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1 Introduction to Basic Concepts

1.1 Systems and Signals

In these notes we intend to develop the theory of robust control for linear time invariant

finite-dimensional systems that are briefly called LTI-systems. Recall that such systems

are described in the state-space as

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du
(1.1)

with input u, output y, state x, and real matrices A, B, C, D of suitable size.

Here u, y, x are signals. Signals are functions of time t ∈ [0,∞) that are piece-wise contin-

uous. (On finite intervals, such signals have only finitely many jumps as discontinuities.)

They can either take their values in R, or they can have k components such that they

take their values in Rk. To clearly identify e.g. x as a signal, we sometimes write x(.) to

stress this point. (Recall that x(.) denotes the signal as a whole, whereas x(t) denotes

the value of the signal at the time-instant t ≥ 0.)

Somewhat more precisely, (1.1) is defined by A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n and

D ∈ Rk×n. Moreover, for an input trajectory u : [0,∞)→ Rm, there exists a unique state

response x : [0,∞)→ Rn of the system (1.1) which has the output y : [0,∞)→ Rk. It is

well-known that the output response y(.) to the input u(.) is given by

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ) dτ +Du(t) for t ≥ 0.

We do not repeat the standard notions of controllability of the system or of the pair (A,B),

and of observability of the system or of (A,C). Nevertheless we recall the following very

basic facts:

• The Hautus test for controllability: (A,B) is controllable if and only if the

matrix (
A− λI B

)
has full row rank for all λ ∈ C.

• The Hautus test for observability: (A,C) is observable if and only if the matrixA− λI
C


has full column rank for all λ ∈ C.
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• The system (1.1) or (A,B) is said to be stabilizable if there exists a feedback

matrix F such that A+BF has all its eigenvalues in the open left-half plane C< :=

{λ ∈ C | Re(λ) < 0}.

Recall the Hautus test for stabilizability: (A,B) is stabilizable if and only if

the matrix (
A− λI B

)
has full column rank for all λ ∈ C≥, where C≥ denotes the closed right half-plane

C≥ := {λ ∈ C | Re(λ) ≥ 0}.

• The system (1.1) or (A,C) is said to be detectable if there exists an L such that

A+ LC has all its eigenvalues in the open left-half plane C<.

Recall the Hautus test for detectability: (A,C) is detectable if and only if the

matrix A− λI
C


has full column rank for all λ ∈ C≥

The transfer matrix G(s) of the system (1.1) is defined as

G(s) = C(sI − A)−1B +D

and is a matrix whose elements consist of real-rational and proper functions in s. Any

such function is a fraction of two polynomials in s with real coefficients; properness of

such a function means that the degree of the numerator is not larger than the degree of

the denominator.

Why does the transfer matrix pop up? Suppose the input signal u(.) has the Laplace-

transform

û(s) =

∫ ∞
0

e−stu(t) dt.

Then the output y(.) of (1.1) also has a Laplace transform that can be calculated as

ŷ(s) = C(sI − A)−1x0 + [C(sI − A)−1B +D]û(s).

For x0 = 0 (which means that the state of the system starts with value zero at time 0),

the relation between the Laplace transform of the input and the output signals is hence

given by the transfer matrix as follows:

ŷ(s) = G(s)û(s).

The ‘complicated’ convolution integral in the time-domain is transformed into a the ‘sim-

pler’ multiplication operation in the frequency domain.
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We have briefly addressed two different ways of representing a system: One representation

in the state-space defined with specific constant matrices A, B, C, D, and one in the

frequency domain defined via a real-rational proper transfer matrix G(s).

Remark 1.1 In this course we want to view a system as a device that processes signals;

hence a system is nothing but a mapping that maps the input signal u(.) into the output

signal y(.) (for a certain initial condition). One should distinguish the system (the map-

ping) from its representations, such as the one in the state-space via A, B, C, D, or that

in the frequency domain via G(s). System properties should be formulated in terms of

how signals are processed, and system representations are used to formulate algorithms

how certain system properties can be verified.

The fundamental relation between the state-space and frequency domain representation

is investigated in the so-called realization theory. Moving from the state-space to the

frequency domain just requires to calculate the transfer matrix G(s).

Conversely, suppose H(s) is an arbitrary matrix whose elements are real-rational proper

functions. Then there always exist real matrices AH , BH , CH , DH such that

H(s) = CH(sI − AH)−1BH +DH

holds true. This representation of the transfer matrix is called a realization. Realizations

are not unique. Even more importantly, the size of the matrix AH can vary for various

realizations. However, there are realizations where AH is of minimal size, the so-called

minimal realization. There is a simple answer to the question of whether a realization is

minimal: This happens if and only if (AH , BH) is controllable and (AH , CH) is observable.

Task. Recapitulate how you can compute a minimal realization of an arbitrary real

rational proper transfer matrix H.

Pictorially, this discussion about the system representations in the time- and frequency-

domain and the interpretation as a mapping of signals (for a zero initial condition of the

state) can be depicted as follows:
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ẋ = Ax+Bu

y = Cx+Du
G(s)

y(t) =

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t) ŷ(s) = G(s)û(s)

Realization

Laplace Transform

We use the symbol  A B

C D


both for the system mapping u → y as defined via the differential equation with initial

condition 0, and for the corresponding transfer matrix G.

1.2 Stability of LTI Systems

Recall that any matrix H(s) whose elements are real rational functions is stable if

• H(s) is proper (there is no pole at infinity) and

• H(s) has only poles in the open left-half plane C< (i.e. there is no pole in the closed

right half plane C≥).

Properness means that, for all entries of H, the degree of the numerator polynomial is

not larger than the degree of the denominator polynomial. H is called strictly proper

if the degree of the numerator polynomial is strictly smaller than the degree of the de-

nominator polynomial for all elements of H. Note that strict properness is equivalent to

lim|s|→∞H(s) = 0.

For the set of real rational proper and stable matrices of dimension k × m we use the

special symbol

RHk×m
∞

and if the dimension is understood from the context we simply write RH∞. Recall that

the three most important operations performed on stable transfer matrices do not lead

us out of this set: A scalar multiple of one stable transfer matrix as well as the sum and

the product of two stable transfer matrices (of compatible dimensions) are stable.

9



On the other hand, the state-space system (1.1) is said to be stable if A has all its

eigenvalues in the open left-half plane C<. We will denote the set of eigenvalues of A by

eig(A), the spectrum of A. Then stability of (1.1) is simply expressed as

eig(A) ⊂ C<.

We say as well that the matrix A is stable (or Hurwitz) if it has this property.

We recall the following relation between the stability of the system (1.1) and the stability

of the corresponding transfer matrix G(s) = C(sI − A)−1B +D:

• If (1.1) (or A) is stable, then G(s) is stable.

• Conversely, if G(s) is stable, if (A,B) is stabilizable, and if (A,C) is detectable,

then (1.1) (or A) is stable.

Note that all these definitions are given in terms of properties of the representation.

Nevertheless, these concepts are closely related - at least for LTI systems - to the so-

called bounded-input bounded-output stability properties.

A vector valued signal u(.) is bounded if the maximal amplitude or peak

‖u‖∞ = sup
t≥0
‖u(t)‖ is finite.

Here ‖u(t)‖ just equals the Euclidean norm
√
u(t)Tu(t) of the vector u(t). The symbol

‖u‖∞ for the peak indicates that the peak is, in fact, a norm on the vector space of all

bounded signals; it is called the L∞-norm.

The system (1.1) is said to be bounded-input bounded-output (BIBO) stable if it maps an

arbitrary bounded input u(.) into an output that is bounded as well. In short, ‖u‖∞ <∞
implies ‖y‖∞ < ∞. It is an interesting fact that, for LTI systems, BIBO stability is

equivalent to the stability of the corresponding transfer matrix as defined earlier.

Theorem 1.2 The system (1.1) maps bounded inputs u(.) into bounded outputs y(.) if

and only if the corresponding transfer matrix C(sI − A)−1B +D is stable.

To summarize, for a stabilizable and detectable realization

 A B

C D

 of an LTI system,

the following notions are equivalent: Stability of the system (1.1), stability of the cor-

responding transfer matrix C(sI − A)−1B + D, and BIBO stability of the system (1.1)

viewed as an input output mapping.

Stability is a qualitative property. Another important issue is to quantify in how far

signals are amplified or quenched by a system. If we look at one input u(.) 6= 0, and if
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we take ‖u‖∞ and ‖y‖∞ as a measure of size for the input and the output of the system

(1.1), the amplification for this specific input signal is nothing but

‖y‖∞
‖u‖∞

.

The worst possible amplification is obtained by finding the largest of these quotients if

varying u(.) over all bounded signals:

γpeak = sup
0<‖u‖∞<∞

‖y‖∞
‖u‖∞

. (1.2)

This is the so-called peak-to-peak gain of the system (1.1). Then it just follows from

the definition that

‖y‖∞ ≤ γpeak‖u‖∞

holds for all bounded input signals u(.): Hence γpeak quantifies how the amplitudes of the

bounded input signals are amplified or quenched by the system. Since γpeak is, in fact,

the smallest number such that this inequality is satisfied, there does exist an input signal

such that the peak amplification is actually arbitrarily close to γpeak. (The supremum in

(1.2) is not necessarily attained by some input signal. Hence we cannot say that γpeak is

attained, but we can come arbitrarily close.)

Besides the peak, we could as well work with the energy of a signal x(.), defined as

‖x‖2 =

√∫ ∞
0

‖x(t)‖2 dt,

to measure its size. Note that a signal with a large energy can have a small peak and

vice versa. (Think of examples!) Hence we are really talking about different physical

motivations if deciding for ‖.‖∞ or for ‖.‖2 as a measure of size.

Now the question arises when a system maps any signal of finite energy again into a signal

of finite energy; in short:

‖u‖2 <∞ implies ‖y‖2 <∞.

It is somewhat surprising that, for the system (1.1), this property is again equivalent to

the stability of the corresponding transfer matrix C(sI−A)−1B+D. Hence the qualitative

property of BIBO stability does not depend on whether one chooses the peak ‖.‖∞ or the

energy ‖.‖2 to characterize boundedness of a signal.

Remark 1.3 Note that this is a fundamental property of LTI system that is by no means

valid for other type of systems, even if they admit a state-space realization such as non-

linear system defined via differential equations.
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Although the qualitative property of stability does not depend on the chosen measure

of size for the signals, the quantitative measure for the system amplification, the system

gain, is highly dependent on the chosen norm. The energy gain of (1.1) is analogously

defined as for the peak-to-peak gain defined by

γenergy = sup
0<‖u‖2<∞

‖y‖2

‖u‖2

.

Contrary to the peak-to-peak gain, one can nicely relate the energy gain of the system

(1.1) to the transfer matrix of the system. In fact, one can prove that γenergy is equal to

the largest value of

σmax(G(iω)) = ‖G(iω)‖

f varying the frequency as ω ∈ R. Here σmax(A) denotes the maximum singular value of

the matrix A which equals the spectral norm of A. Let us hence introduce the abbreviation

‖G‖∞ := sup
ω∈R

σmax(G(iω)) = sup
ω∈R
‖G(iω)‖.

As indicated by the symbol, this formula defines a norm on the vector space of all real-

rational proper and stable matrices RHk×m
∞ which is called the H∞-norm.

We can conclude that the energy gain of the stable LTI system (1.1) is just equal to the

H∞-norm of the corresponding transfer matrix:

γenergy = ‖G‖∞.

1.3 Stable Inverses

For any real-rational matrix G(s), we can compute the real rational function det(G(s)).

It is well-known that G(s) has a real-rational inverse if and only if det(G(s)) is not the

zero function (does not vanish identically). If G(s) is proper, it is easy to verify that it

has a proper inverse if and only if det(G(∞)) (which is well-defined since G(∞) is just a

real matrix) does not vanish.

The goal is to derive a similar condition for the proper and stable G(s) to have a proper

and stable inverse. Here is the desired characterization.

Lemma 1.4 The proper and stable matrix G(s) has a proper and stable inverse if and

only if the matrix G(∞) is non-singular, and the rational function det(G(s)) does not

have any zeros in the closed right-half plane.
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Proof. Assume that G(s) has the proper and stable inverse H(s). From G(s)H(s) = I

we infer det(G(s)) det(H(s)) = 1 or

det(G(s)) =
1

det(H(s))
.

Since H(s) is stable, det(H(s)) has no poles in C≥ ∪ {∞}. Therefore, the reciprocal

rational function and hence det(G(s)) does not have zeros in this set.

Conversely, let us assume that det(G(s)) has no zeros in C≥ ∪ {∞}. Then clearly

1

det(G(s))
is proper and stable.

Now recall that the inverse of G(s) is given by the formula

G(s)−1 =
1

det(G(s))
adj(G(s))

where adj(G(s)) denotes the algebraic adjoint of G(s). These adjoints are computed by

taking products and sums/differences of the elements of G(s); since G(s) is stable, the

adjoint of G(s) is, therefore, a stable matrix. Then the explicit formula for G(s)−1 reveals

that this inverse must actually be stable as well.

Remark 1.5 It is important to apply this result to stable G(s) only. For example, the

proper unstable matrix

G(s) =

 s+1
s+2

1
s−1

0 s+2
s+1


satisfies det(G(s)) = 1 for all s. Hence, its determinant has no zeros in the closed right-half

plane and at infinity; nevertheless, its inverse is not stable!

Let us now assume that the proper G has a realization

G =

 A B

C D

 .
Recall that G has a proper inverse iff D = G(∞) is invertible. If D has an inverse, the

proper inverse of G admits the realization

G−1 =

A−BD−1C BD−1

−D−1C D−1

 .
Why? A signal based arguments leads directly to the answer:

ẋ = Ax+Bw, z = Cx+Dw (1.3)
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is equivalent to

ẋ = Ax+Bw, w = −D−1Cx+D−1z

and hence to

ẋ = (A−BD−1C)x+BD−1z, w = −D−1Cx+D−1z. (1.4)

This gives a test of whether the stable G has a proper and stable inverse directly in terms

of the matrices A, B, C, D of some realization.

Lemma 1.6 Let G(s) be stable and let G(s) =

 A B

C D

 be a stabilizable and detectable

realization. Then G(s) has a proper and stable inverse if and only if D is non-singular

and A−BD−1C is stable.

Proof. Suppose G has the proper and stable inverse H. Then G(∞) = D is non-

singular. We can hence define the system (1.4); since the realization (1.3) is stabilizable

and detectable, one can easily verify (with the Hautus test) that the same is true for the

realization (1.4). We have argued above that (1.4) is a realization of H; since H is stable,

we can conclude that A−BD−1C must be stable.

The converse is easier to see: If D is non-singular and A−BD−1C is stable, (1.4) defines

the stable transfer matrix H. Since H is the inverse of G, as was seen above, we conclude

that G admits a proper and stable inverse.

Exercises

1) Suppose that G(s) is a real-rational proper matrix. Explain in general how you

can compute a state-space realization of G(s) with the command sysic of Matlab’s

Robust Control Toolbox, and discuss how to obtain a minimal realization.

(Matlab) Compute in this way a realization of

G(s) =

 1/s 1/(s+ 1)2 s/(s+ 1)

(s2 − 3s+ 5)/(2s3 + 4s+ 1) 1/s 1/(s+ 1)

 .

2) Suppose that u(.) has finite energy, let y(.) be the output of (1.1), and denote the

Laplace transforms of both signals by û(.) and ŷ(.) respectively. Show that∫ ∞
−∞

ŷ(iω)∗ŷ(iω) dω ≤ ‖G‖2
∞

∫ ∞
−∞

û(iω)∗û(iω) dω.
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Argue that this implies ‖y‖2 ≤ ‖G‖∞‖u‖2, and that this reveals that the energy

gain γenergy is not larger than ‖G‖∞.

Can you find a sequence uj(.) of signals with finite energy such that

lim
j→∞

‖Guj‖2

‖uj‖2

= ‖G‖∞?

3) Look at the system ẋ = ax + u, y = x. Compute the peak-to-gain of this system.

Determine a worst input u, i.e., an input for which the peak of the corresponding

output equals the peak-to-peak gain of the system.

4) For any discrete-time real-valued signal x = (x0, x1, . . .) let us define the peak as

‖x‖∞ := sup
k≥0
|xk|.

Consider the SISO discrete-time system

xk+1 = Axk +Buk, yk = Cxk +Duk, x0 = 0, k ≥ 0

where all eigenvalues of A have absolute value smaller than 1 (discrete-time stabil-

ity). As in continuous-time, the peak-to-peak gain of this system is defined as

sup
0<‖u‖∞<∞

‖y‖∞
‖u‖∞

.

Derive a formula for the the peak-to-peak gain of the system!

Hint: If setting um := (u0 · · · um)T , ym := (y0 · · · ym)T , determine a matrix Mm

such that ym = Mmu
m. How are the peak-to-peak gain of the system and the norm

of Mm induced by the vector norm ‖.‖∞ related?

5) Prove Theorem 1.2.
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2 Robustness for SISO Systems

In this chapter robustness for single-input single-output (SISO) linear time invariant sys-

tems is considered. For this purpose we introduce, in Section 2.1, a standard tracking

configuration and characterize stability of the sensitivity and complementary sensitivity

transfer function.

We recall a version of the classical Nyquist criterion, which is a graphical test for checking

closed-loop stability by considering the Nyquist plot of the open-loop transfer function.

Furthermore we provide a mathematically precise definition of a multiplicative uncertainty

model and develop the related tests for checking robust stability and robust performance.

Finally, in Section 2.6, we address the notion of internal stabilization for a standard

feedback loop that consists of SISO components only.

To start, it is convenient to remind us about some facts about coprime polynomials.

Definition 2.1 Let p and q be real polynomials. A greatest common divisor of p

and q is a monic polynomial d = gcd(p, q) that divides p and q, such that every common

divisor of p and q also divides d. Two polynomials p and q are coprime if gcd(p, q) = 1.

We mainly use coprime polynomials because of property c) of the following theorem.

Theorem 2.2 For two real polynomials p and q, the following statements are equivalent.

a) p and q are coprime.

b) There exist real polynomials a and b such that bp+ aq = 1.

c) p and q do not have common zeros.

Proof. b) follows from a) from the well-known lemma of Bézout.

b) ⇒ c): If q(s) = 0 for s ∈ C then b(s)p(s) = b(s)q(s) + a(s)q(s) = 1. This implies

p(s) 6= 0.

c) ⇒ a): Assume that p and q are not coprime. Then there exists a polynomial d with

deg(d) > 0 and gcd(p, q) = d. By the fundamental theorem of algebra there exists some

s ∈ C with d(s) = 0. Since d divides p and q, s is also a common zero of p and q.

Any real rational function G, and in particular any transfer function, can be expressed as

G =
N

D
with real coprime polynomials N and D.
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Figure 1: The standard tracking configuration.

Since N and D have no common zeros, the zeros of G in C are the zeros of N and the

poles of G in C are the zeros of D, counted with the corresponding multiplicities. If not

emphasized explicitly, statements about poles or zeros should always be interpreted as

“counted with multiplicities”. Therefore 1
s−1

and 1
(s−1)2

do not have identical poles.

If the relative degree r(G) := deg(D)− deg(N) of G is positive, then G is said to have

a zero at ∞ with multiplicity r(G). If G is not proper, which means deg(N) > deg(D),

then G is said to have a pole at ∞ of multiplicity −r(G) = deg(N)− deg(D).

2.1 The Standard Tracking Configuration

In this section, if nothing else is mentioned, we consider the feedback interconnection

y = Gu, u = K(r − y)

with the open-loop system G and the controller K. We assume that both G and K are

SISO transfer functions. This interconnection is the standard tracking configuration and

is depicted in Figure 1.

Roughly speaking, the standard goals in designing a controller K for the interconnection

can be expressed as follows:

• Stabilize the interconnection.

• The system output y should track r well, which means that the norm of the tracking

error e = r − y is small.

• The control action u should not be too large.

To analyze stability, let us define the loop transfer function or loop-gain

L := GK.

Then the interconnection equations can be written as

y = Le, e = r − y.

If the transfer function L is not identically equal to −1 we get

y = Tr and e = Sr with T :=
L

1 + L
and S :=

1

1 + L
.
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S is called the sensitivity (transfer function) and T the complementary sensitivity

(transfer function) of the feedback loop. Note that S+T = 1 always holds. It is also easy

to see that the poles of S and T are the zeros of 1 + L.

Theorem 2.3 The poles of S and the poles of T in C ∪ {∞} are exactly given by the

zeros of 1 + L in C ∪ {∞}.

Proof. L can be expressed as L = N
D

with real coprime polynomials N and D. Then

1 + L = 1 +
N

D
=
D +N

D

and thus

S =
D

D +N
as well as T =

N

D +N
.

