have replaced≤−εI by < 0, we have to include ω = ∞ in the condition. Why?) The goal
is to find some R (structured as in (7.6.4)) that satisfies this FDI. It will turn out that the search for R
can be cast into an LMI problem.

In order to relate to µ-theory, re-parameterize

R = DT D

with D in the same class as R. Then M̂(iω)∗DT DM̂(iω)−DT D< 0 is equivalent to ‖DM̂(iω)D−1‖<
1 if ‖.‖ denotes the maximal singular value for complex matrices. Therefore, (7.6.5) is nothing but

‖DM̂D−1‖∞ < 1 (7.6.6)

which is a scaled H∞ condition. Such conditions - possibly with frequency dependent scalings D
- appear in µ-theory. Note, however, that the conclusions made in µ-theory are usually only valid
for linear time-invariant uncertainties that admit a Fourier transform with suitable properties. Our
conclusions hold for a much larger class of uncertainties since our proof was not based on a Nyquist
type argument in the frequency domain.

We have shown that we can replace ‖M̂‖∞ < 1 by the scaled small-gain condition (7.6.6) to come
to the same robust stability conclusions. The scalings D capture the knowledge about the structure
of the uncertainties and provide us extra freedom to satisfy (7.6.5). Hence, the scalings reduce the
conservatism that is involved in the simple but rough condition ‖M̂‖∞ < 1.

Let us introduce a terminology: We will call the matrices Π that define the IQC’s scalings or multi-
pliers. The first name is motivated by the above mentioned relation to µ-theory. The second name
reminds of the relation to classical multipliers that have been used in loop transformation arguments.

The example reveals the philosophy in applying the robust stability results discussed here: Try to
find as many multipliers Π as possible such that the IQC’s (7.6.1) (or (7.6.3)) hold for the considered
class of uncertainties. Then find, among all these multipliers, one that also satisfies the FDI (7.6.2).
If this is possible, one can conclude (existence and) uniform boundedness of the (incremental) L2-
gain of IM(∆)−1.

A simple trick often allows to increase the number of multipliers. Indeed, if Π1, . . . ,Πk are multipli-
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ers that satisfy (7.6.1) (or (7.6.3)), the same is true of all

k

∑
j=1

τ jΠ j if τ j ≥ 0. (7.6.7)

One can hence easily construct out of finitely many multipliers an infinite family of multipliers
parameterized by τ j. The same trick applies to an infinite set of multipliers. (Those familiar with
the corresponding concepts will recognize that we just need to take the convex conic hull; any set of
multipliers can, therefore, always assumed to be a convex cone.)

Finding multipliers such that a specific class of uncertainties satisfies the corresponding IQC is
not really supported by theory; this is indeed the hard part in concrete applications. For suitable
parameterizations of the family of considered multipliers (such as (7.6.7) or more general versions),
the second step of finding one multiplier that also renders the FDI (7.6.2) satisfied will turn out to be
an LMI problem.

7.6.3 Examples of IQC’s

In what follows we provide a non-exhaustive list of uncertainties and suitable multipliers. We recall
that one needs to always verify Assumption ??, in particular star-shapeness with center 0, in order
to apply Theorem ??, Theorem ?? or their IQC counterparts.

• The structured nonlinear uncertainties

∆(

 z1

...
zm

) =

 ∆1(z1)
...

∆m(zm)

 (7.6.8)

with causal ∆ j that satisfy ‖∆ j‖2 ≤ 1 or ‖∆ j‖2i ≤ 1 fulfill (7.6.1) or (7.6.3) for the class of
multipliers

ΠΠΠ := {
(

Q 0
0 R

)
, Q = diag(−r1I, . . . ,−rmI),R = diag(r1I, . . . ,rmI)> 0}. (7.6.9)

• In (7.6.8) we can confine the attention to linear causal mappings ∆ j only. Beautiful results by
Shamma and Megretsky [29, 52] show that, then, the resulting scaled H∞-condition (7.6.2) is
not only sufficient for robust stability (as we have proved) but even necessary (what is harder
to show).

• We can specialize further and use (7.6.9) also for the block-diagonal time-varying parametric
uncertainties

w j(t) = ∆ j(t)z j(t)

with (measurable) matrix valued functions satisfying

‖∆ j(t)‖ ≤ 1 for all t ≥ 0.
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Equivalently, we have

w(t) = ∆(t)z(t), ∆(t) = diag(∆1(t), . . . ,∆m(t)), ‖∆(t)‖ ≤ 1 for t ≥ 0.

In this case, for any Π in the class (7.6.9), the uncertainties even satisfy the quadratic constraint(
∆(t)

I

)T

Π

(
∆(t)

I

)
≥ 0. (7.6.10)

(We will see in Section ?? that this implies exponential stability.) The quadratic constraint still
holds if using a time-varying multiplier. Let P : [0,∞)→ ΠΠΠ be (measurable and essentially)
bounded. Note that P(t) admits exactly the same structure as the constant multipliers above.
For any such time-varying scaling we infer(

∆(t)
I

)T

P(t)
(

∆(t)
I

)
≥ 0 for all t ≥ 0.

With the quadratically continuous mapping (why?)

Σ(x) :=
∫

∞

0
x(t)T P(t)x(t)dt

on L k+l
2 , we infer (??) by linearity. Hence, if there exists an ε > 0 with

∫
∞

0

(
w(t)

M(w)(t)

)T

P(t)
(

w(t)
M(w)(t)

)
dt ≤−ε‖w‖2

2, (7.6.11)

we can apply the more abstract Theorem ?? to infer that IM(∆)−1 exists and has a uniformly
bounded L2-gain. Again, (7.6.11) amounts to a scaled small-gain condition with time-varying
scalings. If M can be described by

ẋ = A(t)x+B(t)w, z =C(t)x+D(t)w, x(0) = 0,

where ẋ = A(t)x is exponentially stable, the validity of (7.6.11) can be characterized by a
differential linear matrix inequality.

7.7 Notes and remarks

We stress that it is somewhat restrictive to consider a system as a mapping of signals, thus fixing what
is considered as the system’s input or output. It is not too difficult to extend our results to the more
general and elegant behavioral approach [?,?], in line with the older literature in which systems have
been defined as relations rather than mappings [?, ?, ?, ?]. For reasons of clarity we have opted to
confine ourselves to a few concepts in the pretty specific L2-setting which sets the stage for various
modifications or extensions that have been suggested in the literature. Let us hint at a few of these
generalizations in various respects. All notions are as easily introduced for Lp- and Lpe-spaces
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with 1≤ p≤∞. The time-axis can be chosen as all nonnegative integers to investigate discrete-time
systems. A mixture of continuous- and discrete-time allows to consider hybrid systems or systems
with jumps. Moreover, the value set of the signals can be taken to be an arbitrary normed space,
thus including infinite dimensional systems. Finally, the presented stability concepts are important
samples out of a multitude of other possibilities. For example, stability of S if often defined to just
require S to map L2 into L2 without necessarily having finite L2-gain. On the other hand in various
applications it is important to qualify in a more refined fashion how ‖S(u)T‖ is related to ‖uT‖ for
all T on the time set. For example, one could work with ‖S(u)T‖ ≤ γ(‖uT‖) to hold for all u, T > 0
and for some function γ : [0,∞)→ [0,∞) in a specific class. We have confined ourselves to affine
functions γ , but one could as well take the class of monotonic functions or include specific tangency
and growth conditions for T → 0 and T →∞ respectively, some of which can be found e.g. in [?,?].
Many of the abstract results to be presented in subsequent chapters could be formulated with general
designer chosen stability properties that only need to obey certain (technical) axiomatic hypotheses.

The literature on the subject developed in this chapter is vast. We developed the subject on the basis
of [?] and [?] but with modified proofs that are meant to offer openings for suitable generalizations.
Theorems 7.35 and 7.40 are examples of such extension that go beyond those available in the lit-
erature and could be obtained relatively easily. In particular we believe it to be highly relevant to
develop generic non-global IQC stability analysis tests (in order to limit the domains of definitions
of the operators or the external signals) that are LMIable.

Zames-Falb multipliers have attracted substantial attention in the literature [?]. The tight parametriza-
tion of all multipliers in Section ?? goes beyond [?] in that it closes a gap for odd-monotone nonlin-
earities by making use of non-trivial results from approximation theory and matrix sum-of-squares
relaxations. Notable extensions to repeated nonlinearities with example applications can be found
in [?, ?, ?, ?, ?].

For results in order to optimize over both multiplier zeros and poles we refer to [?].

7.8 Exercises

Exercise 1
Consider the systems R : L k

2e→L l
2e, S : L k

2e→L l
2e and T : L l

2e→L m
2e .

(a) If R, S, T are bounded, show that ‖αS‖= |α|‖S‖ (α ∈R), ‖R+S‖ ≤ ‖R‖+‖S‖ and ‖T S‖ ≤
‖T‖‖S‖.

(b) Show that the properties in a. hold for incrementally bounded systems and the incremental
gain.

(c) If S is linear show that ‖S‖ equals the infimal γ with

‖S(u)T‖ ≤ γ‖uT‖ for all T > 0, u ∈L k
2e.
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Exercise 2
Suppose S : L k

2e→L l
2e is causal and has finite incremental gain. Moreover, assume that the restric-

tion S : L k
2 →L k

2 has an inverse whose incremental gain is finite. Show that S : L2e→L2e itself
has an inverse with finite incremental gain.

Exercise 3
Suppose w and z are two vectors in Rn. Prove that

(a) There exists a ∆ ∈ Rn×n with ‖∆‖ ≤ 1 and w = ∆z iff wT w≤ zT z.

(b) There exists a δ ∈ R with |δ | ≤ 1 and w = δ z iff wwT ≤ zzT .

Exercise 4
For given ∆ j ∈ Rk×l , define the set ∆∆∆ := conv{∆1, . . . ,∆N}. With fixed Q = QT , S, R = RT consider
the function

f (∆) :=
(

∆

I

)T ( Q S
ST R

)(
∆

I

)
.

(a) Prove that Q≤ 0 implies that ∆→ f (∆) is concave.

(b) Prove that if f is concave then

f (∆ j)> 0 for all j = 1, . . . ,N =⇒ f (∆)> 0 for all ∆ ∈ ∆∆∆. (7.8.1)

(c) Find weaker conditions on Q that lead to the the same implication (7.8.1).

Exercise 5 (MIMO Circle criterion)
Consider the system

ẋ = Ax+B∆(t,Cx)

where ∆ :R×Rl →Rk is any continuously differentiable function that satisfies, for two matrices K,
L, the multi-variable sector condition

[∆(t,z)−Kz]T [∆(t,z)−Lz]≤ 0 for all (t,z) ∈ R×Rl . (7.8.2)

Note that this is nothing but a static QC. Find a multiplier and the corresponding LMI that proves
exponential stability. With M(s) = C(sI−A)−1B define G(s) = (I−LM(s))(I−KM(s))−1. Show
that the LMI you found has a solution iff

A+BKC is stable and G(iω)∗+G(iω)> 0 for all ω ∈ R.

(Hence G is strictly positive real. Note that this terminology is often used in the literature for a
different property!) Is stability of A required for your arguments?

Exercise 6 (Popov criterion)
Consider the system

ẋ = Ax+B∆(Cx) (7.8.3)
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with A Hurwitz and ∆ a continuously differentiable nonlinearity ∆ : R→ R that satisfies

0≤ z∆(z)≤ z2 for all z ∈ R.

Prove the following statements:

(a) ∆ satisfies the static quadratic constraints

τ

(
∆(z)

z

)T ( −2 1
1 0

)(
∆(z)

z

)
≥ 0

for all z ∈ R and τ ≥ 0.

(b) For any z ∈ R ∫ z

0
∆(ζ )dζ ≥ 0,

∫ z

0
ζ −∆(ζ )dζ ≥ 0.

If z : [0,∞)→ R is continuously differentiable, then

τ1

∫ T

0
z(t)ż(t)−∆(z(t))ż(t)dt ≥−τ1

1
2

z(0)2, τ2

∫ T

0
∆(z(t))ż(t)dt ≥−τ2

1
2

z(0)2

for τ1,τ2 ≥ 0. (Substitution rule!)

(c) Suppose there exist X and τ,τ1,τ2 ≥ 0 such that

(
I 0
A B

)T ( 0 X
X 0

)(
I 0
A B

)
+

(
0 I
C 0

)T ( −2τ τ

τ 0

)(
0 I
C 0

)
+

+

(
C 0

CA CB

)T ( 0 τ1
τ1 0

)(
C 0

CA CB

)
+

(
0 I

CA CB

)T ( 0 −τ1
τ1 0

)(
0 I

CA CB

)
+

+

(
0 I

CA CB

)T ( 0 τ2
τ2 0

)(
0 I

CA CB

)
< 0.

Then the equilibrium x0 = 0 of (7.8.3) is globally asymptotically Lyapunov stable. What can
you say about exponential stability? Hint: Use a simple hard IQC argument. Note that, along
trajectories of (7.8.3), one has z =Cx, ż =CAx+CBw and w = ∆(z).

(d) Show that the condition in the previous exercise is equivalent to the existence of a symmetric
K, ν ∈ R, τ > 0 with

(
AT K +KA KB

BT K 0

)
+

(
0 I

CA CB

)T ( 0 ν

ν 0

)(
0 I

CA CB

)
+

+

(
0 I
C 0

)T ( −2τ τ

τ 0

)(
0 I
C 0

)
< 0.
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(e) With G(s) =C(sI−A)−1B, the LMI in the last exercise is solvable iff there exists a q∈R with

Re((1+qiω)G(iω))< 1 for all ω ∈ R∪{∞}.

This reveals the relation to the classical Popov criterion. Note that q is often assumed to be
nonnegative what is, actually, a redundant hypothesis. Show with an example that the extra
constraint q ≥ 0 (or ν ≥ 0 in the LMI) introduces conservatism. (Think of a smart test using
LMI-Lab to find an example.)

(f) Find an LMI condition for global asymptotic stability of

ẋ = Ax+
k

∑
j=1

B j∆ j(C jx)

where the continuously differentiable ∆ j :R→R satisfy the sector conditions β jz2 ≤ z∆ j(z)≤
α jz2 for all z ∈ R.
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Chapter 8

Robust controller synthesis

8.1 Robust controller design

So far we have presented techniques to design controllers for nominal stability and nominal per-
formance. Previous chapters have been devoted to a thorough discussion of how to analyze, for a
fixed stabilizing controller, robust stability or robust performance. For time-invariant or time-varying
parametric uncertainties, we have seen direct tests formulated as searching for constant or parameter-
dependent quadratic Lyapunov functions. For much larger classes of uncertainties, we have derived
tests in terms of integral quadratic constraints (IQC’s) that involve additional variables which have
been called scalings or multipliers.

Typically, only those IQC tests with a class of multipliers that admit a state-space description as
discussed in Sections ??-?? of Chapter 4 are amenable to a systematic output-feedback controller
design procedure which is a reminiscent of the D/K-iteration in µ-theory. This will be the first
subject of this chapter.

In a second section we consider as a particular information structure the robust state-feedback de-
sign problem. We will reveal that the search for static state-feedback gains which achieve robust
performance can be transformed into a convex optimization problem.

The discussion is confined to the quadratic performance problem since most results can be extended
in a pretty straightforward fashion to the other specifications considered in these notes.
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246 8.1. ROBUST CONTROLLER DESIGN

8.1.1 Robust output-feedback controller design

If characterizing robust performance by an IQC, the goal in robust design is to find a controller and
a multiplier such that, for the closed-loop system, the corresponding IQC test is satisfied. Hence, the
multiplier appears as an extra unknown what makes the problem hard if not impossible to solve.

However, if the multiplier is held fixed, searching for a controller amounts to a nominal design
problem that can be approached with the techniques described earlier. If the controller is held fixed,
the analysis techniques presented in Chapter ?? can be used to find a suitable multiplier. Hence,
instead of trying to search for a controller and a multiplier commonly, one iterates between the
search for a controller with fixed multiplier and the search for a multiplier with fixed controller. This
procedure is known from µ-theory as scalings/controller iteration or D/K iteration.

To be more concrete, we consider the specific example of achieving robust quadratic performance
against time-varying parametric uncertainties as discussed in Section ??.

The uncontrolled unperturbed system is described by (4.2.1). We assume that w1→ z1 is the uncer-
tainty channel and the uncontrolled uncertain system is described by including

w1(t) = ∆(t)z1(t)

where ∆(.) varies in the set of continuous curves satisfying

∆(t) ∈ ∆∆∆c := conv{∆1, ...,∆N} for all t ≥ 0.

We assume (w.l.o.g.) that

0 ∈ conv{∆1, ...,∆N}.

The performance channel is assumed to be given by w2→ z2, and the performance index

Pp =

(
Qp Sp
ST

p Rp

)
, Rp ≥ 0 with the inverse P̃−1

p =

(
Q̃p S̃p
S̃T

p R̃p

)
, Q̃p ≤ 0

is used to define the quadratic performance specification

∫
∞

0

(
w2(t)
z2(t)

)T

Pp

(
w2(t)
z2(t)

)
dt ≤−ε‖w2‖2

2.

The goal is to design a controller that achieves robust stability and robust quadratic performance.
We can guarantee both properties by finding a controller, a Lyapunov matrix X , and a multiplier

P =

(
Q S
ST R

)
, Q < 0,

(
∆ j
I

)T ( Q S
ST R

)(
∆ j
I

)
> 0 for all j = 1, . . . ,N (8.1.1)
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8.1. ROBUST CONTROLLER DESIGN 247

that satisfy the inequalities

X > 0,


I 0 0

X A X B1 X B2
0 I 0
C1 D1 D12
0 0 I
C2 D21 D2



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 ST

p Rp




I 0 0

X A X B1 X B2
0 I 0
C1 D1 D12
0 0 I
C2 D21 D2

< 0.

(Recall that the condition on the left-upper block of P can be relaxed in particular cases what could
reduce the conservatism of the test.)

If we apply the controller parameter transformation of Chapter ??, we arrive at the synthesis matrix
inequalities

XXX(v)> 0,


∗
∗
∗
∗
∗
∗



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 ST

p Rp




I 0 0

AAA(v) BBB1(v) BBB2(v)
0 I 0

CCC1(v) DDD1(v) DDD12(v)
0 0 I

CCC2(v) DDD21(v) DDD2(v)

< 0.

Unfortunately, there is no obvious way how to render these synthesis inequalities convex in all
variables v, Q, S, R.

This is the reason why we consider, instead, the problem with a scaled uncertainty

w1(t) = [r∆(t)]z1(t), ∆(t) ∈ ∆∆∆c (8.1.2)

where the scaling factor is contained in the interval [0,1]. Due to

(
r∆

I

)T ( Q rS
rST r2R

)(
r∆

I

)
= r2

(
∆

I

)T ( Q S
ST R

)(
∆

I

)
,

we conclude that the corresponding analysis or synthesis are given by (8.1.1) and

X > 0,


I 0 0

X A X B1 X B2
0 I 0
C1 D1 D12
0 0 I
C2 D21 D2



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q rS 0 0
0 0 rST r2R 0 0
0 0 0 0 Qp Sp
0 0 0 0 ST

p Rp




I 0 0

X A X B1 X B2
0 I 0
C1 D1 D12
0 0 I
C2 D21 D2

< 0

(8.1.3)
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248 8.1. ROBUST CONTROLLER DESIGN

or

XXX(v)> 0,


∗
∗
∗
∗
∗
∗



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q rS 0 0
0 0 rST r2R 0 0
0 0 0 0 Qp Sp
0 0 0 0 ST

p Rp




I 0 0

AAA(v) BBB1(v) BBB2(v)
0 I 0

CCC1(v) DDD1(v) DDD12(v)
0 0 I

CCC2(v) DDD21(v) DDD2(v)

< 0.