If D(λ) = 0, coprimeness of N and D implies N(λ) 6= 0 and therefore D(λ) +N(λ) 6= 0.

Hence D and D + N are coprime. This means that the poles of S in C are given by the

zeros of D +N in C which are the zeros of 1 + L in C.

Now let D(s) = dks
k + · · ·+ d0 and N(s) = nms

m + · · ·+n0 with dk, nm 6= 0. Then S has

a pole at ∞ iff deg(D) > deg(D +N) iff k = m and dk + nm = 0 iff L(∞) = −1 iff L+ 1

has a zero at ∞.

The proof for T proceeds along the same arguments.

By Theorem 2.3, S is proper iff 1 + L(∞) 6= 0; similarly (and since stability includes

properness as a requirement), S is stable iff 1 + L(λ) 6= 0 for all λ ∈ C0 ∪ C+ ∪ {∞}.

2.2 The Nyquist Stability Criterion

We are interested in stability of (1 + L)−1 if L is a given loop transfer function; in

this section we proivde a classical graphical test for this property, the so-called Nyquist

stability criterion. In its essence, it is a graphical test for counting the number of zeros

of 1 + L that are encircled by a Nyquist contour of L.

For this purpose we consider the grey oriented curve Γ as depicted in Figure 2 (with

small semicircles of radius r > 0 avoiding poles of L on the imaginary axis and one large

semicircle of radius R > 0 in order to capture all poles of L in C= ∪ C>); Let Ω denote

the open set that is encircled by Γ once in clockwise direction.

Definition 2.4 The curve Γ is called a Nyquist contour for the transfer function L if

it does not pass through any pole of L and if the set of poles of L in Ω is equal to the set

of poles of L in C0 ∪ C+.
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Figure 2: Nyquist contour Γ and encircled region Ω; crosses indicate poles of L in C=∪C>.

If Γ does not pass through any pole of L, the remaining properties for Γ to qualify as a

Nyquist contour can also be expressed as follows:

• All poles of L in C= ∪ C> are encircled by Γ exactly once in clockwise direction.

(R is so large to ensure that no poles of L in C= ∪ C> are located outside Γ ∪ Ω).

• No pole of L in C< is encircled by Γ. (r is sufficiently small such that all poles of

L in C< are located outside Γ ∪ Ω.)

Since a transfer function L has only finitely many poles in C, we can always choose r > 0

small enough and R > 0 large enough in order to make sure that Γ is a Nyquist contour

for L. Then increasing R > 0 and/or decreasing r > 0 does not change this property.

The Nyquist plot of L is just defined as the image of a chosen Nyquist contour Γ under

L, with the orientation inherited from Γ:

L(Γ) = {L(λ) : λ ∈ Γ}.

Theorem 2.5 (Nyquist stability criterion). Let L be a proper transfer function and

Γ a Nyquist contour for L such that the Nyquist plot of L does not pass through −1 and

L(λ) 6= −1 for λ =∞ as well as for all λ ∈ C=∪C> with |λ| > R. Suppose that L has n0+

poles on the imaginary axis or in the open right-half plane (counted with multiplicities).

Then (1 + L)−1 is stable iff the Nyquist plot of L encircles −1 exactly n0+ times in the

counterclockwise direction.

Remark. We will see that the Nyquist plot of L always encircles −1 at most n0+ times in

the counterclockwise direction, irrespective of whether (1+L)−1 is stable or not. Stability

of (1+L)−1 is thus equivalent to the fact that the Nyquist plot of L encircles −1 at least

n0+ times in the counterclockwise direction.
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Proof. As abbreviations let us denote by ZA(g), PA(g) the number of zeros, poles of

the function g in the set A ⊂ C. We prepare the proof with the following observations

involving the function f := L+ 1:

• L and f have identical poles in C. Hence PΩ(L) = PΩ(f).

• The curve f(Γ) is obtained from the Nyquist plot L(Γ) through a shift by 1 (to the

right) in the complex plane. Hence f(Γ) does not pass through zero, i.e., ZΓ(f) = 0.

• By the assumption on L, f(λ) 6= 0 for λ = ∞ and λ ∈ {λ ∈ C= ∪ C> : |λ| ≥ R};
the latter set is the complement of Ω in C= ∪ C>. Therefore, (1 + L)−1 is stable iff

ZΩ(f) = 0. (2.1)

• Since Γ is a Nyquist contour for L we have PΩ(L) = PC0∪C+(L) = n0+. Due to the

first bullet this implies PΩ(f) = n0+.

For the Nyquist plot of L, let N now denote the number of encirclements of −1 in the

counterclockwise direction. Then f(Γ) encircles 0 exactly−N times in clockwise direction.

By the principle of the argument we infer that −N = ZΩ(f)− PΩ(f) and thus

N = n0+ − ZΩ(f). (2.2)

(This implies that N ≤ n0+ always holds as emphasized in the remark after the theorem.)

Proof of “if”. By hypothesis N = n0+. Hence ZΩ(f) = 0 and thus (1 + L)−1 is stable.

(This already follows from N ≥ n0+ which proves the statement in the remark.)

Proof of “only if”. If (1 + L)−1 is stable we have (2.1). Then (2.2) shows N = n0+.

Remarks.

• The result can also be applied if L is an irrational meromorphic function (i.e. the

quotient of two functions that are analytic on C). As a typically example, it can be

used for loop transfer functions L(s) = e−sTH(s) with T > 0 and a transfer function

H, as emerging in feedback loops with a delay.

• For transfer functions L one could set R = ∞: The Nyquist contour then just

consists of the whole imaginary axis (still with the small semicircles to avoid poles

of L on the axis and leaving all poles of L in C< to the left); the Nyquist plot of L

then just consists of the image under L in union with L(∞); moreover, in the first

hypotheses of Theorem 2.5, no λ ∈ C= ∪C> with |λ| > R exist and it only remains

to check L(∞) 6= −1.
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Nyquist plot of L (blue) and corresponding Nyquist contour (red)

Figure 3: Nyquist plot of L for the satellite example. For the Nyquist contour we choose

r = 0.1 and R = 5.

Example 2.6 The transfer function of a flexible satellite is given by

G(s) =
0.036(s+ 25.28)

s2(s2 + 0.0396s+ 1)
.

A controller which renders S = (1 +GK)−1 stable is given by

K(s) =
7.9212(s+ 0.1818)(s2 − 0.2244s+ 0.8981)

(s2 + 3.899s+ 4.745)(s2 + 1.039s+ 3.395)
.

Recall the standard construction of stabilizing controllers based on the separation prin-

ciple. One takes a minimal realization (A,B,C,D) of G and chooses F and J such that

A + BF and A + JC are Hurwitz. Then (A + BF + JC + JDF, J, F, 0) is a realization

of a controller K which renders (1 + GK)−1 stable. Also recall that F and J can, for

example, be computed by solving an LQR and a Kalman filter problem.

In our case the loop gain L(s) equals

0.28516(s+ 25.28)(s+ 0.1818)(s2 − 0.2244s+ 0.8981)

s2(s2 + 3.899s+ 4.745)(s2 + 0.0396s+ 1.001)(s2 + 1.039s+ 3.395)
.

L is strictly proper, i.e., L(∞) = 0 6= −1. Therefore (1 +L)−1 is proper. Moreover, L has

s = 0 with multiplicity two as the only pole in the closed right half-plane.

The Nyquist plot for R = 5 and r = 0.1 of L in Figure 3 encircles −1 two times in the

counterclockwise direction. The dashed lines correspond to negative frequencies. Hence

Theorem 2.5 implies that (1 + L)−1 has all its poles in C<.
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Indeed, (1 + L(s))−1 equals

s2(s2 + 3.899s+ 4.745)(s2 + 0.0396s+ 1.001)(s2 + 1.039s+ 3.395)

(s2 + 1.322s+ 0.606)(s2 + 1.77s+ 0.9899)(s2 + 1.217s+ 1.509)(s2 + 0.6677s+ 1.3)
.

2.3 Classical Robustness Indicators

We now make a first step towards considering robustness of feedback systems. Suppose

that (1 + L)−1 is stable. If the loop transfer function changes from L to kL for k ∈ R,

we can ask ourselves whether the uncertain system (1 + kL)−1 remains stable for all

uncertainties k ∈ (k−, k+) for constants 0 ≤ k− < 1 < k+ ≤ ∞. Classically, the largest

1 < k+ ≤ ∞ and the smallest 0 ≤ k− < 1 such that (1+kL)−1 is stable for all k ∈ (k−, k+)

are called the upper and lower gain-margins, respectively.

Similar the largest 0 < φ ≤ π such that (1 + cL)−1 is stable for all c with |c| = 1 and

arg(c) ∈ (−φ, φ) is called the phase-margin.

By the Nyquist stability criterion and corresponding remarks, these margins can be read

off from those points where the Nyquist plot of L crosses the negative real axis/the unit

circle. If changing L into kL for real k > 0 or into cL for complex |c| = 1, the effect onto

the Nyquist plot can be easily derived from the well-known relation

|cL(iω)| = |c||L(iω)| and arg(cL(iω)) = arg(c) + arg(L(iω)) for any c ∈ C,

with the usual interpretation of the equation on the right. Roughly speaking, if continu-

ously deforming L into cL, stability will be lost at that value of c for which the Nyquist

plot of cL happens to pass through −1 at some frequency ω ∈ R, since then (1 + cL)−1

has a pole at iω. For the gain-margins, we thus have to consider those frequencies for

which the Nyquist plot of L crosses the negative real axis, while for the phase-margin the

crossing points with the unit circle are relevant, as illustrated in in Figure 4.

Example 2.7 Recall the transfer functions from Example 2.6 and the Nyquist plot in

Figure 3, a zoomed-in version of which is given in Figure 5. The relevant crossing point on

the real axis is x1 ≈ −0.54, since the one at x2 ≈ −7.9 in Figure 3 moves to −∞ for r → 0

and is not relevant. Hence the gain-margins are equal to k− = 0 and k+ ≈ −1/(−0.54) ≈
1.85. Similar we can read off the crossing point of the Nyquist plot with the unit circle

which is closest to−1 in order to obtain the phase-margin 360arctan(0.53/0.85)
2π

≈ 31.9 degrees.

With the command allmargin(L) in Matlab one extracts the complete information about

the points of crossings and the corresponding frequencies.

The relevance of phase-perturbations for loop transfer functions is motivated by consid-
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Figure 5: Nyquist plot with unit circle (dotted) and relevant crossing points.
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Figure 6: Standard tracking configuration with time-delay.

ering time-delays in feedback loops. A time-delay dT of T seconds takes u(·) into

y(t) =

 0 for 0 ≤ t < T,

u(t− T ) for t ≥ T

if t is measured in seconds. Now recall that

ŷ(s) =

∫ ∞
0

e−sty(t) dt =

∫ ∞
T

e−stu(t− T ) dt =

∫ ∞
0

e−s(τ+T )u(τ) dτ =

= e−sT
∫ ∞

0

e−sτu(τ) dτ = e−sT û(s).

Hence the transfer function of a time-delay of T seconds is given by e−sT .

Even if such an element, which is not a real rational function, appears in a feedback-

loop, the Nyquist stability criterion stays valid! To model a delay in the measurement

of the system output by T seconds we consider the interconnection in Figure 6, which

shows that we have to now consider the loop transfer function L̃T (s) = e−sTL(s) with

L(s) = G(s)K(s) to analyze stability. If starting from some stable (1 + L)−1, we can ask

when stability is lost if continuously increasing the delay time T .

This motivates to define the time-delay-margin Tm, which is the smallest T ≥ 0 for

which there exists a frequency ω ≥ 0 with

e−iωTL(iω) = −1;

if no such T exists we set Tm = ∞. Suppose that (1 + L)−1 is stable and L(∞) = 0.

An application of the Nyquist criterion allows to conclude that (1 + e−sTL(s))−1 has all

its poles in C< for all T ∈ [0, Tm), which means that the loop with all these delays stays

stable.

Note that since |e−iωT | = 1 for all ω ∈ R and all T ≥ 0, there is a close relationship between

the phase and time-delay margin. Assuming that |L(iω)| = 1 only for finitely many

ω ∈ R ∪ {∞}, one can compute the time-delay-margin as follows. Compute ω1, . . . , ωn
where the Nyquist plot of L crosses the unit circle. Then solve e−iωjTjL(iωj) = −1 for

Tj ∈ [0, 2π] and all 1 ≤ j ≤ n. Then the time-delay-margin equals inf1≤j≤n Tj if n ≥ 1. If

the Nyquist plot of L does not cross the unit circle, the time-delay-margin equals ∞.
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Figure 7: Responses of the system from Example 2.6 with time-delay T ∈ {0, 0.4, 0.9} in

the loop.

Example 2.8 The time-delay-margin for the transfer functions in Example 2.6 equals

Tm ≈ 0.98 s ≈ 2π

360

60.93◦

1.085 rad
s

.

Mind the units of the frequency in this computation! Some responses of the system

affected by time-delay T ∈ {0, 0.4, 0.9} are given in Figure 7.

In practice, gain-variations and time-delays might occur simultaneously. It is hence no

longer sufficient to only consider real or complex unitary values of c if perturbing L to

cL. Common perturbations are modeled by complex numbers c, whose size is measured

in terms of their absolute value.

In view of the discussion so far, it is clear that the distance of the Nyquist plot of L from

the point −1 is the correct stability margin; if the transfer function L has no poles in C=,

this distance (for a Nyquist contour with r = 0 and R =∞) just equals

inf
ω∈R
|L(iω) + 1|.

This distance is related to the sensitivity transfer function as follows.

Theorem 2.9 For real-rational L without poles in C= ∪ {∞} we have(
inf
ω≥0
|L(iω) + 1|

)−1

= sup
ω≥0

∣∣∣∣ 1

1 + L(iω)

∣∣∣∣ .
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Figure 8: Nyquist plot of L in Example 2.10, unit circle and circle around −1 with radius

infω∈R |L(iω) + 1|.

This is a triviality. For a feedback-loop such that (1 + L)−1 is stable, it says that the

peak-value of the sensitivity transfer function

‖S‖∞

is inversely proportional to the distance of the Nyquist plot to −1. Roughly speaking,

the smaller ‖S‖∞ is, the larger are the allowed common variations in gain and phase

(measured by |c| if replacing L with cL) without violating stability of the loop.

Example 2.10 Consider the Nyquist plot of

L(s) =
−0.46832(s+ 3.3)(s− 2)(s+ 0.55)(s2 + 0.8824s+ 0.5882)

(s+ 0.303)(s− 0.5)(s+ 1.818)(s2 + 1.5s+ 1.7)

which is depicted in Figure 8. One can see that the gain- and phase margins are much

larger than the distance of the Nyquist plot to −1. Hence the gain- and phase-margins

provide a wrong guideline for robust stability if considering commonly occurring variations

in gain and phase.

Up to this point we were rather sloppy in discussing robust stability and we did not

give complete proofs for our statements. The remaining parts of these notes serve to

develop a systematic theoretical basis for robustness questions that is also applicable to

multivariable systems.
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2.4 Plant Uncertainty

The open-loop plant G is obtained by physical or experimental modeling. If the actual

physical system is described by H, we are typically confronted with a plant-model mis-

match, which just means G 6= H. If we design a controller for G, it should as well do a

good job for H, even if H deviates from G not only slightly but even significantly.

The general philosophy of robust control can be expressed as follows: Instead of designing

good controllers for just one model G of H, one rather considers a whole set of models H
with H ∈ H and designs a controller which does a good job for all elements in H.

A mathematical description of H is a so-called uncertainty model. Whether or not H ∈ H
is true, is a question of validating the uncertainty model and part of the field of system

identification.

Concretely, let us measure the deviation of G and H at some frequency ω with G(iω) 6= 0

by the relative error of their frequency responses:

|H(iω)−G(iω)|
|G(iω)|

=

∣∣∣∣H(iω)

G(iω)
− 1

∣∣∣∣ .
In practice, this error is typically small at low frequency and large at high frequencies.

The variation of the size of this error over frequency is captured with a transfer function

W by requiring∣∣∣∣H(iω)

G(iω)
− 1

∣∣∣∣ < |W (iω)| if W (iω) 6= 0 and H(iω) = G(iω) otherwise.

Note that this holds iff there exists some ∆ω ∈ C with

H(iω) = G(iω)(1 +W (iω)∆ω) and |∆ω| < 1.

Here G is the nominal system and W is a so-called uncertainty weight which captures

the size of the deviation of H(iω) from G(iω). This is said to be a multiplicative

uncertainty model.

The mathematically precise definition is based on a nominal model described by a

transfer function G 6= 0 and a weight described by a stable transfer function W 6= 0.

Definition 2.11 The multiplicative uncertainty model H related to a transfer function

G and a stable transfer function W is the set of all transfer functions H such that

1) H and G have the same number of poles in C>,

2) H and G have identical poles on the imaginary axis C= and

3) |H(iω)/G(iω)− 1| < |W (iω)| for all ω ∈ R ∪ {∞} with W (iω) 6= 0.

27



10
−2

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency  (rad/s)

Figure 9: Graphical verification of 3) in Definition 2.11.

We emphasize that H/G does not have poles in C= ∪ {∞} due to 3). Also note that, in

practice, W typically is a high-pass filter.

Example 2.12 This continues Example 2.6 and 2.7. Suppose that some parameter in

our satellite model is not known exactly, and that is transfer function is actually given by

Gb(s) =
0.036(s+ 25.28)

s2(s2 + bs+ 1)
for some b ∈ (1

2
b0, 2b0) with b0 = 0.0396.

Choose W (s) = 1.1s/(s+ 0.5) to obtain∣∣∣∣ Gb(iω)

Gb0(iω)
− 1

∣∣∣∣ < |W (iω)| for all ω ∈ R with ω 6= 0,

as verified graphically through the plot in Figure 9. With Gb0 as the nominal model and

W as the uncertainty weight, define the uncertainty model H. Since all Gb as described

above have s = 0 as a double pole in C= ∪ C> we indeed infer Gb ∈ H.

It is emphasized that H contains many more models. In that sense we “cover” or “over-

bound” the actual uncertainty in the parameter b through an uncertainty model that also

comprises dynamic uncertainties. All models

Gb0(s)(1 +W (s)∆(s)) =
0.036(s+ 25.28)

s2(s2 + 0.0396s+ 1)

(
1 +

1.1s

s+ .5
∆(s)

)
for arbitrary ∆ ∈ RH∞ satisfying ‖∆‖∞ < 1 belong to H as well:

Since ∆ cannot add poles in C> property 1) is still satisfied. Since 1 + W (0)∆(0) = 1,

we also observe that the double pole of Gb0 at s = 0 is never canceled; hence 2) holds.

The property 3) is satisfied because ‖∆‖∞ < 1 implies |W (iω)∆(iω)| < |W (iω)| for

ω ∈ R ∪ {∞} with ω 6= 0.

For the designed controller K and models H ∈ H, samples of the Bode magnitude and

step response plots are depicted in Figure 10. We conclude that K does not robustly
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Figure 10: Samples of the Bode magnitude and step response.

stabilize H. This just means there exists some H ∈ H for which (1+HK)−1 is not stable.

Theorem 2.13 Let H be given as in Definition 2.11. Suppose the transfer function

K does not cause any pole-zero cancellation in C= ∪ C> if forming GK and renders

(1 +GK)−1 proper and stable. Then

(1 +HK)−1 exists and is proper and stable for all H ∈ H (2.3)

if and only if

‖WGK(1 +GK)−1‖∞ ≤ 1. (2.4)

The property (2.3) is the robust stability question with respect to the multiplicative

uncertainty model H under consideration.

The condition (2.4) provides an exact verifiable robust stability test: For the nominal

model G, verify whether all unstable poles of G and K appear in L = GK and whether

(1 +L)−1 is proper and stable. If this is the case, then just determine the complementary

sensitivity transfer function T = L(1 + L)−1 = GK(1 +GK)−1 and check ‖WT‖∞ ≤ 1.

With L = GK we note that (2.4) reads as ‖WL(1 + L)−1‖∞ ≤ 1; if L has no poles in

C= then this condition has also a nice graphical interpretation. For this purpose observe
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that (2.4) can be expressed as

|W (iω)L(iω)| ≤ | − 1− L(iω)| for all ω ∈ R ∪ {∞}. (2.5)

For each frequency, this means that the distance of L(iω) to −1 is not smaller than

|W (iω)L(iω)|. We can equivalently say that the open disc Dω = {λ ∈ C| |λ − L(iω)| <
|W (iω)L(iω)|} does not contain −1. This is depicted in Figure 11

Proof. “⇐”: Choose any H ∈ H and define ∆ := 1
W

(H
G
− 1). With 3) in Definition 2.11

we infer that

|∆(iω)| < 1 for all ω ∈ R ∪ {∞}. (2.6)

Hence ∆ is a transfer function without any poles in C0. Now define

Lτ := (1 + τ∆W )GK for τ ∈ [0, 1] .