(8.1.4)

For r = 0, we hence have to solve the nominal quadratic performance synthesis inequalities. If
they are not solvable, the robust quadratic performance synthesis problem is not solvable either and
we can stop. If they are solvable, the idea is to try to increase, keeping the synthesis inequalities
feasible, the parameter r from zero to one. Increasing r is achieved by alternatingly maximizing r
over v satisfying (8.1.4) (for fixed P) and by varying X and P in (8.1.3) (for a fixed controller).

The maximization of r proceeds along the following steps:

Initialization. Perform a nominal quadratic performance design by solving (8.1.4) for r = 0. Pro-
ceed if these inequalities are feasible and compute a corresponding controller.

After this initial phase, the iteration is started. The j−1-st step of the iteration leads to a controller,
a Lyapunov matrix X , and a multiplier P that satisfy the inequalities (8.1.1) and (8.1.3) for the
parameter r = r j−1. Then it proceeds as follows:

First step: Fix the controller and maximize r by varying the Lyapunov matrix X and the scaling
such that such that (8.1.1) and (8.1.3) hold. The maximal radius is denoted as r̂ j and it satisfies
r j−1 ≤ r̂ j.

Second step: Fix the resulting scaling P and find the largest r by varying the variables v in (8.1.4).
The obtained maximum r j clearly satisfies r̂ j ≤ r j.

The iteration defines a sequence of radii

r1 ≤ r2 ≤ r3 ≤ ·· ·

and a corresponding controller that guarantee robust stability and robust quadratic performance for
all uncertainties (8.1.2) with radius r = r j.

If we are in the lucky situation that there is an index for which r j ≥ 1, the corresponding controller is
robustly performing for all uncertainties with values in ∆∆∆c as desired, and we are done. However, if
r j < 1 for all indices, we cannot guarantee robust performance for r = 1, but we still have a guarantee
of robust performance for r = r j!

Before entering a brief discussion of this procedure, let us include the following remarks on the
start-up and on the computations. If the nominal performance synthesis problem has a solution, the
LMI’s (8.1.1)-(8.1.3) do have a solution X and P for the resulting controller and for some - possibly
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8.1. ROBUST CONTROLLER DESIGN 249

small - r > 0; this just follows by continuity. Hence the iteration does not get stuck after the first
step. Secondly, for a fixed r, the first step of the iteration amounts to solving an analysis problem,
and finding a solution v of (8.1.4) can be converted to an LMI problem. Therefore, the maximization
of r can be performed by bisection.

Even if the inequalities (8.1.1)-(8.1.4) are solvable for r = 1, it can happen the the limit of r j is
smaller than one. As a remedy, one could consider another parameter to maximize, or one could
modify the iteration scheme that has been sketched above. For example, it is possible to take the
fine structure of the involved functions into account and to suggest other variable combinations that
render the resulting iteration steps convex. Unfortunately, one cannot give general recommendations
for modifications which guarantee success.

Remark. It should be noted that the controller/multiplier iteration can be extended to all robust
performance tests that are based on families of dynamic IQC’s which are described by real rational
multipliers. Technically, one just requires a parametrization of the multipliers such that the corre-
sponding analysis test (for a fixed controller) and the controller synthesis (for a fixed multiplier) both
reduce to solving standard LMI problems.

8.1.2 Robust state-feedback controller design

For the same set-up as in the previous section we consider the corresponding synthesis problem if
the state of the underlying system is measurable. According to our discussion in Section 4.5, the
resulting synthesis inequalities read as

Q < 0,
(

∆ j
I

)T ( Q S
ST R

)(
∆ j
I

)
> 0 for all j = 1, . . . ,N

and

Y > 0,


∗
∗
∗
∗
∗
∗



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 ST

p Rp




I 0 0

AY +BM B1 B2
0 I 0

C1Y +E1M D1 D12
0 0 I

C2Y +E1M D21 D2

< 0

in the variables Y , M, Q, S, R.

In this form these inequalities are not convex. However, we can apply the Dualization Lemma
(Section 4.4.1) to arrive at the equivalent inequalities

R̃ > 0,
(

I
−∆T

j

)T ( Q̃ S̃
S̃T R̃

)(
I
−∆T

j

)
< 0 for all j = 1, . . . ,N
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250 8.1. ROBUST CONTROLLER DESIGN

and Y > 0,

∗



0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q̃ S̃ 0 0
0 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p
0 0 0 0 S̃T

p R̃p




−(AY +BM)T −(C1Y +E1M)T −(C2Y +E2M)T

I 0 0
−BT

1 −DT
1 −DT

21
0 I 0
−BT

2 −DT
12 −DT

2
0 0 I

> 0

in the variables Y , M, Q̃, S̃, R̃. It turns out that these dual inequalities are all affine in the unknowns.
Testing feasibility hence amounts to solving a standard LMI problem. If the LMI’s are feasible, a
robust static state-feedback gain is given by D = MY−1. This is one of the very few lucky instances
in the world of designing robust controllers!

8.1.3 Affine parameter dependence

Let us finally consider the system ẋ
z
y

=

 A(∆(t)) B1(∆(t)) B(∆(t))
C1(∆(t)) D(∆(t)) E(∆(t))
C(∆(t)) F(∆(t)) 0

 x
w
u

 , ∆(t) ∈ conv{∆1, ...,∆N}

where the describing matrices depend affinely on the time-varying parameters. If designing output-
feedback controllers, there is no systematic alternative to pulling out the uncertainties and applying
the scalings techniques as in Section 8.1.1.

For robust state-feedback design there is an alternative without scalings. One just needs to directly
solve the system of LMI’s

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 ST

p Rp




I 0
A(∆ j)Y +B(∆ j)M B1(∆ j)

0 I
C1(∆ j)Y +E(∆ j)M D(∆ j)

< 0, j = 1, . . . ,N

(8.1.5)
in the variables Y and M.

For the controller gain Dc = MY−1 we obtain

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 ST

p Rp




I 0
(A(∆ j)+B(∆ j)Dc)Y B1(∆ j)

0 I
(C1(∆ j)+E(∆ j)Dc)Y D(∆ j)

< 0, j = 1, . . . ,N
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A convexity argument leads to

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 ST

p Rp




I 0
(A(∆(t))+B(∆(t))Dc)Y B1(∆(t))

0 I
(C1(∆(t))+E(∆(t))Dc)Y D(∆(t))

< 0

for all parameter curves ∆(t) ∈ conv{∆1, ...,∆N}, and we can perform a congruence transformation
as in Section 4.5 to get

X > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 ST

p Rp




I 0
X (A(∆(t))+B(∆(t))Dc) X B1(∆(t))

0 I
(C1(∆(t))+E(∆(t))Dc) D(∆(t))

< 0.

These two inequalities imply, in turn, robust exponential stability and robust quadratic performance
for the controlled system as seen in Section ??.

We have proved that it suffices to directly solve the LMI’s (8.1.5) to compute a robust static state-
feedback controller. Hence, if the system’s parameter dependence is affine, we have found two
equivalent sets of synthesis inequalities that differ in the number of the involved variables and in the
sizes of the LMI’s that are involved. In practice, the correct choice is dictated by whatever system
can be solved faster, more efficiently, or numerically more reliably.

Remark. Here is the reason why it is possible to directly solve the robust performance problem by
state-feedback without scalings, and why this technique does, unfortunately, not extend to output-
feedback control: The linearizing controller parameter transformation for state-feedback problems
does not involve the matrices that describe the open-loop system, whereas that for that for ouptut-
feedback problems indeed depends on the matrices A, B, C of the open-loop system description.

Let us conclude this chapter by stressing, again, that these techniques find straightforward extensions
to other performance specifications. As an exercise, the reader is asked to work out the details of the
corresponding results for the robust H2-synthesis problem by state- or output-feedback.

8.2 Exercises

Exercise 1
This is an exercise on robust control. To reduce the complexity of programming, we consider a
non-dynamic system only.
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Suppose you have given the algebraic uncertain system

z1
z2
z3
z4
z
y1
y2


=



0 1 0 1 1 1 0
0.5 0 0.5 0 1 0 1
2a 0 a 0 1 0 0
0 −2a 0 −a 1 0 0
1 1 1 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0





w1
w2
w3
w4
w
u1
u2


,

with a time-varying uncertainty
w1
w2
w3
w4

=


δ1(t) 0

δ1(t)
δ2(t)

0 δ2(t)




z1
z2
z3
z4

 , |δ1(t)| ≤ 0.7, |δ2(t)| ≤ 0.7.

As the performance measure we choose the L2-gain of the channel w→ z.

(a) For the uncontrolled system and for each a ∈ [0,1], find the minimal robust L2-gain level of
the channel w→ z by applying the robust performance analysis test in Chapter 3 with the

following class of scalings P =

(
Q S
ST R

)
:

• P is as in µ-theory: Q, S, R are block-diagonal, Q < 0, R is related to Q (how?), and S is
skew-symmetric.

• P is general with Q < 0.
• P is general with Q1 < 0, Q2 < 0, where Q j denote the blocks Q(1 : 2,1 : 2) and Q(3 :

4,3 : 4) in Matlab notation.

Draw plots of the corresponding optimal values versus the parameter a and comment!

(b) For a = 0.9, apply the controller(
u1
u2

)
=

(
0 0
0 k

)(
y1
y2

)
and perform the analysis test with the largest class of scalings for k ∈ [−1,1]. Plot the resulting
optimal value over k and comment.

(c) Perform a controller/scaling iteration to minimize the optimal values for the controller struc-
tures (

u1
u2

)
=

(
0 0
0 k2

)(
y1
y2

)
and

(
u1
u2

)
=

(
k1 k12
k21 k2

)(
y1
y2

)
.

Start from gain zero and plot the optimal values that can are reached in each step of the
iteration to reveal how they decrease. Comment on the convergence.