Since 1 + ∆W = H/G we infer L0 = GK and L1 = HK. We know that (1 + L0)−1 is

stable and we need to show stability of (1 + L1)−1. This will be done by applying the

Nyquist stability criterion and on the basis of the following key relation: By the very

definition we have Lτ + 1 = (L0 + 1) + τ∆WL0 and thus

S(Lτ + 1) = 1 + τ∆WT. (2.7)

for the stable transfer functions S = (1 + L0)−1 and T = 1− S = L0(1 + L0)−1.

Let us choose R > 0, r > 0 defining a Nyquist contour Γ for G, H, K, W and ∆; so all

poles of these transfer functions in C=∪C> and none in C< are encircled by Γ. Note that

Γ is also a Nyquist contour for all Lτ with τ ∈ [0, 1]. We recall again that these properites

are not altered by increasing R > 0 and decreasing r > 0.

With (2.6) and ‖WT‖∞ ≤ 1 we infer |∆(λ)W (λ)T (λ)| < 1 for all λ ∈ C= ∪ {∞}; if

applied for λ =∞, we see that we can increase the given R > 0 in order to also ensure

|∆(λ)W (λ)T (λ)| < 1 for all λ ∈ C= ∪ C> with |λ| ≥ R; (2.8)
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for reasons of continuity, we can decrease r > 0 to also guarantee |∆(λ)W (λ)T (λ)| < 1

for all points λ ∈ Γ on the indented imaginary axis; taken together this implies

|∆(λ)W (λ)T (λ)| < 1 for all λ ∈ Γ. (2.9)

After having fixed this Nyquist contour Γ for Lτ , we conclude from (2.7) and (2.9) that

Lτ (λ) 6= −1 for all λ ∈ Γ and all τ ∈ [0, 1]; (2.10)

otherwise we had 0 = |1+τ∆(λ)W (λ)T (λ)| ≥ 1−τ |∆(λ)W (λ)T (λ)| > 0, a contradiction.

Let us now denote by N(Lτ ) the number of counterclockwise encirclements of −1 of Lτ (Γ).

Then (2.10) shows

N(L0) = N(L1). (2.11)

Indeed, let γ : [0, 1]→ Γ be a (bijective piece-wise continuous differentiable) parametriza-

tion of Γ such that γ(t) moves in clockwise direction around Γ if t moves from zero to one.

It is then very easy to check that the map H : [0, 1] × [0, 1] 3 (τ, t) → Lτ (γ(t)) ∈ C
is continuous: Choose any (τ0, t0) ∈ [0, 1] × [0, 1]; since Γ is compact and does not

pass through any pole of ∆, W and L0 = GK, there exists some constant b with

|∆(γ(t))W (γ(t))L0(γ(t))| ≤ b for all t ∈ [0, 1]; for (τ, t) ∈ [0, 1]× [0, 1] we get

|Lτ (γ(t))− Lτ0(γ(t0))| ≤ |Lτ (γ(t))− Lτ0(γ(t))|+ |Lτ0(γ(t))− Lτ0(γ(t0))| ≤
≤ |τ − τ0||∆(γ(t))W (γ(t))L0(γ(t))|+ |Lτ0(γ(t))− Lτ0(γ(t0))| ≤

≤ |τ − τ0|b+ |Lτ0(γ(t))− Lτ0(γ(t0))| → 0 for (τ, t)→ (τ0, t0).

As a well-known fact in complex analysis, that already this fact allow us to conclude that

N(Lτ ) is constant for τ ∈ [0, 1], which in turn clearly leads to (2.11).

We are now ready to conclude the proof with the Nyquist stability criterion. First, since

Γ is a Nyquist contour for L0, L1, their Nyquist plots do not pass through −1. Second,

from (2.7) and (2.8), we infer Lτ (λ) 6= −1 for all λ ∈ C= ∪C> with |λ| > R and τ = 0, 1.

If n0+(g) denotes the number of poles of g in C0 ∪ C+, Theorem 2.5 applied to L0 shows

N(L0) = n0+(L0).

By the non-cancellation hypothesis and 1), 2) in Definition 2.11 we conclude

n0+(L0) = n0+(G) + n0+(K) = n0+(H) + n0+(K) ≥ n0+(L1). (2.12)

Combined with (2.11) we infer N(L1) ≥ n0+(L1) which concludes the proof.

“⇒”: Set M := WT and suppose ‖M‖∞ > 1. Then there exists some ω0 ∈ [0,∞] with

|M(iω)| > 1. By continuity, we can make sure that iω0 is not a pole of G and K. If

defining δ0 := − 1
M(iω0)

we clearly have |δ0| < 1. If δ0 is real set ∆(s) := δ0 and otherwise
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construct a stable transfer function ∆ as in Lemma 2.14. We infer 1+M(iω0)∆(iω0) = 0.

With H := G(1 +W∆) we obtain

1 +HK = (1 +GK)(1 + (1 +GK)−1GKW∆) = (1 +GK)(1 +M∆).

Since 1 + GK has no pole at iω0, we conclude that 1 + HK has a zero at iω0. Hence,

(1 + HK)−1 does not exist, is not proper or is unstable. Moreover, for all ω ∈ R ∪ {∞}
with W (iω) 6= 0 we have∣∣∣∣H(iω)

G(iω)
− 1

∣∣∣∣ = |∆(iω)||W (iω)| ≤ |δ0||W (iω)| < |W (iω)|.

In this fashion we have constructed some H that is “almost” contained in H and which

destabilizes (1 + HK)−1. As the only trouble, poles of G in C= ∪ C> might be canceled

in the product H = (1 + ∆W )G such that 1), 2) in Definition 2.11 are not valid.

To overcome this trouble let p1, . . . , pm ∈ C=∪C> be those poles of G at which cancelation

takes place; note that pj 6= ±iω0. Since 1 +W∆ vanishes at these points, W (pj) 6= 0 for

j = 1, . . . ,m. Lemma 2.15 shows that there exists a stable transfer function F satisfying

F (iω0) = 1, |F (pj)| <
1

|W (pj)|
for j = 1, . . . ,m and ‖F‖∞ ≤ 1.

If we define H̃ = (1 + [F∆]W )G, then all properties above persist to hold; in addition,

however, we infer

|1 + F (pj)∆(pj)W (pj)| ≥ 1− |δ0||F (pj)||W (pj)| > 0 for j = 1, . . . ,m.

Hence p1, . . . , pm are not canceled any more in (1 + F∆W )G and thus H̃ ∈ H.

In the proof of Theorem 2.13 the following two lemmata were used.

Lemma 2.14 Let ω0 > 0 and δ0 ∈ C. Choose

α = ±|δ0|, β = iω0
α− δ0

α + δ0

.

Then the transfer function

∆(s) = α
s− β
s+ β

is real-rational, proper and satisfies

∆(iω0) = δ0 as well as |∆(iω)| = |δ0| for all ω ∈ R.

Either for α = |δ0| or for α = −|δ0| the transfer function ∆ is stable.
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Proof. One can prove ∆0 = ∆(iω0) by direct calculations. Since |α| = |∆0|, the vectors

that correspond to the complex numbers α + ∆0 and α − ∆0 are perpendicular. Hence
α−∆0

α+∆0
is purely imaginary. This implies that β is real. Therefore, the distances of iω to β

and to −β are identical such that |iω − β| = |iω + β| what implies |∆(iω)| = |α| = |∆0|.
Moreover, a change of sign of α leads to the reciprocal of α−∆0

α+∆0
which, again due to the

fact that this number is purely imaginary, changes the sign of the imaginary part. Hence

we can adjust the sign of α to render β non-negative. Then ∆ is stable. (Note that β

might vanish what causes no problem!)

Lemma 2.15 Let ω0 > 0, p1, . . . , pm ∈ (C0∪C+)\{−iω0, iω0} located symmetrically with

respect to the real axis and positive real values α1, . . . , αm be given. Then there exists a

stable transfer function F such that

F (iω) = 1, ‖F‖∞ ≤ 1 and |F (pj)| < αj for j = 1, . . . ,m.

Proof. For ξ > 0 and ω > 0 define the stable transfer function

Gξ(s) =
2ξωs

s2 + 2ξωs+ ω2
.

Then observe that Gξ(iω) = 1, |Gξ(s)| < 1 for all s ∈ C0 ∪ C+ with s 6= ±iω and
2ξωs

s2+2ξωs+ω2 → 0 for ξ → 0 for fixed s with s 6= ±iω (in particular for s = p1, . . . , pm).

Hence there exist ξ1, . . . , ξm such that |Gξj(pj)| < αj for all 1 ≤ j ≤ m, and this persists to

hold if decreasing ξj > 0. Then F := Gξ̃ with ξ̃ = inf1≤j≤m ξj has the desired properties.

Remark 2.16 Let us represent G = NG

DG
and K = NK

DK
with coprime real numerator and

denominator polynomials.

• Then S and T can be expressed as

S =
DGDK

NGNK +DGDK

and T =
NGNK

NGNK +DGDK

.

Here NGNK + DGDK is the so-called characteristic polynomial of the feedback

loop. Recall that S (and/or T ) is stable iff NGNK +DGDK has only zeros in C<.

• The non-cancellation hypothesis means that NG, DK and DG, NK have no common

zeros in C= ∪C>. The relation of “non-cancellation” and internal stabilization will

be clarified in Theorem 2.24.
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• Under the hypotheses of Theorem 2.13, the proof shows that (2.4) also guarantees

the absence of any pole-zero cancellations in C= ∪ C> for HK and any H ∈ H!

Example 2.17 Consider

G(s) =
1

s− 1
, H(s) =

1

s− 2
and W (s) =

1.1

s+ 2
.

Then

∆(s) =
1

W (s)

(
H(s)

G(s)
− 1

)
=

s+ 2

1.1(s− 2)

satisfies |∆(iω)| < 1 for all ω ∈ R∪ {∞}. Hence there exists a uncertainty model H with

H ∈ H. The controller K ∈ R (a static gain) renders 1/(1 + GK) stable iff K + (s − 1)

has all its roots in C< iff K > 1. For K = 3 we get

‖WT‖∞ =

∥∥∥∥ 3.3

(s+ 2)2

∥∥∥∥
∞

= 0.825 ≤ 1.

Hence K is guaranteed to render 1/(1 + HK) stable by Theorem 2.13. Is that also true

for 1/(1 +HτK) with

Hτ = (1 + τ∆W )G for τ ∈ (0, 1)?

Although one might be tempted to draw this conclusion, the answer is in general no. To see

this, observe that 1/(1+HτK) = (1+Lτ )
−1 with Lτ = (1+τ∆W )GK = (1−τ)GK+τHK

defined as in the proof of Theorem 2.13. If τ 6= 0 and τ 6= 1 we can no longer guarantee

that n0+(L0) ≥ n0+(Lτ ) is true. It might very well happen that n0+(L0) < n0+(Lτ ) holds;

with the Nyquist contour and the notation in the proof of Theorem 2.13 we get

N(Lτ ) = N(L0) = n0+(L0) < n0+(Lτ ),

which actually implies instability of (1 + Lτ )
−1 by Theorem 2.5.

Example 2.18 For the uncertainty model and transfer matrices in Example 2.12 and the

earlier designed controller we have ‖WT‖∞ > 1.5 > 1, which confirms non-robustness as

seen by our simulations. If we reduce the size of the uncertainty by replacing the weight

through W̃ (s) = 0.8s/(s + 0.5), the simulations in Figure 12 seem to confirm robust

stability. However, this is misleading since ‖W̃T‖∞ ≈ 1.09 > 1 ensures that there exists

some system in the uncertainty model for which the sensitivity is not stable.

In general, the size of the uncertainty in our general uncertainty description can be scaled

with a factor r > 0 by replacing 3) in Definition 2.11 through

|H(iω)/G(iω)− 1| < r|W (iω)| for ω ∈ R ∪ {∞}, W (iω) 6= 0.
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Figure 12: Sample plots for the rescaled uncertainty model Hr in Example 2.18.

For the corresponding uncertainty model Hr and under the hypothesis of Theorem 2.13

we then infer that

(1 +HK)−1 exists and is proper and stable for all H ∈ Hr (2.13)

if and only if ‖WGK(1 + GK)−1‖∞ ≤ 1
r
. This gives a formula for the corresponding

robust stability margin, the largest value of r for which (2.13) is valid.

Corollary 2.19 Under the hypotheses of Theorem 2.13, ‖WGK(1 + GK)−1‖−1
∞ is the

maximal r > 0 for which (2.13) is satisfied.

2.5 Performance

Consider again the interconnection depicted in Figure 1. Let S = (1 + L)−1 be stable

with L = GK and let (A,B,C,D) be a minimal realization of S. For a reference signal

with constant value r, the error response equals

e(t) = CeAtA−1Br + (D − CA−1B)r

and has the steady-state response (D − CA−1B)r = S(0)r, since the transient response

CeAtA−1Br converges to 0 for t→∞ (just because S is stable, A is Hurwitz).

If r(t) = r0e
iωt is a complex sinusoidal signal with r0 ∈ C and ω > 0 we get

e(t) = CeAt(A− iωI)−1Br0 + (C(iωI − A)−1B +D)r0e
iωt.

Again, the transient response CeAt(A− iωI)−1Br0 converges (exponentially fast) to 0 for

t→∞ due to the stability of S and minimality of the realization. Hence the steady-state

response equals (C(iωI−A)−1B+D)r0e
iωt = S(iω)r0e

iωtand is as well a sinusoidal signal

with the same frequency as r(.) and complex amplitude given by e0 = S(iω)r0; clearly

|S(iω)| is the amplification (or attenuation) factor for the amplitude of sinusoidal signals

of frequency ω in e = Sr. Hence |e(t)| ≈ |S(iω)||r0| for sufficiently large t ≥ 0. Since
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e is the tracking error for the configuration in Figure 1, sinusoidal reference signals of

frequency ω are tracked well if |S(iω)| is small. By

|S(iω)| = 1

|1 +G(iω)K(iω)|
=

1

|K(iω)|
1

| 1
K(iω)

+G(iω)|
,

this can be achieved with large values of |G(iω)| or of |K(iω)| if G(iω) 6= 0. Due to

u = KSr, the control action in the loop is related to |K(iω)S(iω)| = | 1
K(iω)

+ G(iω)|−1;

this gain is large for large |K(iω)| and small |G(iω)|. Since |G(iω)| is often small for high

frequencies, large values of |K(iω)| imply

|G(iω)K(iω)|
|1 +G(iω)K(iω)|

=
|G(iω)|

| 1
K(iω)

+G(iω)|
≈ 1,

which, roughly, means that the relative plant-model mismatch cannot go beyond 100% at

high frequencies in order not to endanger stability.

All this motivates that it is, in general, not a good design goal to try to reduce |S(iω)|
over all frequencies by control. Instead, in practice one chooses e.g. some frequency band

[ω1, ω2] and tries to suppress |S(iω)| for ω ∈ [ω1, ω2] only.

Mathematically, this is modeled with a performance weight Wp, a stable transfer func-

tion that allows to express the desired specification precisely as

‖WpS‖∞ ≤ 1.

If this inequality holds, this simply means that

|S(iω)| ≤ 1

|Wp(iω)|
for all ω ∈ R ∪ {∞}. (2.14)

If true, the tracking error is small “in the frequency range” [ω1, ω2] if Wp had been taken

such that |Wp(iω)| is large at all these frequencies. In practice, Wp are band-pass filters.

To track constant references we choose ω1 = 0 and take Wp as a low-pass filter.

The inequality (2.14) has again a nice geometric interpretation. If iω is not a pole of L,

then (2.14) can be written as

|Wp(iω)| ≤ |1 + L(iω)| = | − 1− L(iω)|.

This means that L(iω) should lie outside the open disk with center −1 and radius |Wp(iω)|
as depicted in Figure 13.

Example 2.20 This continues the Examples 2.6, 2.7 and 2.12. If we choose

Wp(s) =

(
s/
√
M + ωB

s+ ωB
√
A

)2

=

(
s/
√

5 + 0.1

s+ 0.1
√

10−3

)2
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one can check that ‖Wp(1+GK)−1‖ ≤ 1. If H is given for the uncertainty weight W (s) =

0.7s/(s+0.5) we now ask whether the following robust performance specification holds:

‖Wp(1 +HK)−1‖∞ ≤ 1 for all H ∈ H.

It is easy to check ‖WT‖∞ ≤ 1 which implies robust stability. However, the samples of

Bode magnitude plots in Figure 14 show that robust performance does not hold.

Theorem 2.21 Let Wp be a stable transfer function and let the hypothesis of Theorem

2.13 be satisfied. Then robust stability (2.3) and robust performance as characterized by

‖Wp(1 +HK)−1‖∞ ≤ 1 for all H ∈ H (2.15)

are satisfied if and only if

|Wp(iω)S(iω)|+ |W (iω)T (iω)| ≤ 1 for all ω ∈ R ∪ {∞} (2.16)

holds with S = (1 +GK)−1 and T = GK(1 +GK)−1.
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Again, the essence is an easily verifiable characterization of robust stability and robust

performance in terms of the nominal system G, the controller K and the weights W and

Wp capturing the uncertainty and the performance specification. Note that (2.16) imply

‖WpS‖∞ ≤ 1 and ‖WT‖∞ ≤ 1,

i.e., nominal performance and robust stability. Also note that (2.16) cannot be expressed

as an H∞-norm constraint; a sufficient condition for (2.16) can be expressed as∥∥∥∥∥∥
WpS

WT

∥∥∥∥∥∥
∞

<
1√
2

.

Proof. “⇐”: (2.16) also implies |W (iω)T (iω)| ≤ 1 for all ω ∈ R ∪ {∞}. Since by

assumption (1 + GK)−1 and W are stable, this means ‖WT‖∞ ≤ 1. Hence (1 + HK)−1

is stable for all H ∈ H by Theorem 2.13.

Suppose iω ∈ C0 is not a pole of G, K and Wp, W , 1/W . Let H ∈ H and define

∆ := 1
W

(H
G
− 1). Due to 3) in Definition 2.11 we infer |∆(iω)| < 1. Also observe that

H = (∆W + 1)G. Moreover we conclude from (2.16) that

|Wp(iω)|+ |W (iω)G(iω)K(iω)| ≤ |1 +G(iω)K(iω)|.

By using |∆(iω)| < 1 we obtain

|Wp(iω)| ≤ |1 +G(iω)K(iω)| − |W (iω)G(iω)K(iω)|
≤ |1 +G(iω)K(iω)| − |∆(iω)||W (iω)G(iω)K(iω)|
≤ ||1 +G(iω)K(iω)| − |∆(iω)W (iω)G(iω)K(iω)||
≤ ||1 +G(iω)K(iω) + ∆(iω)W (iω)G(iω)K(iω)||
≤ |1 + [1 + ∆(iω)W (iω)]G(iω)K(iω)|
= |1 +H(iω)K(iω)|

which shows |Wp(iω)(1 + H(iω)K(iω))−1| ≤ 1. Due to stability of Wp and (1 + HK)−1

and continuity in ω, this inequality holds in fact for all ω ∈ R∪{∞}. Hence (2.15) follows.

“⇒”: If |Wp(iω̃)S(iω̃)|+|W (iω̃)T (iω̃)| > 1 for some ω̃ ∈ R∪{∞}, we can also find ω0 ∈ R
such that iω0 is not a pole of G and K and, still, |Wp(iω0)S(iω0)|+ |W (iω0)T (iω0)| > 1.

If |W (iω0)T (iω0)| > 1, robust stability is not guaranteed by Theorem 2.13 and the proof

is finished. Otherwise we get |Wp(iω0)S(iω0)| > 1− |W (iω0)T (iω0)| ≥ 0 and thus

|Wp(iω0)| > |1 + L(iω0)| − |W (iω0)L(iω0)| ≥ 0.

Lemma 2.22 for u = 1 + L(iω0) and v = W (iω0)L(iω0) allows us to choose δ0 ∈ C with

|δ0| < 1 and

|Wp(iω0)| > |1 + L(iω0) + δ0W (iω0)L(iω0)| = |1 + [1 + δ0W (iω0)]G(iω0)K(iω0)|. (2.17)
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|W (iω)L(iω)|

Figure 15: Geometric interpretation of (2.16).