(d) With the last full controller from the previous exercise for a performance level that is close to
the limit, redo the analysis of the first part. Plot the curves and comment.
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Chapter 9

Linear parameterically varying
systems

Linear parameterically varying (LPV) systems are linear systems whose describing matrices depend
on a time-varying parameter such that both the parameter itself and its rate of variation are known to
be contained in pre-specified sets.

In robust control, the goal is to find one fixed controller that achieves robust stability and robust
performance for all possible parameter variations, irrespective of which specific parameter curve
does indeed perturb the system.

Instead, in LPV control, it is assumed that the parameter (and, possibly, its rate of variation), although
not known a priori, is (are) on-line measurable. Hence the actual parameter value (and its derivative)
can be used as extra information to control the system - the controller will turn out to depend on the
parameter as well. We will actually choose also an LPV structure for the controller to be designed.

We would like to stress the decisive distinction to the control of time-varying systems: In the standard
techniques to controlling time-varying systems, the model description is assumed to be known a
priori over the whole time interval [0,∞). In LPV control, the model is assumed to be known, at time
instant t, only over the interval [0, t].

The techniques we would like to develop closely resemble those for robust control we have investi-
gated earlier. It is possible to apply them

• to control certain classes of nonlinear systems

• to provide a systematic procedure for gain-scheduling with guarantees for stability and perfor-
mance.
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Before we explore these applications in more detail we would like to start presenting the available
problem setups and solution techniques to LPV control.

9.1 General Parameter Dependence

Suppose that δδδ c, δ̇δδ c ⊂ Rm are two parameter sets such that

δδδ c× δ̇δδ c is compact,

and that the matrix valued function A(p) Bp(p) B(p)
Cp(p) Dp(p) E(p)
C(p) F(p) 0

 is continuous in p ∈ δδδ c. (9.1.1)

Consider the Linear Parameterically Varying (LPV) system that is described as ẋ
zp
y

=

 A(δ (t)) Bp(δ (t)) B(δ (t))
Cp(δ (t)) Dp(δ (t)) E(δ (t))
C(δ (t)) F(δ (t)) 0

 x
wp
u

 , δ (t) ∈ δδδ c, δ̇ (t) ∈ δ̇δδ c. (9.1.2)

We actually mean the family of systems that is obtained if letting δ (.) vary in the set of continuously
differentiable parameter curves

δ : [0,∞)→ Rm with δ (t) ∈ δδδ c, δ̇ (t) ∈ δ̇δδ c for all t ≥ 0.

The signals admit the same interpretations as in Chapter 4: u is the control input, y is the measured
output available for control, and wp→ zp denotes the performance channel.

In LPV control, it is assumed that the parameter δ (t) is on-line measurable. Hence the actual value
of δ (t) can be taken as extra information for the controller to achieve the desired design goal.

In view of the specific structure of the system description, we assume that the controller admits a
similar structure. In fact, an LPV controller is defined by functions(

Ac(p) Bc(p)
Cc(p) Dc(p)

)
that are continuous in p ∈ δδδ c (9.1.3)

as (
ẋc
u

)
=

(
Ac(δ (t)) Bc(δ (t))
Cc(δ (t)) Dc(δ (t))

)(
xc
y

)
with the following interpretation: It evolves according to linear dynamics that are defined at time-
instant t via the actually measured value of δ (t).

Note that a robust controller would be simply defined with a constant matrix(
Ac Bc
Cc Dc

)
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that does not depend on δ what clarifies the difference between robust controllers and LPV con-
trollers.

The controlled system admits the description(
ξ̇

zp

)
=

(
A (δ (t)) B(δ (t))
C (δ (t)) D(δ (t))

)(
ξ

wp

)
, δ (t) ∈ δδδ c, δ̇ (t) ∈ δ̇δδ c (9.1.4)

where the function (
A (p) B(p)
C (p) D(p)

)
is continuous in p ∈ δδδ c

and given as  A(p)+B(p)Dc(p)C(p) B(p)Cc(p) Bp(p)+B(p)Dc(p)F(p)
Bc(p)C(p) Ac(p) Bc(p)F(p)

Cp(p)+E(p)Dc(p)C(p) E(p)Cc(p) Dp(p)+E(p)Dc(p)F(p)


or  A(p) 0 Bp(p)

0 0 0
Cp(p) 0 Dp(p)

+

 0 B(p)
I 0
0 E(p)

( Ac(p) Bc(p)
Cc(p) Dc(p)

)(
0 I 0

C(p) 0 F(p)

)
.

To evaluate performance, we concentrate again on the quadratic specification∫
∞

0

(
w(t)
z(t)

)T

Pp

(
w(t)
z(t)

)
dt ≤−ε‖w‖2

2 (9.1.5)

with an index

Pp =

(
Qp Sp
ST

p Rp

)
, Rp ≥ 0 that has the inverse P̃−1

p =

(
Q̃p S̃p
S̃T

p R̃p

)
, Q̃p ≤ 0.

In order to abbreviate the formulation of the analysis result we introduce the following differential
operator.

Definition 9.1 If X : δδδ c 3 p→ X(p) ∈Rn×n is continuously differentiable, the continuous mapping

∂X : δδδ c× δ̇δδ c→ Rn×n is defined as ∂X(p,q) :=
m

∑
j=1

∂X
∂ p j

(p)q j.

Note that this definition is simply motivated by the fact that, along any continuously differentiable
parameter curve δ (.), we have

d
dt

X(δ (t)) =
m

∑
j=1

∂X
∂ p j

(δ (t))δ̇ j(t) = ∂X(δ (t), δ̇ (t)). (9.1.6)
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(We carefully wrote down the definitions and relations, and one should read all this correctly. X
and ∂X are functions of the parameters p ∈ δδδ c and q ∈ δ̇δδ c respectively. In the definition of ∂X , no
time-trajectories are involved. The definition of ∂X is just tailored to obtain the property (9.1.6) if
plugging in a function of time.)

In view of the former discussion, the following analysis result comes as no surprise.

Theorem 9.2 Suppose there exists a continuously differentiable X (p) defined for p ∈ δδδ c such that
for all p ∈ δδδ c and q ∈ δ̇δδ c one has

X (p)> 0,
(

∂X (p,q)+A (p)T X (p)+X (p)A (p) X (p)B(p)
B(p)T X (p) 0

)
+

+

(
0 I

C (p) D(p)

)T

Pp

(
0 I

C (p) D(p)

)
< 0. (9.1.7)

Then there exists an ε > 0 such that, for each parameter curve with δ (t) ∈ δδδ c and δ̇ (t) ∈ δ̇δδ c,
the system (9.1.4) is exponentially stable and satisfies (9.1.5) if the initial condition is zero and if
wp ∈ L2.

In view of our preparations the proof is a simple exercise that is left to the reader.

We can now use the same procedure as for LTI systems to arrive at the corresponding synthesis result.
It is just required to obey that all the matrices are actually functions of p ∈ δδδ c or of (p,q) ∈ δδδ c× δ̇δδ c.
If partitioning

X =

(
X U

UT ∗

)
, X −1 =

(
Y V

V T ∗

)
,

we can again assume w.l.o.g. that U , V have full row rank. (Note that this requires the compactness
hypothesis on δδδ c and δ̇δδ c. Why?) With

Y =

(
Y I

V T 0

)
and Z =

(
I 0
X U

)
we obtain the identities

Y T X = Z and I−XY =UV T .

If we apply the differential operator ∂ to the first functional identity, we arrive at (∂Y )T X +
Y T (∂X ) = ∂Z . (Do the simple calculations. Note that ∂ is not the usual differentiation such that
you cannot apply the standard product rule.) If we right-multiply Y , this leads to

Y T (∂X )Y =(∂Z )Y −(∂Y )T Z T =

(
0 0

∂X ∂U

)(
Y I

V T 0

)
−
(

∂Y ∂V
0 0

)(
I X
0 UT

)
and hence to

Y T (∂X )Y =

(
−∂Y −(∂Y )X− (∂V )UT

(∂X)Y +(∂U)V T ∂X

)
.
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If we introduce the transformed controller parameters(
K L
M N

)
=

(
U XB
0 I

)(
Ac Bc
Cc Dc

)(
V T 0
CY I

)
+

(
XAY 0

0 0

)
+

+

(
(∂X)Y +(∂U)V T 0

0 0

)
,

a brief calculation reveals that

Y T (∂X +A T X +X A )Y =

(
−∂Y + sym(AY +BM) (A+BNC)+KT

(A+BNC)T +K ∂X + sym(AX +LC)

)
Y T X B =

(
Bp +BNF
XBp +LF

)
, C Y =

(
CpY +EM Cp +ENC

)
, D = Dp +ENF

where we used again the abbreviation sym(M) = M+MT . If compared to a parameter independent
Lyapunov function, we have modified the transformation to K by (∂X)Y + (∂U)V T in order to
eliminate this extra term that appears from the congruence transformation of ∂X . If X is does not
depend on p, ∂X vanishes identically and the original transformation is recovered.

We observe that L, M, N are functions of p ∈ δδδ c only, whereas K also depends on q ∈ δ̇δδ c. In fact,
this function has the structure

K(p,q) = K0(p)+
m

∑
i=1

Ki(p)qi (9.1.8)

(why?) and, hence, it is fully described by specifying

Ki(p), i = 0,1, . . . ,m

that depend, as well, on p ∈ δδδ c only.

Literally as in Theorem 4.2 one can now prove the following synthesis result for LPV systems.