If constructing F∆ ∈ RH∞ such that H := (1 + F∆W )G ∈ H and F∆(iω0) = δ0 as in

the proof of Theorem 2.13, we infer that iω0 is not a pole of H (since it was not a pole of

G) and |Wp(iω0)| > |1 +H(iω0)K(iω0)| by (2.17). This shows ‖Wp(1 +HK)−1‖∞ > 1.

Lemma 2.22 Let us be given α ∈ R, u, v ∈ C with α > |u| − |v| ≥ 0. Then there exist

δ0 ∈ C with |δ0| < 1 such that α > |u+ δ0v|.

Proof. There exist φ, ψ ∈ [−π, π] with u = |u|eiφ and v = |v|eiψ. Define δ := ei(φ−ψ+π)

to obtain

|u+ δv| = ||u|eiφ + |v|eiφ+iπ| = ||u|eiφ − |v|eiφ| = ||u| − |v|| = |u| − |v|.

Hence α > |u+ δv|; since the inequality is strict, there exists some small ε > 0 such that

α > |u+ (1− ε)δv| and we can choose δ0 := (1− ε)δ.

If iω is not a pole of L, (2.16) can be written at this frequency as

|Wp(iω)|+ |W (iω)L(iω)| ≤ | − 1− L(iω)|.

This means that the distance of L(iω) to −1 is at least |Wp(iω)|+ |W (iω)L(iω)|, i.e., the

two open disks related to the nominal performance specification and the robust stability

condition as shown in Figure 15 should not intersect.

2.6 Internal Stability

For transfer functions G and K let us now consider the feedback loop as depicted in

Figure 16. So far we have concentrated on controllers K which render the transfer function
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G+K+
u y

−
r e

d

Figure 16: Standard tracking configuration with disturbance d.

in e = (1 +GK)−1r stable. If true, this does not always imply that the transfer functions

in u = K(1 + GK)−1e or y = G(1 + GK)−1d are stable. This motivates the following

definition.

Definition 2.23 K renders the feedback interconnection shwon in Figure 16 internally

stable if (1 +GK)−1 exists, is proper and if

1

1 +GK
,

K

1 +GK
,

G

1 +GK

are all stable.

Let us emphasize the following two useful facts:

• Stability of (1 +GK)−1 implies stability of

GK(1 +GK)−1 = 1− (1 +GK)−1.

• If 1 +GK is not the zero transfer function we know that 1 G

−K 1

−1

=
1

1 +GK

 1 −G
K 1

 =

 S −GS
KS S

 .

The latter observation justifies the following alternative characterization of the conditions

in Definition 2.23: K renders the feedback interconnection internally stable iff 1 G

−K 1

−1

exists and is stable.

Theorem 2.24 Suppose that G = NG

DG
and K = NK

DK
with coprime real numerator and

denominator polynomials. Then K renders the feedback interconnection internally stable

iff one of the following equivalent conditions holds:

1) There is no pole-zero cancellation in C=∪C> if forming GK and (1 +GK)−1 exists

and is stable.
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2) The 2× 2 transfer matrix

 1 G

−K 1

 has a stable inverse.

3) 1 +G(∞)K(∞) 6= 0 and the zeros of the characteristic polynomial NGNK +DGDK

of the loop are contained in C<.

Recall that “stable” includes the requirement of properness. We will not emphasize this

point in the sequel.

Proof. Define p := NGNK +DGDK . If 1 +GK 6= 0 then 1 G

−K 1

−1

=

 S −GS
KS S

 =
1

p

DGDK −NGDK

DGNK DGDK

 . (2.18)

1)⇒ 3). Since S = (1 +GK)−1 is proper we get 1 +G(∞)K(∞) 6= 0. Suppose p(λ) = 0

for λ ∈ C0 ∪ C+. Since S = DGDK/p is stable we infer DG(λ)DK(λ) = 0 and hence

NG(λ)NK(λ) = NG(λ)NK(λ) + DG(λ)DK(λ) = p(λ) = 0. Then either NG(λ) = 0 or

NK(λ) = 0.

If NG(λ) = 0 then DG(λ) 6= 0 since NG and DG are coprime. Hence DK(λ) = 0 is true.

This means that λ is a common zero of NG and DK that is cancelled when forming GK.

This is a contradiction to 1).

An analogous reasoning leads to a contradiction if NK(λ) = 0.

3)⇒ 2). Since 1 +G(∞)K(∞) 6= 0, we have 1 +GK 6= 0 and the inverse in (2.18) exists

as a real rational function. Since S = (1 +GK)−1, G and K are proper, the first equation

in (2.18) shows that the inverse is proper. Since p has only zeros in C<, the inverse is

stable as seen by the second equation in (2.18).

2) ⇒ 1). Since the inverse exists we infer 1 + GK 6= 0 as a function. Properness of the

inverse and (2.18) show that S = (1 +GK)−1 exists and is proper.

Let λ ∈ C= ∪ C> satisfy NG(λ) = 0 and DK(λ) = 0. On the one hand we clearly

have p(λ) = 0. On the other hand, we know DG(λ) 6= 0 (since NG, DG are coprime)

and NK(λ) 6= 0 (since NK , DK are coprime). Hence DGNK/p has a pole at λ, which

contradicts the stability of (2.18).

We infer that NG, DK have no common zeros in C=∪C>, and analogous arguments show

the same for DG, NK . We conclude that no C= ∪ C> pole-zero cancelation occurs in

GK.
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With the concept of internal stabilization and in view of the hypothesis of Theorem 2.13

as well as the third bullet in Remark 2.16, we can rephrase Theorem 2.13 as follows: Sup-

pose K internally stabilizes the interconnection in Figure 16 with G. Then K internally

stabilizes this interconnection with any H ∈ H if and only if (2.4) holds true.

This sets the stage for the generalization to much more complicated general interconnec-

tions and structured uncertainties in the next chapters.

Exercises

1) Suppose you are given the system and controller

G =

 0 1 0

−2 −3 1

α −1 0

 and K =

 1 1

1 0

 with α = 1.

a) Compute GK and S = (1 + GK)−1 in the state-space by standard formulas

for the product and the inverse of realizations.

b) Is the resulting system-matrix Hurwitz?

c) Does K render S stable? Is GS stable? Is KS stable?

d) What is the trouble if α slightly deviates from 1?

2) For given transfer functions G and K let us consider the feedback interconnection

in Figure 16.

a) If GK is not equal to −1, show that the transfer matrix from the the reference

and the input disturbance

(
r
d

)
to the signal

(
e
u

)
is given by

 1 G

−K 1

−1

. (2.19)

Express the inverse in terms of S, G and K.

b) For a given SISO system G, the SISO controller K is said to internally stabilize

the standard feedback configuration of Figure 16 if (2.19) is stable. Construct

an example such that K renders (2.19) stable except for the (1; 2)- entry.

c) Suppose G is stable. Then show that K internally stabilizes the tracking

configuration iff K renders K(1 +GK)−1 is stable.

3) Let L be a proper transfer function and Γ a Nyquist contour fo L with R =∞ such

that the Nyquist plot of L does not pass through −1 and L(∞) 6= −1. Suppose
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that L has n0+ poles on the imaginary axis or in the open right-half plane (counted

with multiplicities). Show that (1 +L)−1 is stable if and only if the Nyquist plot of

L encircles −1 exactly n0+ times in the counterclockwise direction.

4) In 195x NASA launched a flexible satellite in order to spy on the Russians. Based

on the linear model G(s) = 0.036(s+25:28)
s2(s2+0.00396s+1)

a team of control engineers designed

and tested a linear controller K(s) = 7.9212(s+0:1818)(s2−0.2244s+0.8981)
(s2+3.899s+4.745)(s2+1.039s+3.395)

that performed

sufficiently well for the job to be done. Now that the cold war is over, NASA

found another purpose for the satellite. Unfortunately, due to a recent defect in the

control hardware, the measurement got delayed by maximally T = 0.25 seconds. For

this purpose, a robustness analysis has been scheduled in order to verify whether

the system still performs sufficiently well, or whether a new controller has to be

designed and uploaded. Unfortunately, NASA ran out of money, due to jet another

fiscal cliff. For this reason NASA asked the University of Stuttgart (which is well-

known for their excellent students) whether the job could be done by a student free

of charge.

Consider the time-delayed feedback interconnection depicted in Figure 6.

a) Design a generic dynamical weight WT of order 1 that “tightly covers” dT − 1

with the delay operator dT and its transfer function e−sT and for arbitrary

T > 0. “Covering” is interpreted as in Example 2.12.

b) For the nominal model G and the weight WT , show that the delayed transfer

function H satisfies all properties in Definition 2.11.

c) Perform a robustness analysis based on Theorem 2.13 and answer the following

questions:

i) Does the system remain stable?

ii) What is the robust stability margin?

iii) What is the maximum tolerable delay-time T for which ‖WT (1 +

GK)−1‖∞ ≤ 1?

d) What would be your recommendation for NASA?

Hint: Although not proven rigorously, you can use the fact that (2.16) ⇒ (2.15)

in Theorem 2.13 stays valid for the delayed transfer function H. Use Matlab for

solving this exercise!

5) This continues Exercise 4) with H for the nominal system G and the uncertainty

weight WT .

a) Recall the first order weight WT from Exercise 4) and the second order perfor-

mance weight Wp from Example 2.20 and verify whether the controller achieves

robust performance for a delay-time of T = 0.25 seconds.
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b) What is the maximum tolerable time-delay Tmax for which the controller still

achieves robust performance?

c) For a time-delay of T = 0.25 seconds, what is the maximum bandwidth ωB in

the weight Wp for which the controller still achieves robust performance?

d) Let Wp again be as in Example 2.20 and choose a time-delay T > Tmax with

|Wp(iω)S(iω)| + |WT (iω)T (iω)| > 1 for some ω ∈ R. Determine some H ∈ H
such that ‖Wp(1 +HK)−1‖∞ > 1.

Hint: Use Lemma 2.22.

6) For any transfer function ∆ define an uncertain system through

G∆(s) =
1

s
(1 + ∆(s)).

The nominal system is G0(s) = 1/s and the controller is taken to be K(s) = 1. As

usual define L∆ = G∆K and T := L0(1 + L0)−1.

a) Show that T is stable and ‖T‖∞ = 1.

b) If ∆ is a stable transfer function which satisfies ∆(0) = −1, its Taylor expansion

reads as ∆(s) = −1 + a1s + a2s
2 + . . . around s = 0. If ‖∆‖∞ ≤ 1 show that

a1 ≥ 0.

c) Show that (1 + L∆)−1 is stable for all stable ∆ satisfying ‖∆‖∞ ≤ 1.

The next few exercises are more mathematical orientated.

7) This continues Exercise 2) with transfer functions G and K.

a) Show that K internally stabilizes G iff (1 +GK)−1 is stable and no poles of G

and K in C0 ∪ C+ are canceled if forming GK.

b) Prove the Nyquist criterion for internal stability: Suppose m0+ is the number

of poles of G and of K in C0 ∪ C+ (including multiplicities). Then K inter-

nally stabilizes the tracking configuration iff the Nyquist plot of GK does not

pass through −1 and encircles −1 exactly m0+ times in the counterclockwise

direction.

8) Prove the following statements.

a) A continuous function f : C0 ∪ C+ → R is sub-harmonic if it satisfies, for all

z ∈ C+ and all r > 0 with r < Re(z), the inequality

f(z) ≤ 1

2π

∫ 2π

0

f(z + reit)dt.

If K ⊂ C0 ∪ C+ is a compact subset with boundary ∂K, show that

sup
z∈∂K

f(z) = sup
z∈K

f(z).
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b) For any matrix M ∈ Ck×m show that ‖M‖ = max‖x‖=1,y‖=1 |x∗My|.

c) For G ∈ RHk×m
∞ show that z 7→ ‖G(z)‖ is subharmonic.

d) For G ∈ RHk×m
∞ prove the following “maximum modulus theorem”:

‖G‖∞ = sup
z∈C0∪C+

‖G(z)‖.

9) Let L, W and ∆ be transfer functions with the following properties:

• W and T = L(1 + L)−1 are stable and satisfy ‖WT‖∞ ≤ 1.

• ∆ has no poles in C0 and satisfies |∆(iω)| < 1 for all ω ∈ R ∪ {∞}.

Prove the following facts:

a) 1 + TW∆ and (1 + TW∆)−1 have no poles in C0 ∪ {∞}.

b) L and L∆ := L(1 +W∆) have identical poles in C0 (including multiplicities).

c) Suppose that (1 + L∆)−1 is stable. Then L and L∆ have the same number of

poles in C+.

Hint: To prove the third statement one can use Rouché’s theorem.

10) With the transfer function L0 = N/D (where N , D are real coprime polynomials)

and T > 0 define the loop transfer function LT (s) = L0(s)e−sT .

a) Show that the poles of (1+LT )−1 in C0∪C+ are given by the zeros of pT (s) :=

D(s) +N(s)e−sT in C0 ∪ C+.

b) If |L0(∞)| < 1 show that pT has only finitely many zeros in C0 ∪ C+.

c) If |L0(∞)| < 1 and pT has no zeros in C0∪C+ show that (1 +LT )−1 is analytic

and bounded in C+.

d) Given constants M > 0, R > 0, show that there exists T0 > 0 such that

M |1− e−iωT | < 1 for all ω ∈ [−R,R], T ∈ [0, T0].

e) Suppose that |L0(∞)| < 1 and that p0 has all its zeros in C−. Show that there

exists some T0 > 0 such that pT has only zeros in C− for T ∈ [0, T0). You can

assume that L0 has no poles in C0.

Hint: Use the Nyquist criterion for LT .

f) If |L0(∞)| > 1 show that for all T > 0 the polynomial pT has at least one zero

in C0 ∪ C+.

Hint: Consider the zeros of the function f(s) = eT/sL0(s−1)−1 + 1 with an

essential singularity at 0 and apply Picard’s Great Theorem without proof.
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3 Stabilizing Controllers for Interconnections

In the previous section we have discussed some robustness issues for SISO systems. In

practice, however, one encounters interconnections of multi input multi output (MIMO)

systems. In the most simplest case, typical components of such an interconnection are a

model of a considered physical plant and a to-be-designed feedback controller.

Before we deal with robustness for such interconnections of systems we consider the precise

definition of when a system is internally stabilized by a controller.

3.1 A Specific Tracking Interconnection

To be concrete, let us look at the typical one-degree of freedom control configuration in

Figure 17. Here G is the plant model, K is the to-be-designed controller, r is the reference

input signal, d is a disturbance at the plant’s output, n is measurement noise, e is the

tracking error, u is the control input, and y is the measured output.

It is important to note that we have explicitly specified those signals that are of interest

to us:

• Signals that affect the interconnection and cannot be influenced by the controller:

r, d, n.

• Signals with which we characterize whether the controller achieves the desired goal:

e should be kept as small as possible for all inputs r, d, n in a certain class.

• Signals via which the plant can be controlled: u.

• Signals that are available for control: y.

The interconnection does not only comprise the system components (G, K) and how

the signals that are processed by these components are related to each other, but it also

specifies those signals (e and r, d, n) that are related to the targeted task of the controller.

The corresponding open-loop interconnection is simply obtained by disconnecting the con-

troller as shown in Figure 18.

It is straightforward to arrive, without any computation, at the following input-output

description of the open-loop interconnection:

 e

y

 =

 I 0 −I G

−I −I I −G



d

n

r

u

 .
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-1

+ K G + +

-1 +

e

d

r y u

n

Figure 17: Closed-loop interconnection

-1

+ G + +

-1 +

e

d

r y u

n

Figure 18: Open-loop interconnection that corresponds to Figure 17

The input-output description of the closed-loop interconnection is then obtained by closing

the loop as

u = Ky.

A simple calculation reveals that

e =
[(

I 0 −I
)

+GK(I − (−G)K)−1
(
−I −I I

)]
d

n

r


what can be simplified to

e =
(

(I +GK)−1 −GK(I +GK)−1 −(I +GK)−1
)

d

n

r

 .

As expected for this specific interconnection, we arrive at

e =
(
S −T −S

)
d

n

r
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with sensitivity S = (I +GK)−1 and complementary sensitivity T = GK(I +GK)−1.

Let us now extract a general scheme from this specific example.

3.2 The General Framework

In an arbitrary closed-loop interconnection structure, let

• w denote the signal that affects the system and cannot be influence by the controller.

w is called generalized disturbance. (In our example, w =


d

n

r

.)

• z denote the signal that allows to characterize whether a controller has certain

desired properties. z is called controlled variable. (In our example, z = e.)

• u denote the output signal of the controller, the so-called control input. (In our

example it’s just u.)

• y denote the signal that enters the controller, the so-called measurement output.

(In our example it’s just y.)

Any open-loop interconnection can then be generally described by (Figure 19) z

y

 = P

 w

u

 =

 P11 P12

P21 P22

 w

u

 (3.1)

where the system P comprises the subsystems that are involved in the interconnection

and the manner how these subsystems are connected with each other.

Even if we start with an interconnection of SISO systems, the resulting open-loop inter-

connection will generally be described by a MIMO system since one has to stack several

signals with only one component to vector valued signals.

In these whole notes we start from the fundamental hypothesis that P is an LTI system.

We denote the corresponding transfer matrix with the same symbol as

P (s) =

 P11(s) P12(s)

P21(s) P22(s)

 .

Let
ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w +D22u

(3.2)
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P
u

w

y

z

Figure 19: General open-loop interconnection

K
yKuK

Figure 20: Controller

denote a stabilizable and detectable state-space realization of P .

A controller (Figure 20) is any LTI system

yK = KuK . (3.3)

It can be described in the frequency domain by specifying its transfer matrix

K(s)

or via the stabilizable and detectable state-space realization

ẋK = AKxK +BKuK

yK = CKxK +DKuK .
(3.4)

The interconnection of the controller and the open-loop system as

uK = y and u = yK

leads to the closed-loop interconnection as depicted in Figure 21.

Remark 3.1 To have a minimal dimensions of the matrices and, hence, reduce the effort

for all subsequent computations, one should rather work with minimal (controllable and

observable) realizations for P and K. One can take these stronger hypothesis as the basis

for the discussion throughout these notes without the need for any modification.

3.3 Stabilizing Controllers - State-Space Descriptions

Let us now first compute a realization of the interconnection as u

uK

 =

 yK

y

 (3.5)
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P

K

u

w

y

z

Figure 21: General closed-loop interconnection

of the system (3.2) and the controller (3.4).

For that purpose it is advantageous to merge the descriptions of (3.2) and (3.4) as

ẋ

ẋK

z

yK

y


=



A 0 B1 B2 0

0 AK 0 0 BK

C1 0 D11 D12 0

0 CK 0 0 DK

C2 0 D21 D22 0





x

xK

w

u

uK


.

To simplify the calculations notationally, let us introduce the abbreviation


A B1 B2

C1 D11 D12

C2 D21 D22

 :=



A 0 B1 B2 0

0 AK 0 0 BK

C1 0 D11 D12 0

0 CK 0 0 DK

C2 0 D21 D22 0


. (3.6)

The interconnection (3.5) leads to

 yK

y

 =
(
C2 D21

)
x

xK

w

+ D22

 yK

y


or

[I −D22]

 yK

y

 =
(
C2 D21

)
x

xK

w

 .
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If I −D22 is non-singular, we arrive at

 yK

y

 = [I −D22]−1
(
C2 D21

)
x

xK

w


what finally leads to

ẋ

ẋK

z

 =

 A B1

C1 D11

+

 B2

D12

 [I −D22]−1
(
C2 D21

)


x

xK

w


or 

ẋ

ẋK

z

 =

 A + B2[I −D22]−1C2 B1 + B2[I −D22]−1D21

C1 + D12[I −D22]−1C2 D1 + D12[I −D22]−1D21




x

xK

w

 . (3.7)

This is an explicit formula for a state-space representation of the closed-loop interconnec-

tion.

On our way to derive this formula we assumed that I −D22 is non-singular. This is a

condition to ensure that we could indeed close the loop; this is the reason why it is often

called a well-posedness condition for the interconnection.

Any controller should at least be chosen such that the interconnection is well-posed.

In addition, we require that the controller stabilizes the interconnection. This will just

amount to requiring that the matrix A + B2[I −D22]−1C2 which defines the dynamics

of the interconnection is stable.

We arrive at the following fundamental definition of when the controller (3.4) stabilizes

the open-loop system (3.2).

Definition 3.2 The controller (3.4) stabilizes the system (3.2) if I −DK

−D22 I

 is non-singular (3.8)

and if A 0

0 AK

+

B2 0

0 BK

 I −DK

−D22 I

−1 0 CK

C2 0

 (3.9)

has all its eigenvalues in the open left-half plane C<.
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Remark 3.3

• Verifying whether K stabilizes P is very simple: First check whether the realizations

of both P and K are stabilizable and detectable, then check (3.8), and finally verify

whether (3.9) is stable.

• If the realizations of both P and K are stabilizable and detectable, the realization of

the closed-loop interconnection (3.7) is in general not stabilizable and not detectable.

• Note that the definition only involves the matrices A B2

C2 D22

 and

AK BK

CK DK

 .

The matrices B1 and C1 only play a role in requiring that
(
A,
(
B1 B2

))
is stabi-

lizable and

A,
 C1

C2

 is detectable.

• The same definition is in effect if the channel w → z is void and the system (3.2)

just reads as  ẋ

y

 =

 A B2

C2 D22

 x

u

 .

Note that the formulas (3.7) for the closed-loop interconnection simplify considerably if

either D22 or DK vanish. Let us look at the case when

D22 = 0.

Then (3.8) is always true. Due to I −DK

0 I

−1

=

 I DK

0 I

 ,

a straightforward calculation reveals that (3.7) now reads as
ẋ

ẋK

z

 =


A+B2DKC2 B2CK B1 +B2DKD21

C2BK AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21




x

xK

w

 .

Then the matrix (3.9) just equalsA+B2DKC2 B2CK

C2BK AK

 .
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Example 3.4 Consider again the classical configuration in section 3.1 with

G(s) =
200

10s+ 1

1

(0.05s+ 1)2
=


−0.1 1 0 0

0 −20 1 0

0 0 −20 64

125 0 0 0

 (s).

and a controller

K =

AK BK

CK DK

 =

−3.3 1.3

1.7 0.3


with stabilizable and detectable realization. A stabilizable and detectable realization for

the open-loop interconnection P (depicted in Figure 18) is given by


A B1 B2

C1 D11 D12

C2 D21 D22

 =



−0.1 1 0 0 0 0 0

0 −20 1 0 0 0 0

0 0 −20 0 0 0 64

125 0 0 1 0 −1 0

−125 0 0 −1 −1 1 0


.

Since D22 = 0 clearly implies (3.8) and since the eigenvalues of (3.9) are contained in C−,

we can conclude that K stabilizes P .

Next we want to derive a characterization of stabilizing controllers in terms of transfer

matrices. To do so, we first introduce linear fractional transformations.

3.4 Linear Fractional Transformations

Suppose P and K are given transfer matrices. Then the so-called lower linear fractional

transformation P ? K of P and K is defined as follows: Partition

P =

 P11 P12

P21 P22


such that P22K is square, check whether the rational matrix I − P22K has a rational

inverse, and set

P ? K := P11 + P12K(I − P22K)−1P21.

In the literature, the expression Fl(P,K) is often used instead of P ? K. Since a lower

linear fractional transformation is a particular form of a more general operation that

carries the name star-product, we prefer the symbol P ? K.
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Similarly, the upper linear fractional transformation ∆ ? P of the rational matrices

∆ and P is defined as follows: Choose a partition

P =

 P11 P12

P21 P22


such that P11∆ is square, check whether the rational matrix I − P11∆ has a rational

inverse, and set

∆ ? P := P22 + P21∆(I − P11∆)−1P12.

One often finds the notation Fu(P,∆) in the literature where one has to note that, un-

fortunately, the matrices ∆ and P appear in reverse order.

At this point, P ? K and ∆ ? P should be just viewed as abbreviations for the formulas

given above. The discussion to follow will reveal their system theoretic relevance.

3.5 Stabilizing Controllers - Input-Output Descriptions

Let us first see how to determine an input-ouput description of the closed-loop intercon-

nection as in Figure 21. For that purpose we only need to eliminate the signals u, y

in

z = P11w + P12u, y = P21w + P22u, u = Ky.

The last two relations lead to y = P21w + P22Ky or (I − P22K)y = P21w. If I − P22K

does have a proper inverse, we obtain y = (I − P22K)−1P21 and, finally,

z = [P11 + P12K(I − P22K)−1P21]w. (3.10)

This is a general formula how to obtain, from the input-ouput description P and from

that of the controller K, the corresponding input-output description of the closed-loop

interconnection. If we recall the definitions in Section 3.4, we observe that the closed-loop

input-output description by performing the lower linear fractional transformation of P

with K which has been denoted as P ? K:

z = (P ? K)w.

This is the mere reason why these fractional transformations play such an important role

in these notes and, in general, in robust control.

Note that (3.10) gives the transfer matrix that is defined by (3.7) and, conversely, (3.7)

is a state-space realization of (3.10).

Let us now observe that I − P22K has a proper inverse if and only if I − P22(∞)K(∞)

is non-singular. If we look back to the realizations (3.2) and (3.4), this just means that

I −D22DK is non-singular, what is in turn equivalent to (3.8).
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P

K

+

+

v1

v2

wz

v

y u

Figure 22: Interconnection to test whether K stabilizies P .

Unfortunately, the relation for stability is not as straightforward. In general, if (3.7)

is stable, the transfer matrix defined through (3.10) is stable as well. However, the

realization (3.7) is not necessarily stabilizable or detectable. Therefore, even if (3.10)

defines a stable transfer matrix, the system (3.7) is not necessarily stable. For checking

whether K stabilizes P , it hence does not suffice to simply verify whether P11 +P12K(I−
P22K)−1P21 defines a stable transfer matrix.

This indicates that we have to check more transfer matrices in the loop in Figure 21 than

just the one explicitly displayed by the channel w → z in order to guarantee that K

stabilizes P . It turns out that Figure 22 gives a suitable setup to define all the relevant

transfer matrices that have to be tested.

Theorem 3.5 K stabilizes P if and only if the interconnection as depicted in Figure 22

and defined through the relations z

y

 = P

 w

u

 , u = Kv + v1, v = y + v2

or, equivalently, by 
z

v1

v2

 =


P11 P12 0

0 I −K
−P21 −P22 I



w

u

v

 (3.11)

defines a proper transfer matrix 
w

v1

v2

→

z

u

v

 (3.12)

that is stable.

55



With this result we can test directly on the basis of the transfer matrices whether K

stabilizes P : One has to check whether the relations (3.11) define a proper and stable

transfer matrix (3.12).

Let us first clarify what this means exactly. Clearly, (3.11) can be rewritten as v1

v2

 =

 0

−P21

w +

 I −K
−P22 I

 u

v

 , z = P11w +
(
P12 0

) u

v

 . (3.13)

These relations define a proper transfer matrix (3.12) if and only if I −K
−P22 I

 has a proper inverse.

As well-known, this is true if and only if I −K(∞)

−P22(∞) I

 is non-singular.

Indeed, under this hypothesis, the first relation in (3.13) is equivalent to u

v

 =

 I −K
−P22 I

−1 0

P21

w +

 I −K
−P22 I

−1 v1

v2

 .

Hence (3.13) is nothing but


z

u

v

 =


P11 +

(
P12 0

) I −K
−P22 I

−1 0

P21

 (
P12 0

) I −K
−P22 I

−1

 I −K
−P22 I

−1 0

P21

  I −K
−P22 I

−1



w

v1

v2

 .

If we recall the formula I −K
−P22 I

−1

=

 (I −KP22)−1 K(I − P22K)−1

(I − P22K)−1P22 (I − P22K)−1

 ,

this can be rewritten to
z

u

v

 =


P11 + P12K(I − P22K)−1P21 P12(I −KP22)−1 P12K(I − P22K)−1

K(I − P22K)−1P21 (I −KP22)−1 K(I − P22K)−1

(I − P22K)−1P21 (I − P22K)−1P22 (I − P22K)−1



w

v1

v2

 .

(3.14)

We have arrived at a more explicit reformulation of Theorem 3.5.
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Corollary 3.6 K stabilizes P if and only if I − P22K has a proper inverse and all nine

transfer matrices in (3.14) are stable.

Remark 3.7 If the channel w → z is absent, the characterizing conditions in Theorem

3.5 or Corollary 3.6 read as follows: The transfer matrix I −K
−P22 I


has a proper and stable inverse. Since K and P22 are, in general, not stable, it does not

suffice to simply verify whether the determinant of this matrix is stable; Lemma 1.4 does

not apply!

Proof of Theorem 3.5. We have already clarified that (3.11) defines a proper transfer

matrix (3.12) if and only if (3.8) is true. Let us hence assume the validity of (3.8).

Then we observe that (3.11) admits the state-space realization

ẋ

ẋK

z

v1

v2


=



A 0 B1 B2 0

0 AK 0 0 BK

C1 0 D11 D12 0

0 −CK 0 I −DK

−C2 0 −D21 −D22 I





x

xK

w

u

v


. (3.15)

Using the abbreviation (3.6), this is nothing but

ẋ

ẋK

z

v1

v2


=


A B1 B2

C1 D11 D12

−C2 −D21 I −D22





x

xK

w

u

v


.

By (3.8), D̃22 := I −D22 is non-singular. The same calculation as performed earlier

leads to a state-space realization of (3.12):

ẋ

ẋK

z

u

v


=


A + B2D̃

−1

22 C2 B1 + B2D̃
−1

22 D21 B2D̃
−1

22

C1 + D12D̃
−1

22 C2 D1 + D12D̃
−1

22 D21 D12D̃
−1

22

D̃
−1

22 C2 D̃
−1

22 D21 D̃
−1

22





x

xK

w

v1

v2


. (3.16)
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Here is the crux of the proof: Since (3.2) and (3.4) are stabilizable/detectable realizations,

one can easily verify with the Hautus test that (3.15) has the same property. This implies

that the realization (3.16) is stabilizable and detectable as well.

Therefore we can conclude: The transfer matrix of (3.16) is stable if and only if the

system (3.16) is stable if and only if A + B2D̃
−1

22 C2 = A + B2(I −D22)−1C2 has all its

eigenvalues in C<. Since we have guaranteed the validity of (3.8), this property is (by

Definition 3.2) nothing but the fact that K stabilizes P .

3.6 Generalized Plants

Contrary to what one might expect, it is not possible to find a stabilizing controller K

for any P .

Example 3.8 Let us consider (3.1) with

P (s) =

 1 1/s

1 1/(s+ 1)

 .

We claim that there is no K(s) that stabilizes P (s). Reason: Suppose we found a K(s)

that stabilizes P (s). Then the two transfer functions

P12(s)(I −K(s)P22(s))−1 =
1

s

1

1− K(s)
s+1

P12(s)(I −K(s)P22(s))−1K(s) =
K(s)

s− s
s+1

K(s)
=

1

s

1
1

K(s)
− 1

s+1

are stable. But this cannot be true. To show that, we distinguish two cases:

• Suppose K(s) has no pole in 0. Then the denominator of 1

1−K(s)
s+1

is finite in s = 0

such that this function cannot have a zero in s = 0. This implies that the first of

the above two transfer functions has a pole in 0, i.e., it is unstable.

• Suppose K(s) does have a pole in 0. Then 1
K(s)

vanishes in s = 0 such that 1
1

K(s)
− 1

s+1

takes the value −1 in s = 0. Hence, the second of the above two transfer functions

has a pole in 0 and is, thus, unstable.

We arrive at the contradiction that at least one of the above two transfer functions is

always unstable. Roughly speaking, the pole s = 0 of the transfer function P12(s) = 1
s

cannot be stabilized via feeding y back to u since this is not a pole of P22(s) as well.
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Our theory will be based on the hypothesis that P does in fact admit a stabilizing con-

troller. For such open-loop interconnections we introduce a particular name.

Definition 3.9 If there exists at least one controller K that stabilizes the open-loop in-

terconnection P , we call P a generalized plant.

Fortunately, one can very easily check whether a given P is a generalized plant or not.

We first formulate a test for the state-space description of P .

Theorem 3.10 P with the stabilizable/detectable realization (3.2) is a generalized plant

if and only if (A,B2) is stabilizable and (A,C2) is detectable.

Since the realization (3.2) is stabilizable, we know that
(
A,
(
B1 B2

))
is stabilizable.

This does clearly not imply, in general, that the pair (A,B2) defining a system with fewer

inputs is stabilizable. A similar remark holds for detectability.

Let us now assume that (A,B2) is stabilizable and (A,C2) is detectable. Then we can

explicitly construct a controller that stabilizes P . In fact, stabilizability of (A,B2) and

detectability of (A,C2) imply that there exist F and L such that A+B2F and A+ LC2

are stable. Let us now take the controller K that is defined through

ẋK = (A+B2F + LC2 + LD22F )xK − Ly, u = FxK .

Note that this is nothing but the standard observer-based controller which one would

design for the system

ẋ = Ax+B2u, y = C2x+D22u.

It is simple to check that K indeed stabilizes P . First, K is strictly proper (DK = 0)

such that (3.8) is obviously true. Second, let us look atA 0

0 AK

+

B2 0

0 BK

 I 0

−D22 I

−1 0 CK

C2 0

 =

=

A 0

0 A+B2F + LC2 + LD22F

+

B2 0

0 −L

 I 0

D22 I

 0 F

C2 0

 =

=

A 0

0 A+B2F + LC2 + LD22F

+

B2 0

0 −L

 0 F

C2 D22F

 =

=

 A B2F

−LC2 A+B2F + LC2

 .
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We claim that this matrix is stable. This should be known from classical theory. However,

it can be verified by performing the similarity transformation (error dynamics!) I 0

I −I

 A B2F

−LC2 A+B2F + LC2

 I 0

I −I

−1

to arrive at A+B2F B2F

0 A+ LC2


which is, obviously, stable since the diagonal blocks are.

This was the proof of the if-part in Theorem 3.10 with an explicit construction of a

stabilizing controller.

Proof of only if. To finish the proof, we have to show: If there exists a K that stabilizes

P , then (A,B2) is stabilizable and (A,C2) is detectable. If K stabilizes P , we know by

definition that

A :=

A 0

0 AK

+

B2 0

0 BK

 I −DK

−D22 I

−1 0 CK

C2 0


is stable. This implies that (A,C2) is detectable. Let us prove this fact with the Hautus

test: Suppose Ax = λx, x 6= 0, and C2x = 0. Then we observe that

A

 x

0

 =

Ax

0

 = λ

 x

0

 .

Hence

 x

0

 is an eigenvector of A with eigenvalue λ. Since A is stable, we infer Re(λ) <

0. This proves that (A,C2) is detectable.

Task. Show in a similar fashion that (A,B2) is stabilizable what finishes the proof.

Remark 3.11 If the channel w → z is absent, then (A,B2) and (A,C2) are obviously

stabilizable and detectable. (The matrices B1, C2, D11, D12, D21 in (3.2) are void.) Then

there always exists a controller K that stabilizes P .

This last remark reveals that we can always find a u = Ky that stabilizes y = P22u. This

leads us to a input-output test of whether P is a generalized plant or not.
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Theorem 3.12 Let u = Ky be any controller that stabilizes y = P22u. Then P is a

generalized plant if and only if this controller K stabilizes the open-loop interconnection

P .

Again, this test is easy to perform: Find an (always existing) K that stabilizes P22, and

verify that this K renders all the nine transfer matrices in (3.14) stable. If yes, P is a

generalized plant, if no, P is not.

Proof. Let K stabilize P22.

If K also stabilizes P , we infer that there exists a stabilizing controller and, hence, P is

a generalized plant.

Conversely, let P be a generalized plant. We intend to show that K not only stabi-

lizes P22 but even P . We proceed with state-space arguments. Recall that

 v1

v2

 = I −K
−P22 I

 u

v

 admits the state-space realization


ẋ

ẋK

v1

v2

 =


A 0 B2 0

0 AK 0 BK

0 −CK I −DK

−C2 0 −D22 I




x

xK

u

v

 . (3.17)

Using the abbreviation (3.6), this is nothing but
ẋ

ẋK

v1

v2

 =

 A B2

−C2 I −D22




x

xK

u

v

 .

By (3.8), I − D22 is non-singular. Again, the same calculation as earlier leads to a

state-space realization of

 u

v

 =

 I −K
−P22 I

−1 v1

v2

 given by


ẋ

ẋK

u

v

 =

A + B2(I −D22)−1C2 B2(I −D22)−1

(I −D22)−1C2 (I −D22)−1




x

xK

v1

v2

 . (3.18)
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Since P is a generalized plant, (A,B2) is stabilizable and (A,C2) is detectable. Therefore,

the same is true for (3.17) and, similarly as in the proof of Theorem 3.5, also for (3.18).

Since K stabilizes P22, the transfer matrix defined through (3.18) is stable. Since this

realization is stabilizable and detectable, we can conclude that A + B2(I −D22)−1C2 is

actually stable. Hence K stabilizes also P by definition.

3.7 Summary

For a specific control task, extract the open-loop interconnection (3.1).

Then test whether this open-loop interconnection defines a generalized plant by applying

either one of the following procedures:

• Find a state-space realization (3.2) of P for which
(
A,
(
B1 B2

))
is stabilizable (or

even controllable) and

A,
 C1

C2

 is detectable (or even observable), and check

whether (A,B2) is stabilizable and (A,C2) is detectable. If yes, P is a generalized

plant, if no, P is not.

• Find any K such that

 I −K
−P22 I

 does have a proper and stable inverse. Then

verify whether this K renders all transfer matrices in (3.14) stable. If yes, P is a

generalized plant, if no, P is not.

If P turns out to be no generalized plant, the interconnection under consideration is not

suitable for the theory to be developed in these notes.

Suppose K stabilizes P . Then the closed-loop interconnection is described as

z = (P11 + P12K(I − P22K)−1P21)w = (P ? K)w

In the state-space, the closed-loop system admits the realization (3.7) with the abbrevia-

tions (3.6).

3.8 Back to the Tracking Interconnection

Let us come back to the specific tracking interconnection in Figure 17 for which we have

obtained

P =

 P11 P12

P21 P22

 =

 I 0 −I G

−I −I I −G

 .
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We claim that this is a generalized plant.

Input-output test: Let K stabilize P22 = −G. This means that that (I −KP22)−1 K(I − P22K)−1

(I − P22K)−1P22 (I − P22K)−1

 =

 (I +KG)−1 K(I +GK)−1

−(I +GK)−1G (I +GK)−1


is well-defined and stable. Let us now look at (3.14). Since P21(s) =

(
−I −I I

)
is

stable, the same is true of K(I − P22K)−1P21 and (I − P22K)−1P21. Since P12 = G, we

infer

P12(I −KP22)−1 = G(I +KG)−1 = (I +GK)−1G

and

P12K(I −KP22)−1 = KG(I +KG)−1 = I − (I +KG)−1

that are both stable. Hence it remains to check stability of

P ? K = P11 + P12K(I − P22K)−1P21 :

We have just seen that P12K(I − KP22)−1 is stable. Since the same is true for P11 =(
I 0 −I

)
and P21, we can indeed conclude that P ? K is stable. This reveals that all

nine transfer matrices in (3.14) are stable. By Theorem 3.12, P is a generalized plant.

State-space test: Let us assume that

G(s) = CG(sI − AG)−1BG +DG

is a minimal realization. Then we observe that

P (s) =

 CG

−CG

 (sI − AG)−1
(

0 0 0 BG

)
+

 I 0 −I DG

−I −I I −DG


and hence P (s) admits a minimal realization with the matrix

A B1 B2

C1 D11 D12

C2 D21 D22

 =


AG 0 0 0 BG

CG I 0 −I DG

−CG −I −I I −DG

 .

Since (A,B2) = (AG, BG) is controllable and (A,C2) = (AG, CG) is observable, Theorem

3.10 implies that P is a generalized plant.

Note that all these tests are very simple, mainly due to the simplicity of the feedback

interconnection in Figure 17 under scrutiny. In practical circumstances one might en-

counter a much more complicated configuration where the tests have to be performed

numerically. We recommend Matlab’s Robust Control Toolbox command sysic to easily

build state-space realization even for complicated interconnections.
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Exercises

1) Let P be a stable stable LTI system.

a) Show that K stabilizes P if and only if I − P22K has a proper inverse and

K(I − P22K)−1 is stable. (It suffices to check one instead of nine transfer

matrices.)

Is the same statement true if we replace K(I − P22K)−1 with (I − P22K)−1?

b) Show that the set of closed-loop transfer matrices P ? K where K varies over

all controllers that stabilize P is given by the set of all

P11 + P12QP21

where Q is a free parameter in RH∞. What is the relation between K and Q?

(This is the so-called Youla parameterization. Note that K enters in P ? K

in a non-linear fashion, whereas Q enters P11 + P12QP21 in an affine fashion.

Hence the change of parameters K → Q leads to an affine dependence of the

closed-loop system on the so-called Youla-parameter. All this can be extended

to general systems P that are not necessarily stable.)