Theorem 9.3 If there exists an LPV controller defined by (9.1.3) and a continuously differentiable
X (.) defined for p ∈ δδδ c that satisfy (9.1.7), then there exist continuously differentiable functions
X, Y and continuous functions Ki, L, M, N defined on δδδ c such that, with K given by (9.1.8), the
inequalities (

Y I
I X

)
> 0 (9.1.9)

and −∂Y + sym(AY +BM) (A+BNC)+KT Bp +BNF
(A+BNC)T +K ∂X + sym(AX +LC) XBp +LF
(Bp +BNF)T (XBp +LF)T 0

+

+

(
∗
∗

)T

Pp

(
0 0 I

CpY +EM Cp +ENC Dp +ENF

)
< 0 (9.1.10)
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hold on δδδ c× δ̇δδ c. Conversely, suppose the continuously differentiable X, Y and the continuous Ki,
defining K as in (9.1.8), L, M, N satisfy these synthesis inequalities. Then one can factorize I−XY =
UV T with continuously differentiable square and nonsingular U, V , and

X =

(
Y V
I 0

)−1( I 0
X U

)
(9.1.11)(

Ac Bc
Cc Dc

)
=

(
U XB
0 I

)−1( K−XAY − [(∂X)Y +(∂U)V T ] L
M N

)(
V T 0
CY I

)−1

(9.1.12)

render the analysis inequalities (9.1.7) satisfied.

Remark. Note that the formula (9.1.12) just emerges from the modified controller parameter trans-
formation. We observe that the matrices Bc, Cc, Dc are functions of p ∈ δδδ c only. Due to the depen-
dence of K on q and due to the extra term U−1[(∂X)Y +(∂U)V T ]V−T in the formula for Ac, this
latter matrix is a function that depends both on p ∈ δδδ c and q ∈ δ̇δδ c. It has the same structure as K and
can be written as

Ac(p,q) = A0(p)+
m

∑
i=1

Ai(p)qi.

A straightforward calculation reveals that

Ai =U−1[KiV−T − ∂X
∂ pi

YV−T − ∂U
∂ pi

], i = 1, . . . ,m.

Hence, to implement this controller, one indeed requires not only to measure δ (t) but also its rate
of variation δ̇ (t). However, one could possibly exploit the freedom in choosing U and V to render
Ai = 0 such that Ac does not depend on q any more. Recall that U and V need to be related by
I−XY =UV T ; hence let us choose

V T :=U−1(I−XY ).

This leads to

Ai =U−1[(Ki−
∂X
∂ pi

Y )(I−XY )−1U− ∂U
∂ pi

], i = 1, . . . ,m.

Therefore, U should be chosen as a nonsingular solution of the system of first order partial differen-
tial equations

∂U
∂ pi

(p) = [Ki(p)− ∂X
∂ pi

(p)Y (p)](I−X(p)Y (p))−1U(p), j = 1, . . . ,m.

This leads to Ai = 0 such that the implementation of the LPV controller does not require any on-line
measurements of the rate of the parameter variations. First order partial differential equations can be
solved by the method of characteristics [19]. We cannot go into further details at this point.

In order to construct a controller that solves the LPV problem, one has to verify the solvability of
the synthesis inequalities in the unknown functions X , Y , Ki, L, M, N, and for designing a controller,
one has to find functions that solve them.

258 Compilation: January 2015



9.1. GENERAL PARAMETER DEPENDENCE 259

However, standard algorithms do not allow to solve functional inequalities directly. Hence we need
to include a discussion of how to reduce these functional inequalities to finitely many LMI’s in real
variables.

First step. Since q ∈ δ̇δδ c enters the inequality (9.1.10) affinely, we can replace the set δ̇δδ c, if convex,
by its extreme points. Let us make the, in practice non-restrictive, assumption that this set has finitely
many generators:

δ̇δδ c = conv{δ̇ 1, . . . , δ̇ k}.
Solving (9.1.9)-(9.1.10) over (p,q) ∈ δδδ c× δ̇δδ c is equivalent to solving (9.1.9)-(9.1.10) for

p ∈ δδδ c, q ∈ {δ̇ 1, . . . , δ̇ k}. (9.1.13)

Second step. Instead of searching over the set of all continuous functions, we restrict the search to a
finite dimensional subspace thereof, as is standard in Ritz-Galerkin techniques. Let us hence choose
basis functions

f1(.), . . . , fl(.) that are continuously differentiable on δδδ c.

Then all the functions to be found are assumed to belong to the subspace spanned by the functions
f j. This leads to the Ansatz

X(p) =
l

∑
j=1

X j f j(p), Y (p) =
l

∑
j=1

Yj f j(p)

Ki(p) =
l

∑
j=1

Ki
j f j(p), i = 0,1, . . . ,m,

L(p) =
l

∑
j=1

L j f j(p), M(p) =
l

∑
j=1

M j f j(p), N(p) =
l

∑
j=1

N j f j(p).

We observe

∂X(p,q) =
l

∑
j=1

X j ∂ f j(p,q), ∂Y (p,q) =
l

∑
j=1

Yj ∂ f j(p,q).

If we plug these formulas into the inequalities (9.1.9)-(9.1.10), we observe that all the coefficient
matrices enter affinely. After this substitution, (9.1.9)-(9.1.10) turns out to be a family of linear
matrix inequalities in the

matrix variables X j,Yj,Ki
j,L j,M j,N j

that is parameterized by (9.1.13). The variables of this system of LMI’s are now real numbers;
however, since the parameter p still varies in the infinite set δδδ c, we have to solve infinitely many
LMI’s. This is, in fact, a so-called semi-infinite (not infinite dimensional as often claimed) convex
optimization problem.

Third step. To reduce the semi-infinite system of LMI’s to finitely many LMI’s, the presently chosen
route is to just fix a finite subset

δδδ finite ⊂ δδδ c
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and solve the LMI system in those points only. Hence the resulting family of LMI’s is parameterized
by

p ∈ δδδ finite and q ∈ {δ̇ 1, . . . , δ̇ k}.
We end up with a finite family of linear matrix inequalities in real valued unknowns that can be
solved by standard algorithms. Since a systematic choice of points δδδ finite is obtained by gridding the
parameter set, this last step is often called the gridding phase, and the whole procedure is said to be
a gridding technique.

Remark on the second step. Due to Weierstraß’ approximation theorem, one can choose a sequence
of functions f1, f2, . . . on δδδ c such that the union of the subspaces

Sν = span{ f1, . . . , fν}
is dense in the set of all continuously differentiable mappings on δδδ c with respect to the norm

‖ f‖= max{| f (p)| | p ∈ δδδ c}+
m

∑
j=1

max{| ∂ f
∂ p j

(p)| | p ∈ δδδ c}.

This implies that, given any continuously differentiable g on δδδ c and any accuracy level ε > 0, one
can find an index ν0 such that there exists an f ∈Sν0 for which

∀ p ∈ δδδ c, q ∈ δ̇δδ c : |g(p)− f (p)| ≤ ε, |∂g(p,q)−∂ f (p,q)| ≤ ε.

(Provide the details.) Functions in the subspace Sν hence approximate any function g and its image
∂g under the differential operator ∂ up to arbitrary accuracy, if the index ν is chosen sufficiently
large.

Therefore, if (9.1.9)-(9.1.10) viewed as functional inequalities do have a solution, then they have
a solution if restricting the search over the finite dimensional subspace Sν for sufficiently large
ν , i.e., if incorporating sufficiently many basis functions. However, the number of basis functions
determines the number of variables in the resulting LMI problem. To keep the number of unknowns
small requires an efficient choice of the basis functions what is, in theory and practice, a difficult
problem for which one can hardly give any general recipes.

Remark on the third step. By compactness of δδδ c and continuity of all functions, solving the LMI’s
for p ∈ δδδ c or for p ∈ δδδ finite is equivalent if only the points are chosen sufficiently dense. A measure
of density is the infimal ε such that the balls of radius ε around each of the finitely many points in
δδδ finite already cover δδδ c:

δδδ c ⊂
⋃

p0 ∈ δδδ finite

{u | ‖p− p0‖ ≤ ε}.

If the data functions describing the system are also differentiable in δ , one can apply the mean value
theorem to provide explicit estimates of the accuracy of the required approximation. Again, however,
it is important to observe that the number of LMI’s to solve depends on the number of grid-points;
hence one has to keep this number small in order to avoid large LMI’s.

Remark on extensions. Only slight adaptations are required to treat all the other performance speci-
fications (such as bounds on the L2-gain and on the analogue of the H2-norm or generalized H2-norm
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for time-varying systems) as well as the corresponding mixed problems as discussed in Chapter ??
in full generality. Note also that, for single-objective problems, the techniques to eliminate param-
eters literally apply; there is no need go into the details. In particular for solving gain-scheduling
problems, it is important to observe that one can as well let the performance index depend on the
measured parameter without any additional difficulty. As a designer, one can hence ask different
performance properties in different parameter ranges what has considerable relevance in practical
controller design.

Remark on robust LPV control. As another important extension we mention robust LPV design.
It might happen that some parameters are indeed on-line measurable, whereas others have to be
considered as unknown perturbations with which the controller cannot be scheduled. Again, it is
straightforward to extend the robustness design techniques that have been presented in Chapter ??
from LTI systems and controllers to LPV systems and controllers. This even allows to include
dynamic uncertainties if using IQC’s to capture their properties. Note that the scalings that appear
in such techniques constitute extra problem variables. In many circumstances it causes no extra
technical difficulties to let these scalings also depend on the scheduling parameter what reduces the
conservatism.

9.2 Polytopic Parameter Dependence

Suppose that the matrices (9.1.1) describing the system are affine functions on the set

δδδ c = conv{δ 1, . . . ,δ k}.

In that case we intend to search, as well, for an LPV controller that is defined with affine functions
(9.1.3). Note that the describing matrices for the cosed-loop system are also affine in the parameter
if (

B
E

)
and

(
C F

)
are parameter independent

what is assumed from now on. Finally, we let X in Theorem 9.2 be constant.

Since Rp ≥ 0, we infer that (9.1.7) is satisfied if and only if it holds for the generators p = δ j of the
set δδδ c. Therefore, the analysis inequalities reduce to the finite set of LMI’s

X > 0,
(

A (δ j)T X +X A (δ j) X B(δ j)
B(δ j)T X 0

)
+

+

(
0 I

C (δ j) D(δ j)

)T

Pp

(
0 I

C (δ j) D(δ j)

)
< 0 for all j = 1, . . . ,k.