2) Which of the following transfer matrices P (s) define a generalized plant: 1/(s+ 1) 1/(s+ 2)

1/(s+ 3) 1/s

 ,

 1/(s2 + s) 1/(s+ 2)

1/(s+ 3) 1/s


 1/(s+ 1) 1/(s2 + 2s)

1/(s+ 3) 1/s

 ,

 1/(s+ 1) 1/(s+ 2)

1/(s+ 3) 1/s2

?

It is assumed that all signals in

 z

y

 = P

 w

u

 have one component.

3) Suppose you have given the interconnection in Figure 23. We view Gj, j =

1, 2, 3, 4, 5, 6, 7 as possibly MIMO system components, and Kj, j = 1, 2, are possibly

MIMO controller blocks.

a) Compute the description P of the open-loop interconnection in terms of Gj.

Mind the fact that all components can have multiple inputs and outputs.

b) Find two examples with simple SISO components Gj such that the resulting

two open-loop interconnections P1, P2 have the following properties:

P1 is no generalized plant. There exists a controller K that renders

S(P2, K) stable but that does not stabilize P2.
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G4

G2 + K1

+ G1 G5 + G7

G3 + K2

G6

z
−

−

w

−

−

Figure 23: An interconnection

Is it possible to take P1 = P2?

c) (Matlab) Choose

G1(s) = 1, G2(s) =
1

s− 1
, G3(s) =

s+ 1

s2 + 1
, G4(s) = 0,

G5(s) =
1

s
, G6(s) = 1, G7(s) =

s+ 2

(s+ 3)(s− 2)
.

Show that P is a generalized plant. Design a controller K that stabilizes P .

Explain how you obtain K, and how you check whether K indeed stabilizes P .

Draw a Bode magnitude plot of the resulting closed loop system P ? K.
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4 Robust Stability Analysis

All mathematical models of a physical system suffer from inaccuracies that result from

non-exact measurements or from the general inability to capture all phenomena that are

involved in the dynamics of the considered system. Even if it is possible to accurately

model a system, the resulting descriptions are often too complex to allow for a subsequent

analysis, not to speak of the design of a controller. Hence one rather chooses for a simple

model and takes a certain error between the simplified and the more complex model into

account.

Therefore, there is always a mismatch between the model and the system to be investi-

gated. A control engineer calls this mismatch uncertainty. Note that this is an abuse of

notation since neither the system nor the model are uncertain; it is rather our knowledge

about the actual physical system that we could call uncertain.

The main goal of robust control techniques is to take these uncertainties in a systematic

fashion into account when analyzing a control system or when designing a controller for

it.

In order to do so, one has to arrive at a mathematical description of the uncertainties.

Sometimes it is pretty obvious what to call an uncertainty (such as parameter variations

in a good physical model), but sometimes one just has to postulate a certain structure

of the uncertainty. Instead of being general, we shall first turn again to the specific

interconnection in Figure 17 and anticipate, on some examples, the general paradigm and

tools that are available in robust control.

4.1 Uncertainties in the Tracking Configuration - Examples

4.1.1 A Classical SISO Example

This example serves as preparation towards the general approach to deal with additive

uncertainties and as a review of Section 2.4.

Let us be concrete and assume that the model G(s) in Figure 17 is given as

G(s) =
200

10s+ 1

1

(0.05s+ 1)2
. (4.1)

Suppose the controller is chosen as

K(s) =
0.1s+ 1

(0.65s+ 1)(0.03s+ 1)
. (4.2)

The code
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s = zpk(’s’);

G = 200/(10*s + 1)/(0.05*s + 1)^2;

K = (0.1*s + 1)/(0.65*s + 1)/(0.03*s + 1);

systemnames=’G’;

inputvar=’[d;n;r;u]’;

outputvar=’[G+d-r;r-n-d-G]’;

input_to_G=’[u]’;

P = sysic;

S=lft(P,K);

[A,B,C,D]=ssdata(S);

eig(A)

actually computes realizations of the open-loop interconnection P , of the controller K,

and of the closed-loop interconnection P ? K denoted as (A,B,C,D). It turns out that

A is stable such that K stabilizes P .

Suppose that we know (for example from frequency domain experiments) that the fre-

quency response H(iω) of the actual stable plant H(s) does not coincide with that of the

model G(iω). Let us assume that we can even quantify this mismatch as

|H(iω)−G(iω)| < 1 for all ω ∈ R ∪ {∞}. (4.3)

Here is the fundamental question we would like to ask: If we replace G by H, does the

controller still stabilize the feedback interconnection?

If we knew H, we could just plug in H and test this property in the same way as we did

for G. Unfortunately, however, H could be any element of the set of all stable systems

H that satisfy (4.3). Hence, in principle, we would have to test infinitely many transfer

functions H what is not possible.

This motivates to look for alternative verifiable tests. Let us introduce the notation

∆(s) := H(s)−G(s)

for the plant-model mismatch. Then the actual plant is given as

H(s) = G(s) + ∆(s)

with some stable ∆(s) that satisfies

|∆(iω)| < 1 for all ω ∈ R ∪ {∞}. (4.4)

Therefore, our main question can be formulated as follows: Does the closed-loop inter-

connections as depicted in Figure 24 remain stable if ∆ is any stable transfer function

that satisfies (4.4)?
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-1

+ K G+ ∆ + +

-1 +

e

d

r y u

n

Figure 24: Uncertain closed-loop interconnection

-1

∆

+ K G + +

-1 +

+
e

d

r y u

n

z∆ w∆

Figure 25: Rewritten uncertain closed-loop interconnection

We could also ask instead: Does there exists a stable ∆(s) with (4.4) that destabilizes the

closed-loop interconnection?

Roughly speaking, the answer is obtained by looking at the influence which the uncertainty

can exert on the interconnection. For that purpose we calculate the transfer function that

is ‘seen’ by ∆: Just rewrite the loop as in Figure 25 in which we have just introduced

notations for the input signal z∆ and the output signal w∆ of ∆. After this step we

disconnect ∆ to arrive at the interconnection in Figure 26. The transfer function seen by

∆ is nothing but the transfer function w∆ → z∆.

For this specific interconnection, a straightforward calculation reveals that this transfer

function is given as

M = −(I +KG)−1K.

As a fundamental result, we will reveal that the loop remains stable for a specific ∆ if

I −M∆ does have a proper and stable inverse.

Let us motivate this result by putting the interconnection in Figure 25 into the the general
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-1

+ K G + +
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Figure 26: Closed-loop interconnection with disconnected uncertainty
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Figure 27: Uncertain closed-loop interconnection

structure as in Figure 27 by setting z = e and collecting again all the signals d, n, r into

the vector-valued signal w =


d

n

r

 as we did previously. Then Figure 26 corresponds to

Figure 28.

N
w

w∆

z

z∆

Figure 28: Uncertain closed-loop interconnection
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Mathematically, the system in Figure 28 with disconnected uncertainty is described as z∆

z

 = N

 w∆

w

 =

N11 N12

N21 N22

 w∆

w

 =

 M N12

N21 N22

 w∆

w


where N is partitioned according to the (possibly vector valued) signals w∆, w and z∆,

z. Then the transfer matrix seen by ∆ is nothing but N11 = M .

If we reconnect the uncertainty as

w∆ = ∆z∆,

we arrive at

z = [N22 +N21∆(I −M∆)−1N12]w.

This easily clarifies the above statement: Since the controller is stabilizing, all N11 = M ,

N12, N21, N22 are proper and stable. Only through the inverse (I−M∆)−1, improperness

or instability might occur in the loop. Therefore, if I−M∆ does have a proper and stable

inverse, the loop remains stable.

Note that these arguments are not sound: We did not proved stability of the interconnec-

tion as defined in Definition 3.2. We will provide rigorous arguments in Section 4.7.

What have we achieved for our specific interconnection? We have seen that we need to

verify whether

I −M∆ = I + (I +KG)−1K∆

does have a proper stable inverse for all stable ∆ with (4.4). Let us apply the Nyquist

criterion: Since both M = −(I + KG)−1K and ∆ are stable, this is true if the Nyquist

curve

ω → −M(iω)∆(iω) = (I +K(iω)G(iω))−1K(iω)∆(iω)

does not encircle the point −1. This is certainly true if

|M(iω)∆(iω)| = |(I +K(iω)G(iω))−1K(iω)∆(iω)| < 1 for all ω ∈ R ∪ {∞}. (4.5)

Due to (4.4), this is in turn implied by the condition

|M(iω)| = |(I +K(iω)G(iω))−1K(iω)| ≤ 1 for all ω ∈ R ∪ {∞}. (4.6)

We conclude: If (4.6) is valid, the transfer function I −M∆ = I + (I +KG)−1K∆ does

have a proper and stable inverse for all stable ∆ with (4.4), and hence none of these

uncertainties can destabilize the loop.

To continue with the example, the code
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s = zpk(’s’);

G = 200/(10*s + 1)/(0.05*s + 1)^2;

K = (0.1*s + 1)/(0.65*s + 1)/(0.03*s + 1);

systemnames = ’G’;

inputvar = ’[w;d;n;r;u]’;

outputvar = ’[u;w+G+d-r;r-w-n-d-G]’;

input_to_G = ’[u]’;

P = sysic;

N = lft(P, K);

[A, B, C, D] = ssdata(N);

eig(A)

M = N(1, 1);

om = logspace(-2, 2);

Mom = squeeze(freqresp(M, 1i*om));

loglog(om, abs(Mom));

grid on

determines the transfer matrix N , it picks out the left upper block M , the transfer function

seen by the uncertainty, and plots the magnitude of M over frequency; the result is shown

in Figure 29. Since the magnitude exceeds one at some frequencies, we see that we cannot

guarantee robust stability against all stable ∆ that satisfy (4.4).

Although this is a negative answer, the plot provides us with a lot of additional insight.

Let us first construct an uncertainty that destabilizes the loop. This is expected to happen

for a ∆ for which (I−M∆)−1 has an unstable pole, i.e., for which I−M∆ has an unstable

zero. Let us look specifically for a zero iω0 on the imaginary axis; then we need to have

M(iω0)∆(iω0) = 1.

Let us pick ω0 such that |M(iω0)| > 1. As the magnitude plot shows, such a frequency

indeed exists. Then the complex number

∆0 :=
1

M(iω0)

indeed renders M(iω0)∆0 = 1 satisfied. In our example, we chose ω0 = 5. If we calculate

∆0 and replace G by G+∆0, a state-space realization of the close-loop interconnection as

calculated earlier will have an eigenvalue 5i and is, hence, unstable. We have constructed

a complex number ∆0 that destabilizes the interconnection. Note, however, that complex

number are not in our uncertainty class that consisted of real rational proper transfer

functions only. Lemma 2.14 helps to find such destabilizing perturbation from ∆0.

In fact, Lemma 2.14 says that we can construct a real-rational proper and stable ∆(s)

satisfying

∆(iω0) = ∆0, |∆(iω)| = |∆0| < 1 for all ω ∈ R ∪ {∞}.
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Figure 29: Magnitude plot of M

In our case the construction leads to α = −0.8434 and β = −4.6257. As expected, the A

matrix of a realization of the closed-loop interconnection for G + ∆ turns out to have 5i

as an eigenvalue. We have hence found a stable destabilizing uncertainty whose frequency

response is smaller than 1.

To summarize, we have seen that the loop is not robustly stable against all the uncertain-

ties in the class we started out with. What can we conclude on the positive side? In fact,

Figure 29 shows that

|M(iω)| = |(I +K(iω)G(iω))−1K(iω)| ≤ 4 for all ω ∈ R{∞}.

Therefore, (4.5) holds for all stable ∆ that satisfy

|∆(iω)| < 1

4
for all ω ∈ R ∪ {∞}.

Hence, we can guarantee robust stability for all uncertainty in this smaller class.

In fact, the largest bound r for which we can still guarantee robust stability for any stable

∆ satisfying

|∆(iω)| < r for all ω ∈ R ∪ {∞}

is given by the reciprocal of the peak value of the magnitude plot:

r =

(
sup

ω∈R∪{∞}
|M(iω)|

)−1

= ‖M‖−1
∞ .
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We have discussed with this simple example how one can test robust stability by looking

at a magnitude plot of the transfer function ‘seen’ by ∆. If robust stability does not hold,

we have discussed how to construct a destabilizing perturbation.

4.1.2 A Modern MIMO Example

In the last section we have considered a very elementary example of a feedback intercon-

nection in which only one uncertainty occurs.

Let us hence look at a model that is described by the 2× 2 transfer matrix

G(s) =
1

s2 + a2

 s− a2 a(s+ 1)

−a(s+ 1) s− a2


with minimal state-space realization

G =


0 a 1 0

−a 0 0 1

1 a 0 0

−a 1 0 0

 .

Suppose that this is a model of a system in which certain tolerances for the actuators

have to be taken into account that are represented by parametric uncertainties. Let us

hence assume that the input matrix is rather given by 1 + δ1 0

0 1 + δ2

 .

Hence the actual system is

1

s2 + a2

 s− a2 a(s+ 1)

−a(s+ 1) s− a2

I +

 δ1 0

0 δ2


or

G(I + ∆) with ∆ =

 δ1 0

0 δ2


for some real numbers δ1, δ2 with

|δ1| < r, |δ2| < r. (4.7)

Again, we are faced with a whole set of systems rather than with a single one. Uncertainty

now enters via the two real parameters δ1, δ2.
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Figure 31: Rewritten uncertain closed-loop interconnection

Let us take the unity feedback controller

K =

 1 0

0 1


and consider again the interconnection in Figure 30.

As before we rewrite the interconnection in the obviously equivalent fashion as in Figure

31 and disconnect the uncertainty as in Figure 32.

The transfer matrix seen by ∆ is given as

M(s) =
1

s+ 1

−1 −a
a −1

 . (4.8)

As indicated earlier and as it will be developed in the general theory, for testing robust

stability we have to verify whether I −M∆ has a proper and stable inverse for all ∆.
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Figure 32: Rewritten uncertain closed-loop interconnection

Recall that, by Lemma 1.4, this is true iff I − M(s)∆(s) is non-singular for s = ∞
(properness, no pole at infinity) and for all s in the closed right-half plane (stability,

no pole in closed right-half plane). Hence we have to check whether the determinant is

non-zero for all s ∈ C= ∪ C> ∪ {∞}. The determinant of

I −M(s)∆ =

 1 + δ1
s+1

aδ2
s+1

−aδ1
s+1

1 + δ2
s+1


is easily calculated to

1

(s+ 1)2

(
s2 + (2 + δ1 + δ2)s+ (1 + δ1 + δ2) + (a2 + 1)δ1δ2

)
.

It does not have a zero at ∞. Moreover, its finite zeros are certainly confined to C< if

and only if

2 + δ1 + δ2 > 0, (1 + δ1 + δ2) + (a2 + 1)δ1δ2 > 0.

For a = 10, Figure 33 depicts the region of parameters where this condition is not true.

Let us now first concentrate on one uncertainty at a time. For δ2 = 0, the stability

conditions holds for all δ1 in the big interval (−1,∞). The same holds for δ1 = 0 and

δ2 ∈ (−1,∞).

Let us now vary both parameters. If we try to find the largest r such that stability is

preserved for all parameters with (4.7), we have to inflate a box around zero until it hits

the region of instability as shown in Figure 33. (Why?) For the parameter a = 10, the

largest r turns out to be 0.1, and this value shrinks with increasing a.

In summary, the analysis with a single varying uncertainty (δ1 = 0 or δ2 = 0) just gives

a wrong picture of the robust stability region for common variations.
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Figure 33: Dotted: Region of destabilizing parameters (δ1, δ2)

It is important to observe that we could very easily explicitly determine the region of

stability and instability for this specific problem. Since this is by no means possible in

general, we need to have a general tool that can be applied as well to arrive at similar

insights for more sophisticated structures. This is the goal in the theory to be developed

in the next sections.

4.2 Types of Uncertainties of System Components

Uncertainties that can be dealt with by the theory to be developed include parametric

and LTI dynamic uncertainties. Parametric uncertainties are related to variations of real

parameters (mass, spring constants, damping,...) in a system model, whereas LTI dynamic

uncertainty should capture unmodeled dynamics of a system.

4.2.1 Parametric Uncertainties

Consider the simple mechanical system depicted in Figure 34 modeled as

m1ξ̈1 = u− f, m2ξ̈2 = f, f = k(ξ1 − ξ2), y = ξ2

with nominal values m1 = m2 = k = 1.
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Figure 34: Simple mechanical system.

In the classical feedback interconnection (Figure 17) the controller

K(s) =
29.434(s+ 0.2329)(s2 − 0.7687s+ 2.917)

(s+ 9.843)(s+ 2.227)(s2 + 1.81s+ 4.063)

is stabilizing if m1, m2, k are precisely known, which might be unrealistic.

Let us now suppose that m1, m2, k are only known within 20% of their nominal value,

which means that

m1 ∈ [0.8, 1.2], m2 ∈ [0.8, 1.2], k ∈ [0.8.1.2].

Each parameter triple defines another system. Hence, effectively, we consider a whole

family of systems. A fundamental question:

Is the controller robustly stabilizing: Does it internally stabilize all possible systems in

our family?

The Robust Control Toolbox offers a very simple approach in order to handle parametric

uncertainties. Instead of defining parameters as real numbers, just define them as un-

certain atom objects (command ureal) and build your interconnection in the same

fashion as before. The result is an uncertain system object. With usubs one can then

easily pick one particular system (or with usample a randomly chosen sample) out of the

whole family, and then test whether K stabilizes the resulting finitely many systems:

m1 = ureal(’m1’, 1, ’percent’, 20);

m2 = ureal(’m2’, 1, ’percent’, 20);

k = ureal(’k’, 1, ’percent’, 20);

s = zpk(’s’);

G1 = 1/(m1 * s^2);

G2 = 1/(m2 * s^2);

systemnames = ’G1 G2 k’;

inputvar = ’[u]’;

outputvar = ’[G2]’;
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input_to_G1 = ’[u - k]’;

input_to_G2 = ’[k]’;

input_to_k = ’[G1 - G2]’;

G = sysic; % builds uncertain subsystem

systemnames = ’G’;

inputvar = ’[d; n; r; u]’;

outputvar = ’[G + d - r; r - n - d - G]’;

input_to_G = ’[u]’;

olic = sysic; % builds uncertain interconnection

% nominal stabilizing controller

K = 29.434 * (s + 0.2329) * (s^2 - 0.7687*s + 2.917) / (s + 9.843) / ...

(s + 2.227) / (s^2 + 1.81*s + 4.063);

clic = lft(olic, K);

cl0 = usubs(clic, ’m1’, 1, ’m2’, 1, ’k’, 1); % nominal system

clr = usample(clic, 10); % some samples

max(real(eig(cl0)));

plot(squeeze(eig(clr)),’*’);

Many familiar commands for LTI systems, like bode, are overlayed for uncertain systems.

Typically, the operation is performed for the nominal system and a specific number of

random samples (1 + 20 for bode). This provides a good intuition of sensitivity against

parameter variations.

In our example the closed loop poles for internal stability resulting from the above code

are depicted in Figure 36. However the samples of bode diagramms and step responses

of the transfer matrix from reference to error depicted in Figure 35 indicate that the

controller K does not internally stabilize all possible systems in our family.

4.2.2 Dynamic Uncertainties

One can estimate the frequency response of a real stable SISO plant by injecting sinusoidal

signals. If performing measurements at one frequency, one does usually not obtain just one

complex number that could be taken as an estimate for the plant’s response at frequency

ω, but, instead, it’s a whole set of complex numbers that is denoted by H(ω). Such an

experiment would lead us to the conclusion that any proper and stable H(s) that satisfies

H(iω) ∈ H(ω)
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is an appropriate model for the underlying plant. Since one can only perform a finite

number of measurements, H(ω) is usually only available at finitely many frequencies and

consists of finitely many points. Due to the lack of a nice description, this set is not

appropriate for the theory to be developed.

Hence we try to cover H(ω) with a set that admits a more appropriate description. This

means

H(ω) ⊂ G(iω) +W (iω)∆c for all ω ∈ R ∪ {∞},

where

• G(s) is a real rational proper transfer matrix

• ∆c is the open unit disk around 0: ∆c := {∆c ∈ C | |∆c| < 1}

• W (s) is a real rational weighting function.

At each frequency we have hence covered the unstructured set H(ω) with the disk

G(iω) +W (iω)∆c (4.9)

whose center is G(iω) and whose radius is |W (iω)|. In this description, G admits the

interpretation as a nominal system. The deviation from G(iω) is given by the circle

W (iω)∆c whose radius |W (iω)| varies with frequency. Hence, the weighting function W

captures how the size of the uncertainties depends upon the frequency; this allows to take

into account that models are, usually, not very accurate at high frequency; typically, W

is a high-pass filter.

Note that we proceeded similarly as in the parametric case: At frequency ω, we represent

the deviation by a nominal value G(iω) and by a W (iω)-weighted version of the open unit

disk.

The actual set of uncertainties is then defined as

∆ := {∆(s) ∈ RH∞ | ∆(iω) ∈∆c for all ω ∈ R ∪ {∞}}, (4.10)

the set of all proper and stable transfer functions that take their values along the imaginary

in the open unit disk. Note that this set is nothing but

{∆(s) ∈ RH∞ | ‖∆‖∞ < 1} (4.11)

which is often called the open unit ball in RH∞. (It is important to digest that (4.10)

and (4.11) are just the same!)

Finally, the uncertain system is described by

G∆ := G+W∆ with ∆ ∈∆.

As for real uncertainties, we have obtained a whole set of systems that is now parameter-

ized by the uncertain dynamics ∆ in ∆.
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Remark 4.1

1) The set of values ∆c must not necessarily be a circle for our results to apply. It

can be an arbitrary set that contains 0, such as a polytope. The required technical

hypothesis are discussed in Section 4.5. The deviation set

W (iω)∆c (4.12)

is then obtained by shrinking/stretching ∆c with factor |W (iω)|, and by rotating it

according to the phase of W (iω).

2) We could be even more general and simply allow for frequency dependent value sets

∆c(ω) that are not necessarily described as (4.12). Then we can more accurately

incorporate phase information about the uncertainty.

4.2.3 Mixed Uncertainties

Of course, in a certain system component, one might encounter both parametric and

dynamic uncertainties. As an example, suppose that the diagonal elements of

G(s) =

 1
s+1

1
s+2

1
s+3

1
2s+1

 (4.13)

are not affected by uncertainties, but the numerator 1 of the right upper element is affected

by perturbations such it actually equals

1 +W1∆1

s+ 2
=

1

s+ 2
+

W1

s+ 2
∆1 where |∆1| < 1

and the left lower element equals

1

s+ 3
(1 +W2(s)∆2(s)) where ‖∆2‖∞ < 1.

Here W1 is a constant weight, W2(s) is a real rational weighting function, and ∆1 is a

parametric uncertainty in the unit interval (−1, 1), whereas ∆2(s) is a (proper stable)

dynamic uncertainty that takes its values ∆(iω) on the imaginary axis in the open unit

disk {z ∈ C | |z| < 1}.

Hence, the uncertain system is described as

G∆(s) =

 1
s+1

1
s+2

1
s+3

1
2s+1

+

∆1 0

0 ∆2(s)

 0 1
s+2

W1

1
s+3

W2(s) 0

 (4.14)

where ∆1 ∈ R is bounded as |∆1| < 1, and ∆2 ∈ RH∞ is bounded as ‖∆2‖∞ < 1.
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This amounts to

G∆(s) = G(s) + ∆(s)W (s)

with a nominal system G(s), a matrix valued weighting W (s), and block-diagonally str-

cutured

∆(s) =

∆1 0

0 ∆2(s)

 .

Note also that the diagonal blocks of ∆(s) have a different nature (∆1 is real, ∆2 is

dynamic) and they are bounded in size over frequency, where the bound for both is

rescaled to 1 by using weighting functions.

All these properties of ∆(s) (structure and bound on size) can be captured by simply

specifying a set of values that consists of complex matrices as follows:

∆c := {

∆1 0

0 ∆2

 | ∆1 ∈ R, |∆1| < 1, ∆2 ∈ C, |∆2| < 1}.

The set of uncertainties ∆(s) is, again, just given by (4.10). We have demonstrated the

flexibility of the abstract setup (4.10) if we allow for subsets ∆c of matrices.

To conclude, we have brought the specific example back to the same general scheme: We

have parameterized the actual set of systems G∆ as G + ∆W where, necessarily, W has

to be chosen as a matrix, and the uncertainty ∆ ∈∆ turns out to admit a block-diagonal

structure.

Remark 4.2 As mentioned previously, we could considerably increase the flexibility in

uncertainty modeling if not only allowing to constrain the elements of the matrices in ∆c

by disks or real intervals; under the technical hypotheses as discussed in Section 4.5, all

the results to follow still remain valid.

4.2.4 Unstructured Uncertainties

Let us again consider the plant model G(s) in (4.13). Suppose this is an accurate model

at low frequencies, but it is known that the accuracy of all entries decreases at high

frequencies. With a (real rational) SISO high-pass filter W (s), the actual frequency

response is rather described as

G(iω) +W (iω)∆c

where

∆c =

∆11 ∆12

∆21 ∆22
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is any complex matrix that is bounded as

‖∆c‖ = σmax(∆c) < 1.

Obviously, the size of the deviation W (iω)∆c at frequency ω is bounded as

‖W (iω)∆c‖ = |W (iω)|‖∆c‖ ≤ |W (iω)|.

(If |W (iω)| is not zero, we have a strict inequality.) Hence, the frequency dependence of

the size is captured by the dependence of |W (iω)| on ω. Note that this behavior is the

same for all the elements of the 2× 2 matrix deviation W (iω)∆c.

We chose the maximal singular value to evaluate the size of the matrix W (iω)∆c since

this is an appropriate measure for the gain of the error at this frequency, and since the

theory to be developed will then turn out more satisfactory than for other choices.

Let us now subsume this specific situation in our general scenario: We take

∆c := {∆c ∈ C2×2 | ‖∆c‖ < 1}

and describe the uncertain system as

G+W∆

where ∆ ∈ ∆ as given in (4.10). Since ∆c is a set of full matrices without any specific

structural aspects, this type of uncertainty is called unstructured or a full-block uncer-

tainty.

4.2.5 Unstructured versus Structured Uncertainties

Continuing with the latter example, we might know more about the individual deviation

of each element of G(s). Suppose that, at frequency ω, the actual model is

G(iω) +

W11(iω)∆11 W12(iω)∆12

W21(iω)∆21 W22(iω)∆22

 (4.15)

where the complex numbers ∆jk satisfy

|∆11| < 1, |∆12| < 1, |∆21| < 1, |∆22| < 1, (4.16)

and the real rational (usually high-pass) SISO transfer functions W11(s), W12(s), W21(s),

W22(s) capture the variation of size over frequency as in our SISO examples.
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We could rewrite (4.15) as

G(iω) +

W11(iω) 0 W12(iω) 0

0 W21(iω) 0 W22(iω)




∆11 0

∆21 0

0 ∆12

0 ∆22


or as

G(iω) +

W11(iω) 0 W12(iω) 0

0 W21(iω) 0 W22(iω)




∆11 0 0 0

0 ∆21 0 0

0 0 ∆12 0

0 0 0 ∆22




1 0

1 0

0 1

0 1

 .

Obviously, we have to live with structure in the uncertainty if we would like to use dif-

ferent weightings for the various elements in the uncertainty. However, the two displayed

structures differ: In the first case, we have two 2 × 1 blocks on the diagonal, whereas in

the second one we have four 1× 1 blocks on the diagonal. What should we choose for?

As mentioned above, we would like to take as a measure of size of ∆c the largest singular

value; in fact, ∆c is supposed to be bounded as ‖∆c‖ < 1. Then we observe that∥∥∥∥∥∥∥∥∥∥∥


∆11 0

∆21 0

0 ∆12

0 ∆22



∥∥∥∥∥∥∥∥∥∥∥
< 1

is equivalent to∥∥∥∥∥∥
∆11

∆21

∥∥∥∥∥∥ < 1,

∥∥∥∥∥∥
∆12

∆22

∥∥∥∥∥∥ < 1 or |∆11|2 + |∆21|2 < 1 and |∆12|2 + |∆22|2 < 1.

This is not what we want. If we insist on (4.16), we have to work with the second structure

since ∥∥∥∥∥∥∥∥∥∥∥


∆11 0 0 0

0 ∆21 0 0

0 0 ∆12 0

0 0 0 ∆22



∥∥∥∥∥∥∥∥∥∥∥
< 1

is equivalent to (4.16).
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4.3 Summary on Uncertainty Modeling for Components

For MIMO models of system components, we can work with only rough descriptions of

modeling errors. Typically, the uncertain component is described as

G∆ = G+W1∆W2 (4.17)

with real rational weighting matrices W1 and W2 and full block or unstructured uncer-

tainties ∆ that belongs to ∆ as defined in (4.10) where

∆c := {∆c ∈ Cp×q | ‖∆c‖ < 1}.

If we choose for a more refined description of the uncertainties, the uncertainties in (4.17)

will admit a certain structure that is often block-diagonal. To be specific, the uncertainty

set ∆ will be given by (4.10) with

∆c :=


∆c =



δ1 0
. . .

δr

∆1

. . .

0 ∆f


| δj ∈ R, ∆j ∈ Cpj×qj , ‖∆c‖ < 1


.

Note that we have distinguished the real blocks δj that correspond to parametric uncer-

tainties from the complex blocks that are related to dynamic uncertainties. Note also

that

‖∆c‖ < 1 just means |δj| < 1, ‖∆j‖ < 1.

The weighting matrices W1 and W2 capture the variation of the uncertainty with fre-

quency, and they determine how each of the blocks of the uncertainty appears in G∆.

Finally, we have seen that there is a lot of flexibility in the choice of the structure. It is

mainly dictated by how refined one wishes to describe the individual uncertainties that

appear in the model.

4.4 Pulling out the Uncertainties

As we have seen in the example, a central ingredient in testing robust stability is to

calculate the transfer matrix ‘seen’ by ∆ in an open-loop interconnection. We would like

to explain how one can systematically perform these calculations.
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G∆ wz

Figure 37: Uncertain Component

G

∆

wz

w∆z∆

Figure 38: Uncertainty Pulled out of Component

4.4.1 Pulling Uncertainties out of Subsystems

First we observe that an interconnection is usually built from subsystems. These sub-

systems themselves might be subject to uncertainties. Hence we assume that they are

parameterized as G∆ with ∆ ∈∆ as shown in Figure 37.

In order to proceed one has to rewrite this system in the form as shown in Figure 38.

As an illustration, look at (4.14). This system can be rewritten as

z = (G22 +G21∆G12)w

for

G22(s) =

 1
s+1

1
s+2

1
s+3

1
2s+1

 , G21(s) =

 1 0

0 1

 , G12(s) =

 0 1
s+2

W1

1
s+3

W2(s) 0

 .

If we define

G =

 0 G12

G21 G22

 ,

we observe that (4.14) is rewritten as z∆

z

 = G

 w∆

w

 , w∆ = ∆z∆

which are the algebraic relations that correspond to Figure 38.
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The step of rewriting a system as in Figure 37 into the structure of Figure 38 is most

easily performed if just introducing extra signals that enter and leave the uncertainties.

We illustrate this technique with examples that are of prominent importance:

• Additive uncertainty:

z = (G+ ∆)w ⇐⇒

 z1

z

 =

 0 I

I G

 w1

w

 , w1 = ∆z1.

• Input multiplicative uncertainty.

z = G(I + ∆)w ⇐⇒

 z1

z

 =

 0 I

G G

 w1

w

 , w1 = ∆z1.

• Input-output multiplicative uncertainty.

z = (I + ∆1)G(I + ∆2)w

is equivalent to
z1

z2

z

 =


0 G G

0 0 I

I G G



w1

w2

w

 ,

 w1

w2

 =

∆1 0

0 ∆2

 z1

z2

 .

Let us show explicitly how to proceed in this example. Observe that z = (I +

∆1)G(I + ∆2)w can be written as

z = G(I + ∆2)w + w1, z1 = G(I + ∆2)w, w1 = ∆1z1.

We have pulled out ∆1. In a second step, we do the same with ∆2. The above

relations are equivalent to

z = Gw +Gw2 + w1, z2 = w, z1 = Gw +Gw2, w1 = ∆1z1, w2 = ∆2z2.

The combination into matrix relations leads to the desired representation.

• Factor uncertainty. Let G2 have a proper inverse. Then

z = (G1 + ∆1)(G2 + ∆2)−1w

is equivalent to

 z1

z

 =

 0 −G−1
2 G−1

2

I −G1G
−1
2 G1G

−1
2



w1

w2

w

 ,

 w1

w2

 =

∆1

∆2

 z1.
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Again we perform the calculations for the purpose of illustration. We observe that

z = (G1 + ∆1)(G2 + ∆2)−1w is nothing but

z = (G1 + ∆1)ξ, (G2 + ∆2)ξ = w

what can be rewritten as

z = G1ξ + w1, z1 = ξ, G2ξ + w2 = w, w1 = ∆1z1, w2 = ∆2z1.

If we eliminate ξ via ξ = G−1
2 (w − w2), we arrive at

z = G1G
−1
2 w −G1G

−1
2 w2 + w1, z1 = G−1

2 w −G−1
2 w2, w1 = ∆1z1, w2 = ∆2z1.

Note that the manipulations are representatives of how to pull out the uncertainties, in

particular if they occur in the denominator as it happens in factor uncertainty. It is often

hard to pull out the uncertainties if just performing matrix manipulations. If we rather

use the input-output representations of systems including the signals, this technique is

often pretty straightforward to apply. As a general rule, blocks that occur in a rational

fashion can be pulled out. Finally, let us note that all these manipulations can also be

performed directly for a state-space description where the state and its derivative are as

well viewed as a signal.

Again, we include an example. Let

ẋ =

−1 + δ1 2

−1 −2 + δ2

x

denote a system with real uncertain parameters. This system can be written as

ẋ = Ax+Bw, z = Cx, w = ∆z

with

A =

−1 2

−1 −2

 , B =

 1 0

0 1

 , C =

 1 0

0 1

 , ∆ =

 δ1 0

0 δ2

 .

Somewhat more general, suppose that

ẋ = A(δ)x+B(δ)w, z = C(δ)x+D(δ)w

where the matrices A(.), B(.), C(.), D(.) depend affinely on the parameter δ =(
δ1 · · · δk

)
. This just means that they can be represented as A(δ) B(δ)

C(δ) D(δ)

 =

A0 B0

C0 D0

+
k∑
j=1

δj

Aj Bj

Cj Dj

 .
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Let us factorize Aj Bj

Cj Dj

 =

 L1
j

L2
j

(R1
j R

2
j

)
(4.18)

where

 L1
j

L2
j

 and
(
R1
j R

2
j

)
have full column and row rank respectively. The original

system can be described as

ẋ

z

z1

...

zk


=



A0 B0 L1
1 · · · L1

k

C0 D0 L2
1 · · · L2

k

R1
1 R2

2 0 0
...

. . .

R1
k R

2
k 0 0





x

w

w1

...

wk


,


w1

...

wk

 =


δ1I 0

. . .

0 δkI



z1

...

zk



where the sizes of the identity block in δjI is equal to the number of columns or rows of L1
j

L2
j

 or
(
R1
j R

2
j

)
respectively.

Remark. We have chosen the factorization (4.18) such that the number of columns/rows

of the factors are minimal. This renders the size of the identity blocks in the uncertainty

minimal as well. One could clearly work with an arbitrary factorization; then, however,

the identity blocks will be larger and the representation is not as efficient as possible.

Again, we remark that we can represent any ẋ

z

 =

 A(δ) B(δ)

C(δ) D(δ)

 x

w


with elements that are rational functions (quotients of polynomials) of δ =

(
δ1 · · · δk

)
without pole at δ = 0 by

ẋ

z

z∆

 =


A B1 B2

C1 D11 D12

C2 D21 D22




x

w

w∆

 , w∆ = ∆z∆

where

∆ =


δ1I 0

. . .

0 δkI

 .
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dw∆ z∆

Figure 39: Uncertain closed-loop interconnection

We observe that ∆ has a block-diagonal structure. Each block is given as

δjI =


δj 0

. . .

0 δj


and is said to be a real (δj ∈ R) block that is repeated if the dimension of the identity

matrix is at least two.

4.4.2 Pulling Uncertainties out of Interconnections

We have seen various possibilities how to represent (37) as (38) for components. Let us

now suppose this subsystem is part of a (possibly large) interconnection.

Again for the purpose of illustration, we come back to the tracking configuration as in

Figure 17 with a plant model G∆. If we employ the representation in Figure 38, we arrive

at Figure 39.

How do we pull ∆ out of the interconnection? We simply disconnect ∆ and K to arrive

at Figure 40.
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n
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dw∆ z∆

Figure 40: Uncertain open-loop interconnection

It is then not difficult to obtain the corresponding algebraic relations as


z∆

e

y

 =


G11 0 0 0 G12

G21 I 0 −I G22

G21 −I −I I −G22





w∆

d

n

r

u


for the open-loop interconnection. The command sysic is very useful in automizing the

calculation of a state-space representation of this system.

After having determined this open-loop system, the uncertain uncontrolled system is

obtained by re-connecting the uncertainty as

w∆ = ∆z∆.

Note that the uncertainty for the component is just coming back as uncertainty for the

interconnection. Hence the structure for the interconnection is simply inherited.

This is different if several components of the system are affected by uncertainties that are

to be pulled out. Then the various uncertainties for the components will appear on the

diagonal of an uncertainty block for the interconnection.

Let us again look at an illustrative example. Suppose we would like to connect a SISO

controller K to a real system. Since K has to be simulated (in a computer), the actu-

ally implemented controller will differ from K. Such a variation can be captured in an

uncertainty description: the implemented controller is

K(I + ∆K)
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Figure 41: Uncertain closed-loop interconnection

where ∆K is a proper and stable transfer matrix in some class that captures our knowledge

of the accuracy of the implemented controller, very similar to what we have been discussing

for a model of the plant.

Let us hence replace K by K(I + ∆K) in the interconnection in Figure 25. Since this is

a multiplicative input uncertainty, we arrive at Figure 41.

If we disconnect K, ∆K , ∆G, the resulting open-loop interconnection is given as



z1

z2

e

u

y


=



0 0 0 0 0 I

−I 0 −I −I I G

I 0 I 0 −I G
0 0 0 0 0 I

−I I −I −I I G





w1

w2

d

n

r

u


,

and the perturbation enters as w1

w2

 = ∆

 z1

z2

 , ∆ =

∆G 0

0 ∆K

 .

Since the signals z1, z2 and the signals w1, w2 are different, ∆ admits a block-diagonal

structure with ∆G and ∆K appearing on its diagonal.

Remark. Suppose that two uncertainties ∆1, ∆2 enter an interconnection as in Figure

42. Then they can be pulled out as w1

w2

 =

∆1

∆2

 z
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∆1

+

∆2
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w

Figure 42: Special Configurations

or as

w =
(

∆1 ∆2

) z1

z2


respectively. Instead, however, it is also possible to pull them out as w1

w2

 =

∆1 0

0 ∆2

 z1

z2


by simply neglecting the fact that ∆1 and ∆2 are entered by the same signal, or that the

outputs sum up to one signal.

In summary, uncertainties might be structured or not at the component level. If pulling

them out of an interconnection, the resulting uncertainty for the interconnection is block-

diagonal, and the uncertainties of the components appear, possibly repeated, on the

diagonal.

If pulling uncertainties out of an interconnection, they will automatically have

a block-diagonal structure, even if the component uncertainties are not struc-

tured themselves.
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4.5 The General Paradigm

We have seen how to describe a possibly complicated interconnection in the form
z∆

z

y

 = P


w∆

w

u

 =


P11 P12 P13

P21 P22 P23

P31 P32 P33



w∆

w

u

 . (4.19)

Here w∆, z∆ are the signals that are introduced to pull out the uncertainties, w, z are

generalized disturbance and controlled variable, and u, y are control input and measured

output respectively.

The uncertainties will belong to a set ∆ that consists of proper and stable transfer ma-

trices. The perturbed uncontrolled interconnection is obtained by re-connecting the un-

certainty as

w∆ = ∆z∆ with ∆ ∈∆.

This leads to z

y

 = S(∆, P )

 w

u

 =

=

 P22 P23

P32 P33

+

 P21

P31

∆(I − P11∆)−1
(
P12 P13

) w

u

 . (4.20)

If we connect the controller to the unperturbed open-loop interconnection as

y = Ku,

we obtain z∆

z

 = P ? K

 w∆

w

 =

=

 P11 P12

P21 P22

+

 P13

P23

K(I − P33K)−1
(
P31 P32

) w∆

w

 v.

The controlled and perturbed interconnection is obtained through

w∆ = ∆z∆ and u = Ky.

It does not matter in which order we reconnect ∆ or K. This reveals a nice property of

linear fractional transformations:

S(∆, P ? K) = S(S(∆, P ), K).
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Hence the closed loop system admits the descriptions

z = S(∆, P ? K)w = S(S(∆, P ), K)w.

So far we were sloppy in not worrying about inverses that occur in calculating star products

or about any other technicalities. Let us now get rigorous and include the exact hypotheses

required in the general theory. All our technical results are subject to these assumption.