Under the present structural assumptions, the affine functions
(

Ac Bc
Cc Dc

)
are transformed into

affine functions
(

K L
M N

)
under the controller parameter transformation as considered in the

261 Compilation: January 2015



262 9.3. LFT SYSTEM DESCRIPTION

previous section.

Then the synthesis inequalities (9.1.9)-(9.1.10) whose variables are the constant X and Y and the

affine functions
(

K L
M N

)
turn out to be affine in the parameter p. This implies for the synthesis

inequalities that we can replace the search over δδδ c without loss of generality by the search over
the generators δ j of this set. Therefore, solving the design problem amounts to testing whether the
LMI’s (

Y I
I X

)
> 0

and sym
(
A(δ j)Y +BM(δ j)

)
∗ ∗

(A(δ j)+BN(δ j)C)T +K(δ j) sym
(
A(δ j)X +L(δ j)C

)
∗

(Bp(δ
j)+BN(δ j)F)T (XBp(δ

j)+L(δ j)F)T 0

+

+

(
∗
∗

)T

Pp

(
0 0 I

Cp(δ
j)Y +EM(δ j) Cp(δ

j)+EN(δ j)C Dp(δ
j)+EN(δ j)F

)
< 0

for j = 1, . . . ,k admit a solution.

Since affine, the functions K, L, M, N are parameterized as(
K(p) L(p)
M(p) N(p)

)
=

(
K0 L0
M0 N0

)
+

m

∑
i=1

(
Ki Li
Mi Ni

)
pi

with real matrices Ki, Li, Mi, Ni. Hence, the synthesis inequalities form genuine linear matrix in-
equalities that can be solved by standard algorithms.

9.3 LFT System Description

Similarly as for our discussion of robust controller design, let us assume in this section that the LPV
system is described as and LTI system

ẋ
zu
zp
y

=


A Bu Bp B

Cu Duu Dup Eu
Cp Dpu Dpp Ep
C Fu Fp 0




x
wu
wp
u

 (9.3.1)

in wich the parameter enters via the uncertainty channel wu→ zu as

wu(t) = ∆(t)zu(t), ∆(t) ∈ ∆∆∆c. (9.3.2)

The size and the structure of the possible parameter values ∆(t) is captured by the convex set

∆∆∆c := conv{∆1, ...,∆N}
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Figure 9.1: LPV system and LPV controller with LFT description

whose generators ∆ j are given explicitly. We assume w.l.o.g. that 0 ∈ ∆∆∆c. As before, we concentrate
on the quadratic performance specification with index Pp imposed on the performance channel wp→
zp.

Adjusted to the structure of (9.3.1)-(9.3.2), we assume that the measured parameter curve enters the
controller also in a linear fractional fashion. Therefore, we assume that the to-be-designed LPV
controller is defined by scheduling the LTI system

ẋc = Acxc +Bc

(
y

wc

)
,

(
u
zc

)
=Ccxc +Dc

(
y

wc

)
(9.3.3)

with the actual parameter curve entering as

wc(t) = ∆c(∆(t))zc(t). (9.3.4)

The LPV controller is hence parameterized through the matrices Ac, Bc, Cc, Dc, and through a
possibly non-linear matrix-valued scheduling function

∆c(∆) ∈ Rnr×nc defined on ∆∆∆c.

Figure 9.1 illustrates this configuration.

The goal is to construct an LPV controller such that, for all admissible parameter curves, the con-
trolled system is exponentially stable and, the quadratic performance specification with index Pp for
the channel wp→ zp is satisfied.
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Figure 9.2: LPV system and LPV controller: alternative interpretation

The solution of this problem is approached with a simple trick. In fact, the controlled system can,
alternatively, be obtained by scheduling the LTI system

ẋ
zu
zc
zp
y

wc

=


A Bu 0 Bp B 0

Cu Duu 0 Dup Eu 0
0 0 0 0 0 Inc

Cp Dpu 0 Duu Ep 0
C Fu 0 Fp 0 0
0 0 Inr 0 0 0




x

wu
wc
wp
u
zc

 (9.3.5)

with the parameter as (
w1
wc

)
=

(
∆(t) 0

0 ∆c(∆(t))

)(
z1
zc

)
, (9.3.6)

and then controlling this parameter dependent system with the LTI controller (9.3.3). Alternatively,
we can interconnect the LTI system (9.3.5) with the LTI controller (9.3.3) to arrive at the LTI system

ẋ
zu
zc
zp

=


A Bu Bc Bp
Cu Duu Duc Dup
Cc Dcu Dcc Dcp
Cp Dpu Dpc Dpp




x
wu
wc
wp

 , (9.3.7)

and then re-connect the parameter as (9.3.6). This latter interconnection order is illustrated in Figure
9.2.

264 Compilation: January 2015



9.3. LFT SYSTEM DESCRIPTION 265

Note that (9.3.5) is an extension of the original system (9.3.1) with an additional uncertainty channel
wc → zc and with an additional control channel zc → wc; the number nr and nc of the components
of wc and zc dictate the size of the identity matrices Inr and Inc that are indicated by their respective
indices.

Once the scheduling function ∆c(∆) has been fixed, it turns out that (9.3.3) is a robust controller
for the system (9.3.5) with uncertainty (9.3.6). The genuine robust control problem in which the
parameter is not measured on-line would relate to the situation that nr = 0 and nc = 0 such that
(9.3.5) and (9.3.1) are identical. In LPV control we have the extra freedom of being able to first
extend the system as in (9.3.5) and design for this extended system a robust controller. It will turn
out that this extra freedom will render the corresponding synthesis inequalities convex.

Before we embark on a solution of the LPV problem, let us include some further comments on the
corresponding genuine robust control problem. We have seen in section 8.1.1 that the search for a
robust controller leads to the problem of having to solve the matrix inequalities

XXX(v)> 0,


∗
∗
∗
∗
∗
∗



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 ST

p Rp




I 0 0

AAA(v) BBBu(v) BBBp(v)
0 I 0

CCCu(v) DDDuu(v) DDDup(v)
0 0 I

CCCp(v) DDDpu(v) DDDpp(v)

< 0

(
∆

I

)T ( Q S
ST R

)(
∆

I

)
> 0 for all ∆ ∈ ∆∆∆c

in the parameter v and in the multiplier P =

(
Q S
ST R

)
.

Recall from our earlier discussion that one of the difficulties is a numerical tractable parameterization
of the set of multipliers. This was the reason to introduce, at the expense of conservatism, the
following subset of multipliers that admits a description in terms of finitely many LMI’s:

PPP :=

{
P =

(
Q S
ST R

)
| Q < 0,

(
∆ j
I

)T

P
(

∆ j
I

)
> 0 for j = 1, . . . ,N

}
. (9.3.8)

Even after confining the search to v and P ∈ PPP, no technique is known how to solve the resulting still
non-convex synthesis inequalities by standard algorithms.

In contrast to what we have seen for state-feedback design, the same is true of the dual inequalities

265 Compilation: January 2015



266 9.3. LFT SYSTEM DESCRIPTION

that read as

XXX(v)> 0,


∗
∗
∗
∗
∗
∗



T

0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q̃ S̃ 0 0
X 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p
0 0 0 0 S̃T

p R̃p




−AAA(v)T −CCCu(v)T −CCCp(v)T

I 0 0
−BBBu(v)T −DDDuu(v)T −DDDpu(v)T

0 I 0
−BBBp(v)T −DDDup(v)T −DDDpp(v)T

0 0 I

> 0

(
I
−∆T

)T ( Q̃ S̃
S̃T R̃

)(
I
−∆T

)
< 0 for all ∆ ∈ ∆∆∆c.

Again, even confining the search to the set of multipliers

P̃PP :=

{
P̃ =

(
Q̃ S̃
S̃T R̃

)
| R̃ > 0,

(
I
−∆T

j

)T

P̃
(

I
−∆T

j

)
< 0 for j = 1, . . . ,N

}
(9.3.9)

does not lead to a convex feasibility problem.

Since non-convexity is caused by the multiplication of functions that depend on v with the multipli-
ers, one could be lead to the idea that it might help to eliminate as many of the variables that are
involved in v as possible. We can indeed apply the technique exposed in Section 4.4.4 and eliminate
K, L, M, N.

For that purpose one needs to compute basis matrices

Φ =

 Φ1

Φ2

Φ3

 of ker
(

BT ET
u ET

p
)

and Ψ =

 Ψ1

Ψ2

Ψ3

 of ker
(

C Fu Fp
)

respectively. After elimination, the synthesis inequalities read as(
Y I
I X

)
> 0, (9.3.10)

Ψ
T


I 0 0
A Bu Bp
0 I 0

Cu Duu Dup
0 0 I

Cp Dpu Dpp



T 
0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 ST

p Rp




I 0 0
A Bu Bp
0 I 0

Cu Duu Dup
0 0 I

Cp Dpu Dpp

Ψ < 0,

(9.3.11)

Φ
T



−AT −CT
u −CT

p
I 0 0
−BT

u −DT
uu −DT

pu
0 I 0
−BT

p −DT
pu −DT

pp
0 0 I



T 

0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q̃ S̃ 0 0
0 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p
0 0 0 0 S̃T

p R̃p





−AT −CT
u −CT

p
I 0 0
−BT

u −DT
uu −DT

pu
0 I 0
−BT

p −DT
pu −DT

pp
0 0 I

Φ> 0

(9.3.12)
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in the variables X , Y , and in the multiplier P and P̃ that are coupled as

P̃ =

(
Q̃ S̃
S̃T R̃

)
=

(
Q S
ST R

)−1

= P−1. (9.3.13)

Hence, after elimination, it turns out that the inequalities (9.3.10)-(9.3.12) are indeed affine in the
unknowns X , Y , P and P̃. Unfortunately, non-convexity re-appears through the coupling (9.3.13) of
the multipliers P and P̃.

Let us now turn back to the LPV problem where we allow, via the scheduling function ∆c(∆) in the
controller, extra freedom in the design process.

For guaranteeing stability and performance of the controlled system, we employ extended multipliers
adjusted to the extended uncertainty structure (9.3.6) that are given as

Pe =

(
Qe Se
ST

e Re

)
=


Q Q12 S S12

Q21 Q22 S21 S22
∗ ∗ R R12
∗ ∗ R21 R22

 with Qe < 0, Re > 0 (9.3.14)

and that satisfy 
∆ 0
0 ∆c(∆)
I 0
0 I

Pe


∆ 0
0 ∆c(∆)
I 0
0 I

> 0 for all ∆ ∈ ∆∆∆. (9.3.15)

The corresponding dual multipliers P̃e = P−1
e are partitioned similarly as

P̃e =

(
Q̃e S̃e
S̃T

e R̃e

)
=


Q̃ Q̃12 S̃ S̃12

Q̃21 Q̃22 S̃21 S̃22
∗ ∗ R̃ R̃12
∗ ∗ R̃21 R̃12

 with Q̃e < 0, R̃e > 0 (9.3.16)

and they satisfy
I 0
0 I
−∆T 0

0 −∆c(∆)
T


T

Pe


I 0
0 I
−∆T 0

0 −∆c(∆)
T

> 0 for all ∆ ∈ ∆∆∆.

As indicated by our notation, we observe that(
Q S
ST R

)
∈ PPP and

(
Q̃ S̃
S̃T R̃

)
∈ P̃PP

for the corresponding sub-matrices of Pe and P̃e respectively.
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If we recall the description (9.3.6)-(9.3.7) of the controlled LPV system, the desired exponential
stability and quadratic performance property is satisfied if we can find a Lyapunov matrix X and an
extended scaling Pe with (9.3.14)-(9.3.15) such that

X > 0,



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp
0 0 0 0 0 0 ST

p Rp





I 0 0 0
A Bu Bc Bp
0 I 0 0
0 0 I 0
Cu Duu Duc Dup
Cc Dcu Dcc Dcp
0 0 0 I
Cp Dpu Dpc Dpp


< 0.

(9.3.17)

We are now ready to formulate an LMI test for the existence of an LPV controller such that the
controlled LPV system fulfills this latter analysis test.

Theorem 9.4 The following statements are equivalent:

(a) There exists a controller (9.3.3) and a scheduling function ∆c(∆) such that the controlled
system as described by (9.3.4)-(9.3.7) admits a Lyapunov matrix X and a multiplier (9.3.14)-
(9.3.15) that satisfy (9.3.17).

(b) There exist X, Y and multipliers P ∈ PPP, P̃ ∈ P̃PP that satisfy the linear matrix inequalities
(9.3.10)-(9.3.12).

Proof. Let us first prove 1⇒ 2. We can apply the technique as described in Section 4.4.4 to
eliminate the controller parameters in the inequality (9.3.17). According to Corollary 4.18, this
leads to the coupling condition (4.4.23) and to the two synthesis inequalities (4.4.24)-(4.4.25). The
whole point is to show that the latter two inequalities can indeed be simplified to (9.3.11)-(9.3.12).
Let us illustrate this simplification for the first inequality only since a duality argument leads to the
same conclusions for the second one.

With

Ψe =


Ψ1

Ψ2

0
Ψ3

 as a basis matrix of ker
(

C Fu 0 Fp
0 0 Inr 0

)
,
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the inequality that corresponds to (4.4.23) reads as

Ψ
T
e



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp
0 0 0 0 0 0 ST

p Rp





I 0 0 0
A Bu 0 Bp
0 I 0 0
0 0 I 0

Cu Duu 0 Dup
0 0 0 0
0 0 0 I

Cp Dpu Dpc Dpp


Ψe < 0.

Due to the zero block in Ψe, it is obvious that this is the same as

Ψ
T



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp
0 0 0 0 0 0 ST

p Rp





I 0 0
A Bu Bp
0 I 0
0 0 0

Cu Duu Dup
0 0 0
0 0 I

Cp Dpu Dpp


Ψ < 0.

The two zero block rows in the outer factors allow to simplify this latter inequality to (9.3.11), what
finishes the proof of 1⇒ 2.

The constructive proof of 2⇒ 1 is more involved and proceeds in three steps. Let us assume that we
have computed solutions X , Y and P ∈ PPP, P̃ ∈ P̃PP with (9.3.10)-(9.3.12).

First step: Extension of Scalings. Since P ∈ PPP and P̃ ∈ P̃PP, let us recall that we have(
∆

I

)T

P
(

∆

I

)
> 0 and

(
I
−∆T

)T

P̃
(

I
−∆T

)
< 0 for all ∆ ∈ ∆∆∆. (9.3.18)

Due to 0 ∈ ∆∆∆c, we get R > 0 and Q̃ < 0. Hence we conclude for the diagonal blocks of P that Q < 0
and R > 0, and for the diagonal blocks of P̃ that Q̃ > 0 and R̃ < 0. If we introduce

Z =

(
I
0

)
and Z̃ =

(
0
I

)
with the same row partition as P, these properties can be expressed as

ZT PZ < 0, Z̃T PZ̃ > 0 and ZT P̃Z < 0, Z̃T P̃Z̃ > 0. (9.3.19)

If we observe that im(Z̃) is the orthogonal complement of im(Z), we can apply the Dualization
Lemma to infer

Z̃T P−1Z̃ > 0, ZT P−1Z < 0 and Z̃T P̃−1Z̃ > 0, ZT P̃−1Z < 0. (9.3.20)
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For the given P and P̃, we try to find an extension Pe with (9.3.14) such that the dual multiplier
P̃e = P−1

e is related to the given P̃ as in (9.3.16). After a suitable permutation, this amounts to
finding an extension(

P T
T T T T NT

)
with

(
P̃ ∗
∗ ∗

)
=

(
P T

T T T T NT

)−1

, (9.3.21)

where the specific parameterization of the new blocks in terms of a non-singular matrix T and some
symmetric N will turn out convenient. Such an extension is very simple to obtain. However, we also
need to obey the positivity/negativity constraints in (9.3.14) that amount to(

Z 0
0 Z

)T ( P T
T T T T NT

)(
Z 0
0 Z

)
< 0 (9.3.22)

and (
Z̃ 0
0 Z̃

)T ( P T
T T T T NT

)(
Z̃ 0
0 Z̃

)
> 0. (9.3.23)

We can assume w.l.o.g. (perturb, if necessary) that P− P̃−1 is non-singular. Then we set

N = (P− P̃−1)−1

and observe that (9.3.21) holds for any non-singular T .

The main goal is to adjust T to render (9.3.22)-(9.3.23) satisfied. We will in fact construct the sub-
blocks T1 = T Z and T2 = T Z̃ of T = (T1 T2). Due to (9.3.19), the conditions (9.3.22)-(9.3.23) read
in terms of these blocks as (Schur)

T T
1
[
N−Z(ZT PZ)−1ZT ]T1 < 0 and T T

2
[
N− Z̃(Z̃T PZ̃)−1Z̃T ]T2 > 0. (9.3.24)

If we denote by n+(S), n−(S) the number of positive, negative eigenvalues of the symmetric matrix
S, we hence have to calculate n−(N−Z(ZT PZ)−1ZT ) and n+(N− Z̃(Z̃T PZ̃)−1Z̃T ). Simple Schur
complement arguments reveal that

n−

(
ZT PZ ZT

Z N

)
= n−(ZT PZ)+n−(N−Z(ZT PZ)−1ZT ) =

= n−(N)+n−(ZT PZ−ZT N−1Z) = n−(N)+n−(ZT P̃−1Z).

Since ZT PZ and ZT P̃−1Z have the same size and are both negative definite by (9.3.19) and (9.3.20),
we conclude n−(ZT PZ) = n−(ZT P̃−1Z). This leads to

n−(N−Z(ZT PZ)−1ZT ) = n−(N).

Literally the same arguments will reveal

n+(N− Z̃(Z̃T PZ̃)−1Z̃T ) = n+(N).

These two relations imply that there exist T1, T2 with n−(N), n+(N) columns that satisfy (9.3.24).
Hence the matrix T = (T1 T2) has n+(N)+n−(N) columns. Since the number of rows of T1, T2, Z,
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Z̃, N are all identical, T is actually a square matrix. We can assume w.l.o.g. - by perturbing T1 or T2
if necessary - that the square matrix T is non-singular.

This finishes the construction of the extended multiplier (9.3.14). Let us observe that the dimen-
sions of Q22/R22 equal the number of columns of T1/T2 which are, in turn, given by the integers
n−(N)/n+(N).

Second Step: Construction of the scheduling function. Let us fix ∆ and let us apply the Elim-
ination Lemma to (9.3.15) with ∆c(∆) viewed as the unknown. We observe that the solvability
conditions of the Elimination Lemma just amount to the two inequalities (9.3.18). We conclude that
for any ∆ ∈ ∆∆∆ one can indeed compute a ∆c(∆) which satisfies (9.3.15).

Due to the structural simplicity, we can even provide an explicit formula which shows that ∆c(∆)
can be selected to depend smoothly on ∆. Indeed, by a straightforward Schur-complement argument,
(9.3.15) is equivalent to

U11 U12 (W11 +∆)T W T
21

U21 U22 W T
12 (W22 +∆c(∆))

T

W11 +∆ W12 V11 V12
W21 W22 +∆c(∆) V21 V22

> 0

for U = Re−ST
e Q−1

e Se > 0, V =−Q−1
e > 0, W = Q−1

e Se. Obviously this can be rewritten to(
U22 ∗

W22 +∆c(∆) V22

)
−
(

U21 W T
12

W21 V21

)(
U11 (W11 +∆)T

W11 +∆ V11

)−1( U12 W T
21

W12 V12

)
> 0

in which ∆c(∆) only appears in the off-diagonal position. Since we are sure that there does indeed
exist a ∆c(∆) that renders the inequality satisfied, the diagonal blocks must be positive definite. If
we then choose ∆c(∆) such that the off-diagonal block vanishes, we have found a solution of the
inequality; this leads to the following explicit formula

∆c(∆) =−W22 +
(

W21 V21
)( U11 ∗

W11 +∆ V11

)−1( U12
W12

)
for the scheduling function. We note that ∆c(∆) has the dimension n−(N)×n+(N).

Third Step: LTI controller construction. After having constructed the scalings, the last step is to
construct an LTI controller and Lyapunov matrix that render the inequality (9.3.17) satisfied. We are
confronted with a standard nominal quadratic design problem of which we are sure that it admits a
solution, and for which the controller construction proceed along the steps that have been intensively
discussed in Chapter ??.

We have shown that the LMI’s that needed to be solved for designing an LPV controller are iden-
tical to those for designing a robust controller, with the only exception that the coupling condition
(9.3.13) drops out. Therefore, the search for X and Y and for the multipliers P ∈ PPP and P̃ ∈ P̃PP to sat-
isfy (9.3.10)-(9.3.12) amounts to testing the feasibility of standard LMI’s. Moreover, the controller
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construction in the proof of Theorem 9.4 is constructive. Hence we conclude that we have found a
full solution to the quadratic performance LPV control problem (including L2-gain and dissipativ-
ity specifications) for full block scalings Pe that satisfy Qe < 0. The more interesting general case
without this still restrictive negativity hypotheses is dealt with in future work.

Remarks.

• The proof reveals that the scheduling function ∆c(∆) has a many rows/colums as there are
negative/positive eigenvalues of P− P̃−1 (if assuming w.l.o.g. that the latter is non-singular.)
If it happens that P− P̃−1 is positive or negative definite, there is no need to schedule the
controller at all; we obtain a controller that solves the robust quadratic performance problem.

• Previous approaches to the LPV problem [2,15,34,51] were based on ∆c(∆) = ∆ such that the
controller is scheduled with an identical copy of the parameters. These results were based on
block-diagonal parameter matrices and multipliers that were as well assumed block-diagonal.
The use of full block scalings [46] require the extension to a more general scheduling function
that is - as seen a posteriori - a quadratic function of the parameter ∆.

• It is possible to extend the procedure to H2-control and to the other performance specifications
in these notes. However, this requires restrictive hypotheses on the system description. The
extension to general mixed problems seems nontrivial and is open in its full generality.

9.4 A Sketch of Possible Applications

It is obvious how to apply robust or LPV control techniques in linear design: If the underlying
system is affected, possibly in a nonlinear fashion, by some possibly time-varying parameter (such
as varying resonance poles and alike), one could strive

• either for designing a robust controller if the actual parameter changes are not available as
on-line information

• or for constructing an LPV controller if the parameter (and its rate of variation) can be mea-
sured on-line.

As such the presented techniques can be a useful extension to the nominal design specifications that
have been considered previously.

In a brief final and informal discussion we would like to point out possible applications of robust
and LPV control techniques to the control of nonlinear systems:

• They clearly apply if one can systematically embed a nonlinear system in a class of linear
systems that admit an LPV parameterization.
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• Even if it is required to perform a heuristic linearization step, they can improve classical gain-
scheduling design schemes for nonlinear systems since they lead to a one-shot construction of
a family of linear controllers.

9.4.1 From Nonlinear Systems to LPV Systems

In order to apply the techniques discussed in these notes to nonlinear systems, one uses variations of
what is often called global linearization.

Consider a nonlinear system described by

ẋ = f (x) (9.4.1)

where we assume that f : Rn→ Rn is a smooth vector field.

If f (0) = 0, it is often possible to rewrite f (x) = A(x)x with a smooth matrix valued mapping A(.).
If one can guarantee that the LPV system

ẋ = A(δ (t))x

is exponentially stable, we can conclude that the nonlinear system

ẋ = A(x)x

has 0 as a globally exponentially stable equilibrium. Note that one can and should impose a priori
bounds on the state-trajectories such as x(t) ∈M for some set M such that the stability of the LPV
system only has to be assured for δ (t) ∈ M; of course, one can then only conclude stability for
trajectories of the nonlinear system that remain in M.

A slightly more general procedure allows to consider arbitrary system trajectories instead of equi-
librium points (or constant trajectories) only. In fact, suppose x1(.) and x2(.) are two trajectories of
(9.4.1). By the mean-value theorem, there exist

η j(t) ∈ conv{x1(t),x2(t)}

such that

ẋ1(t)− ẋ2(t) = f (x1(t))− f (x2(t)) =


∂ f1
∂x (η1(t))

...
∂ fn
∂x (ηn(t))

(x1(t)− x2(t)).

Therefore, the increment ξ (t) = x1(t)− x2(t) satisfies the LPV system

ξ̇ (t) = A(η1(t), . . . ,ηn(t))ξ (t)

with parameters η1, . . . ,ηn. Once this LPV system is shown to be exponentially stable, one can
conclude that ξ (t) = x1(t)− x2(t) converges exponentially to zero for t → ∞. If x2(.) is a nominal
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system trajectory (such as an equilibrium point or a given trajectory to be investigated), we can
conclude that x1(t) approaches this nominal trajectory exponentially.

Finally, the following procedure is often referred to as global linearization. Let

F be the closure of conv{ fx(x) | x ∈ Rn}.

Clearly, F is a closed and convex subset of Rn×n. It is not difficult to see that any pair of trajectories
x1(.), x2(.) of (9.4.1) satisfies the linear differential inclusion

ẋ1(t)− ẋ2(t) ∈F (x1(t)− x2(t)). (9.4.2)

Proof. Fix any t and consider the closed convex set

F [x1(t)− x2(t)]⊂ Rn.

Suppose this set is contained in the negative half-space defined by the vector y ∈ Rn:

yT F [x1(t)− x2(t)]≤ 0.

Due to the mean-value theorem, there exists a ξ ∈ conv{x1(t),x2(t)} with

yT [ẋ1(t)− ẋ2(t)] = yT [ f (x1(t))− f (x2(t))] = yT fx(ξ )[x1(t)− x2(t)].

Since fx(ξ ) ∈F , we infer
yT [ẋ1(t)− ẋ2(t)]≤ 0.

Hence ẋ1(t)− ẋ2(t) is contained, as well, in the negative half-space defined by y. Since F is closed
and convex, we can indeed infer (9.4.2) as desired.

To analyze the stability of the differential inclusion, one can cover the set F by the convex hull of
finitely many matrices A j and apply the techniques that have been presented in these notes.

Remarks. Of course, there are many other possibilities to embed nonlinear systems in a family of
linear systems that depend on a time-varying parameter. Since there is no general recipe to transform
a given problem to the LPV scenario, we have only sketched a few ideas. Although we concentrated
on stability analysis, these ideas straightforwardly extend to various nominal or robust performance
design problems what is a considerable advantage over other techniques for nonlinear systems. This
is particularly important since, in practical problems, non-linearities are often highly structured and
not all states enter non-linearly. For example, in a stabilization problem, one might arrive at a system

ẋ = A(y)x+B(y)u, y =Cx

where u is the control input and y is the measured output that captures, as well, those states that enter
the system non-linearly. We can use the LPV techniques to design a stabilizing LPV controller for
this system. Since y is the scheduling variable, this controller will depend, in general, non-linearly on
y; hence LPV control amounts to a systematic technique to design nonlinear controllers for nonlinear
systems ‘whose non-linearities can be measured’.
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9.4.2 Gain-Scheduling

A typical engineering technique to attack design problems for nonlinear systems proceeds as follows:
Linearize the system around a couple of operating points, design good linear controllers for each of
these points, and then glue these linear controllers together to control the nonlinear system.

Although this scheme seems to work reasonably well in many practical circumstances, there are
considerable drawbacks:

• There is no general recipe how to glue controllers together. It is hard to discriminate between
several conceivable controller interpolation techniques.

• It is not clear how to design the linear controllers such that, after interpolation, the overall
controlled system shows the desired performance.

• There are no guarantees whatsoever that the overall system is even stabilized, not to speak of
guarantees for performance. Only through nonlinear simulations one can roughly assess that
the chosen design scenario has been successful.

Based on LPV techniques, one can provide a recipe to systematically design a family of linear con-
trollers that is scheduled on the operating point without the need for ad-hoc interpolation strategies.
Moreover, one can provide, at least for the linearized family of systems, guarantees for stability and
performance, even if the system undergoes rapid changes of the operating condition.

Again, we just look at the stabilization problem and observe that the extensions to include as well
performance specifications are straightforward.

Suppose a nonlinear system
ẋ = a(x,u), y = c(x,u)− r (9.4.3)

has x as its state, u as its control, r as a reference input, and y as a tracking error output that is also the
measured output. We assume that, for each reference input r, the system admits a unique equilibrium
(operating condition)

0 = a(x0(r),u0(r)), 0 = c(x0(r),u0(r))− r

such that x0(.), u0(.) are smooth in r. (In general, one applies the implicit function theorem to
guarantee the existence of such a parameterized family of equilibria under certain conditions. In
practice, the calculation of these operating points is the first step to be done.)

The next step is to linearize the the system around each operating point to obtain

ẋ = fx(x0(r),u0(r))x+ fu(x0(r),u0(r))u, y = cx(x0(r),u0(r))x+ cu(x0(r),u0(r))u− r.

This is indeed a family of linear systems that is parameterized by r.

In standard gain-scheduling, linear techniques are used to find, for each r, a good tracking controller
for each of these systems, and the resulting controllers are then somehow interpolated.
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At this point we can exploit the LPV techniques to systematically design an LPV controller that
achieves good tracking for all reference trajectories in a certain class, even if these references vary
quickly with time. This systematic approach directly leads to a family of linear systems, where the
interpolation step is taken care of by the algorithm. Still, however, one has to confirm by nonlinear
simulations that the resulting LPV controller works well for the original nonlinear system. Note
that the Taylor linearization can sometimes be replaced by global linearization (as discussed in the
previous section) what leads to a priori guarantees for the controlled nonlinear system.

Again, this was only a very brief sketch of ideas to apply LPV control in gain-scheduling, and we
refer to [22] for a broader exposition of gain-scheduling in nonlinear control.
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