Hence they need to be verified before any of the presented results can be applied.

Hypothesis 4.3

• P is a generalized plant: there exists a controller u = Ky that stabilizes (4.19) in

the sense of Definition 3.2.

• The set of uncertainties is given as

∆ := {∆(s) ∈ RH∞ | ∆(iω) ∈∆c for all ω ∈ R ∪ {∞}} (4.21)

where ∆c is a value set of complex matrices (motivating the index c for complex)

that defines the structure and the size of the uncertainties. This set ∆c has to be

star-shaped with center 0:

∆c ∈∆c ⇒ τ∆c ∈∆c for all τ ∈ [0, 1]. (4.22)

• The direct feedthrough P11 and ∆c are such that

I − P11(∞)∆c is non-singular for all ∆c ∈∆c. (4.23)

Comments on the hypothesis

As a fundamental requirement of any controller, it should stabilize an interconnection.

Hence there should at least exist a stabilizing controller, and the tests developed in Section

3 can be applied to verify this fact.

In the second hypothesis, we define the considered class of uncertainties to be all proper

and stable transfer matrices that take their values along the imaginary axis in the set

∆c. We recall the specific examples we have seen earlier to illustrate this concept. It is

very important to obey that this value has to be star-shapedness with center 0: If ∆c is

contained in ∆c, then the whole line τ∆c, τ ∈ [0, 1], that connects ∆c with 0 belongs to

∆c as well. Note that this implies 0 ∈ ∆c such that the zero transfer matrix is always

in the class ∆; this is consistent with ∆c to be viewed as a deviation from a nominal

value. For sets of complex numbers, Figure 43 shows an example and a counterexample

for star-shapedness.
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Figure 43: Star-shaped with center 0? Left: Yes. Right: No.

Remark. If ∆c is a set of matrices whose elements are just supposed to be contained in

real intervals or in circles around 0 (for individual elements) or in a unit ball of matrices

(for sub-blocks), the hypothesis (4.22) of star-shapedness is automatically satisfied.

The last property implies that, for any ∆ in our uncertainty set ∆, I−P11(∞)∆(∞) is non-

singular such that I−P11∆ does have a proper inverse. This is required to guarantee that

S(∆, P ) can be calculated at all (existence of inverse), and that it defines a proper transfer

matrix (properness of inverse). At this stage, we don’t have a systematic technique to

test whether (4.23) holds true or not; this will be the topic of Section 4.9.5. However, if

P11 is strictly proper, it satisfies P11(∞) = 0 and (4.23) is trivially satisfied.

Comments on weightings

• Note that we assume all weightings that are required to accurately describe the

uncertainty size or structure to be absorbed in P . These weightings do not need

to obey any specific technical properties; they neither need to be stable nor even

proper. The only requirement is to ask P being a generalized plant - this is the

decisive condition to apply our results. Of course, a wrongly chosen weighting

might preclude the existence of a stabilizing controller, and hence it might destroy

this property; therefore, an adjustment of the weightings might be a possibility to

enforce that P is a generalized plant.

• We could as well incorporate a weighting a posteriori in P . Suppose that we actually

intend to work with ∆̂ that is related with ∆ by

∆ = W1∆̂W2
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for real rational weightings W1 and W2. Then we simply replace P by P̂ given as

P̂ =


W2P11W1 W2P12 W2P13

P21W1 P22 P23

P31W1 P32 P33


and proceed with P̂ and ∆̂. (Note that this just amounts to pulling out ∆̂ in

z = W1∆̂W2w.)

Comments on larger classes of uncertainties

• We could allow for value sets ∆c(ω) that depend on the frequency ω ∈ R ∪ {∞} in

order to define the uncertainty class ∆. Then we require ∆c(ω) to be star-shaped

with star center 0 for all ω ∈ R ∪ {∞}.

• We could even just stay with a general set of ∆ of real rational proper and stable

transfer matrices that does not admit a specific description at all. We would still

require that this set is star-shaped with center 0 (∆ ∈ ∆ implies τ∆ ∈ ∆ for all

τ ∈ [0, 1]), and that I − P22(∞)∆(∞) is non-singular for all ∆ ∈∆.

4.6 What is Robust Stability?

We have already seen when K achieves nominal stability: K should stabilize P in the

sense of Definition 3.2.

Robust Stabilization

We say that K robustly stabilizes S(∆, P ) against the uncertainties ∆ ∈∆ if K stabilizes

the system S(∆, P ) for any uncertainty ∆ taken out of the underlying class ∆.

Robust Stability Analysis Problem

For a given fixed controller K, test whether it robustly stabilizes S(∆, P ) against all

uncertainties in ∆.

Robust Stability Synthesis Problem

Find a controller K that robustly stabilizes S(∆, P ) against all uncertainties in ∆.

Although these definitions seem as tautologies, it is important to read them carefully: If

we have not specified a set of uncertainty, it does not make sense to talk of a robustly

stabilizing controller. Hence we explicitly included in the definition that robust stability

is related to a well-specified set of uncertainties. Clearly, whether or not a controller

robustly stabilizes an uncertain system, highly depends on the class of uncertainties that

is considered. These remarks are particularly important for controller design: If one has

found a controller that robustly stabilizes an uncertain system for a specific uncertainty

97



class, there is, in general, no guarantee whatsoever that such a controller is robustly

stabilizing for some other uncertainty class.1

4.7 Robust Stability Analysis

4.7.1 Simplify Structure

Starting from our general paradigm, we claim and prove that robust stability can be

decided on the basis of the transfer matrix that is seen by ∆. Let us hence introduce the

abbreviation

P ? K = N =

N11 N12

N21 N22

 =

 M N12

N21 N22


where we highlight M ; this is the block referred to as the transfer matrix seen by the

uncertainty.

Theorem 4.4 If K stabilizes P , and if

I −M∆ has a proper and stable inverse for all ∆ ∈∆,

then K robustly stabilizes S(∆, P ) against ∆.

Recall that I −M(s)∆(s) has a proper and stable inverse if and only if I −M(s)∆(s) is

non-singular for all s ∈ C= ∪ C> ∪ {∞} or, equivalently,

det(I −M(s)∆(s)) 6= 0 for all s ∈ C= ∪ C> ∪ {∞}.

Note that it is difficult to verify the latter property for all ∆ ∈∆. The crux of this result

is a structural simplification: Instead of investigating S(∆, P ) that depends possibly in

a highly involved fashion on ∆, we only need to investigate I −M∆ which is just linear

in ∆. Hence, it is sufficient to look at this generic structure for all possible (potentially

complicated) interconnections.

1These remarks are included since, recently, it has been claimed in a publication that robust control

design techniques are not useful, based on the following argument: The authors of this paper constructed

a controller that robustly stabilizes a system for some uncertainty class, and they tested this controller

against another class. It turned out that the robustness margins (to be defined later) for the alternative

uncertainty class are poor. The authors conclude that the technique they employed is not suited to

design robust controllers. This is extremely misleading since the actual conclusion should read as follows:

There is no reason to expect that a robustly stabilizing controller for one class of uncertainties is also

robustly stabilizing for another (possibly unrelated) class of uncertainties. Again, this is logical and seems

almost tautological, but we stress these points since the earlier mentioned severe confusions arose in the

literature.
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Proof. Taking any ∆ ∈∆, we have to show that u = Ky stabilizes the system in (4.20)

in the sense of Definition 3.2. At this point we benefit from the fact that we don’t need

to go back to the original definition, but, instead, we can argue in terms of input-output

descriptions as formulated in Theorem 3.5. We hence have to show that z

y

 = S(∆, P )

 w

u

 , u = Kv + v1, v = y + v2 (4.24)

defines a proper and stable system


w

v1

v2

 →

z

u

v

. Clearly, we can re-represent this

system as 
z∆

z

y

 = P


w∆

w

u

 , u = Kv + v1, v = y + v2, w∆ = ∆z∆. (4.25)

Recall that K stabilizes P . Hence the relations
z∆

z

y

 = P


w∆

w

u

 , u = Kv + v1, v = y + v2,

define a stable LTI system
z∆

z

u

v

 =


M N12 H13 H14

N21 N22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44




w∆

w

v1

v2

 . (4.26)

In addition to N =

 M N12

N21 N22

, several other blocks appear in this representation whose

structure is not important; the only important fact is that they are all proper and stable.

If we reconnect w∆ = ∆z∆ in (4.26), we arrive at an alternative representation of (4.25)

or of (4.24) that reads as
z

u

v

 =



N22 H23 H24

H32 H33 H34

H42 H43 H44

+


N21

H31

H41

∆(I −M∆)−1
(
N12 H13 H14

)

w

v1

v2

 .
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The essential point: Since both ∆ and (I −M∆)−1 are proper and stable, and since, as

mentioned above, all the other blocks occurring in this formula are proper and stable as

well, this system defines a proper and stable transfer matrix as we had to prove.

4.7.2 Reduction to Non-Singularity Test on Imaginary Axis

Recall that we need to verify whether I −M∆ has a proper and stable inverse; for that

purpose one has to check whether the matrix I −M∆ itself does not have zeros in the

closed right-half plane including infinity. Hence we need to check

det(I −M(s)∆(s)) 6= 0 for all s ∈ C= ∪ C> ∪ {∞}, ∆ ∈∆. (4.27)

This is complicated since we have to scan the full right-half plane, and we have to perform

the test for all dynamic uncertainties under consideration.

The following result shows that it suffices to test I −M(s)∆c for non-singularity only for

s = iω with ω ∈ R∪{∞}, and only for ∆c ∈∆c. Hence this reduces the original problem

to a pure problem in linear algebra, what might considerably simplify the test.

Let us first formulate the precise result.

Theorem 4.5 Suppose M is a proper and stable transfer matrix. If

det(I −M(iω)∆c) 6= 0 for all ∆c ∈∆c, ω ∈ R ∪ {∞}, (4.28)

then

I −M∆ has a proper and stable inverse for all ∆ ∈∆. (4.29)

Before we provide a formal proof, we would like to provide some intuition why the star-

shapedness hypothesis plays an important role in this result. Let us hence assume that

(4.28) is valid. Obviously, we can then conclude that

det(I −M(λ)∆(λ)) 6= 0 for all λ ∈ C= ∪ {∞}, ∆ ∈∆, (4.30)

since ∆(λ) is contained in ∆c if λ ∈ C= ∪ {∞} and ∆ ∈ ∆. Note that (4.27) and (4.30)

just differ by replacing C=∪C>∪{∞} with C=∪{∞}. Due to C=∪{∞} ⊂ C=∪C>∪{∞},
it is clear that (4.27) implies (4.30). However, we need the converse: We want to conclude

that (4.30) implies (4.27), and this is the non-trivial part of the story.

Why does this implication hold? We have illustrated the following discussion in Figure

44. The proof is by contradiction: Assume that (4.27) is not valid, and that (4.30) is true.

Then there exists a ∆ ∈ ∆ for which I −M∆ has a zero s1 in C> (due to (4.27)) where

100



Re(z)

Im(z)
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one zero in

rhp for τ = 1

all zeros in

lhp for τ → 0

crosses axis for some

τ0 at point s0 = iω0

Figure 44: Movements of zeros

s1 is certainly not contained in C= ∪ {∞} (due to (4.30)). For this single ∆, we cannot

detect that it is destabilizing without scanning the right-half plane. However, apart from

∆, we can look at all the uncertainties τ∆ obtained by varying τ ∈ [0, 1]. Since ∆c is

star-shaped, all these uncertainties are contained in the set ∆ as well. (Check that!) Let

us now see what happens to the zeros of

det(I −M(s)[τ∆(s)]).

For τ = 1, this function has the zero s1 in C>. For τ close to zero, one can show that

all its zeros must be contained in C<. (The loop is stable for τ = 0 such that it remains

stable for τ close to zero since, then, the perturbation τ∆ is small as well; we provide

a proof that avoids these sloppy reasonings.) Therefore, if we let τ decrease from 1 to

0, we can expect that the unstable zero s1 has to move from C> to C<. Since it moves

continuously, it must hit the imaginary axis on its way for some parameter τ0.2 If this

zero curve hits the imaginary axis at iω0, we can conclude that

det(I −M(iω0)[τ0∆(iω0)]) = 0.

Hence τ0∆(s) is an uncertainty that is still contained in ∆ (star-shapeness!) and for which

I −M [τ0∆] has a zero at iω0. We have arrive at the contradiction that (4.30) cannot be

true either.
2Contrary to what is often stated in the literature, this is not an elementary continuity argument!
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It is interesting to summarize what these arguments reveal: If we find a ∆ such that

(I −M∆)−1 has a pole in the open right-half plane, then we can also find another ∆̃ for

which (I −M∆̃)−1 has a pole on the imaginary axis.

Comments on larger classes of uncertainties

• If ∆c(ω) depends on frequency (and is star-shaped), we just have to check

det(I −M(iω)∆c) 6= 0 for all ω ∈ R ∪ {∞}, ∆c ∈∆c(ω)

in order to conclude (4.29). The proof remains unchanged.

• If ∆ is a general set of real rational proper and stable transfer matrices without

specific description, we have to directly verify (4.30) in order to conclude (4.29).

Let us now provide the rigorous arguments to finish the proof of Theorem 4.5.

Proof. Recall that it remains to show (4.30)⇒ (4.27) by contradiction. Suppose (4.30)

holds, but (4.27) is not valid. Hence there exists a s1 ∈ C>, s1 6∈ C=∪{∞}, and a ∆1 ∈∆

such that

det(I −M(s1)∆1(s1)) = 0. (4.31)

If we can show that there exists a s0 ∈ C= and a τ0 ∈ [0, 1] for which

det(I −M(s0)[τ0∆1(s0)]) = 0, (4.32)

we arrive at a contradiction to (4.30) since τ0∆ ∈∆ and s0 ∈ C=.

To find s0 and τ0, let us take the realization

M∆1 =

 A B

C D

 .
We obviously have

I −M [τ∆1] =

 A B

−τC I − τD


and the well-known Schur formula leads to

det(I −M(s)[τ∆(s)]) =
det(I − τD)

det(sI − A)
det(sI − A(τ)) (4.33)

if we abbreviate

A(τ) = A+B(I − τD)−1τC.

If we apply (4.30) for s =∞ and ∆ = τ∆1, we infer that det(I−τD) 6= 0 for all τ ∈ [0, 1].

In addition, A is stable such that det(s1I−A) 6= 0. If we hence combine (4.33) and (4.31),

we arrive at

det(s1I − A(1)) = 0 or s1 ∈ λ(A(1)).
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Let us now exploit as a fundamental result the continuous dependence of eigenvalues of

matrices: Since A(τ) depends continuously on τ ∈ [0, 1], there exists a continuous function

s(.) defined on [0, 1] and taking values in the complex plane such that

s(1) = s1, det(s(τ)I − A(τ)) = 0 for all τ ∈ [0, 1].

(s(.) defines a continuous curve in the complex plane that starts in s1 and such that, for

each τ , s(τ) is an eigenvalue of A(τ).) Now we observe that A(0) = A is stable. Therefore,

s(0) must be contained in C<. We conclude: the continuous function Re(s(τ)) satisfies

Re(s(0)) < 0 and Re(s(1)) > 0.

Hence there must exist a τ0 ∈ (0, 1) with

Re(s(τ0)) = 0.

Then s0 = s(τ0) and τ0 lead to (4.32) what is the desired contradiction.

For later purposes we can modify the proof to obtain the following result.

Lemma 4.6 Let P be stable with ‖P‖∞ ≤ 1. Suppose K stabilizes P , that K has no

poles in C0 and satisfies ‖K(iω)‖ < 1 for all ω ∈ [0,∞]. Then K is stable.

Proof. Choose ω ∈ [0,∞] and τ ∈ [0, 1] arbitrary. Then we have

‖τP (iω)K(iω)‖ ≤ P (iω)‖ ‖K(iω)‖ < 1.

This implies

det(I − τP (iω)K(iω)) 6= 0.

Choose again minimal realizations (Ap, Bp, Cp, Dp) and (AK , BK , CK , DK) of P and K

and abbreviate

PK =

 A B

C D

 :=


Ap BpCK BpDK

0 AK BK

Cp DpCK DpDK

 .
Define again A(τ) := A+B(I − τD)−1τC to obtain with the Schur formula

det(I − P (s)[τK(s)]) =
det(I − τD)

det(sI − A)
det(sI − A(τ)).
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Set now Si := (I −DKDp)
−1 and So := (I −DpDK)−1 then observe that

A(1) = A+BSoC

=

Ap BpCK

0 AK

+

BpDK

BK

So

(
Cp DpCK

)

=

Ap 0

0 AK

+

BpSiDKCp BpSiCK

BKSoCp BKSoDpCK


=

Ap 0

0 AK

+

Bp 0

0 BK

 Si SiDK

SoDp So

 0 CK

Cp 0


=

Ap 0

0 AK

+

Bp 0

0 BK

 I −DK

−Dp I

−1 0 CK

Cp 0


is Hurwitz since K stabilizes P . With the same idea as in the proof of Theorem 4.5 we can

conclude that A(0) =

Ap BpCK

0 AK

 is Hurwitz and hence AK is Hurwitz. This means

that K is stable.

4.7.3 The Central Test for Robust Stability

We can easily combine Theorem 4.4 with Theorem 4.5 to arrive at the fundamental robust

stability analysis test for controlled interconnections.

Corollary 4.7 If K stabilizes P , and if

det(I −M(iω)∆c) 6= 0 for all ∆c ∈∆c, ω ∈ R ∪ {∞}, (4.34)

then K robustly stabilizes S(∆, P ) against ∆.

Contrary to what is often claimed in the literature, the converse does in general not hold

in this result. Hence (4.34) might in general not be a tight condition. In practice and for

almost all relevant uncertainty classes, however, it often turns out to be tight. In order

to show that the condition is tight for a specific setup, one can simply proceed as follows:

if (4.34) is not true, try to construct a destabilizing perturbation, an uncertainty ∆ ∈ ∆

for which K does not stabilize S(∆, P ).

The construction of destabilizing perturbations is the topic of the next section.
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4.7.4 Construction of Destabilizing Perturbations

As already pointed out, this section is related to the question in how far condition (4.34)

in Theorem 4.7 is also necessary for robust stability. We are not aware of definite answers

to this questions in our general setup, but we are aware of some false statements in the

literature! Nevertheless, we do not want to get into a technical discussion but we intend

to take a pragmatic route in order to construct destabilizing perturbations.

Let us assume that (4.34) is not valid. This means that we can find a complex matrix

∆0 ∈∆c and a frequency ω0 ∈ R ∪ {∞} for which

I −M(iω0)∆0 is singular.

First step in constructing a destabilizing perturbation

Find a real rational proper and stable ∆(s) with

∆(iω0) = ∆0 and ∆(iω) ∈∆c for all ω ∈ R ∪ {∞}. (4.35)

This implies that ∆ is contained in our class ∆, and that I−M∆ does not have a proper

and stable inverse (since I −M(iω0)∆(iω0) = I −M(iω0)∆0 is singular.)

Comments

Note that the construction of ∆ amounts to solving an interpolation problem: The func-

tion ∆(s) should be contained in our class ∆ and it should take the value ∆0 at the point

s = iω0.

This problem has a trivial solution if ∆0 is a real matrix. Just set

∆(s) := ∆0.

If ∆0 is complex, this choice is not suited since it is not contained in our perturbation

class of real rational transfer matrices. In this case we need to do some work. Note that

this was the whole purpose of Lemma ?? if ∆c is the open unit disk in the complex plane.

For more complicated sets (such as for block diagonal structures) we comment on the

solution of this problem later.

Second step in constructing a destabilizing perturbation

For the constructed ∆, check whether K stabilizes S(∆, P ) by any of our tests developed

earlier. If the answer is no, we have found a destabilizing perturbation. If the answer is

yes, the question of whether K is robustly stabilizing remains undecided.

Comments

In most practical cases, the answer will be no and the constructed ∆ is indeed destabiliz-

ing. However, one can find examples where this is not the case, and this point is largely

overlooked in the literature.
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Let us provide (without proofs) conditions under which we can be sure that ∆ is destabi-

lizing:

• If ω0 =∞ then ∆ is destabilizing.

• If ω0 is finite, if 
A− iω0I 0 B1 B2

0 ∆0 −I 0

C1 −I D11 D12

 has full row rank,

and if 
A− iω0I 0 B1

0 ∆0 −I
C1 −I D11

C2 0 D21

 has full column rank,

then ∆ is destabilizing.

• This latter test can be re-formulated in terms of P . If ω0 is finite, if iω0 is not a

pole of P (s), if (
I − P11(iω0)∆0 P12(iω)

)
has full row rank,

and if  I −∆0P11(iω0)

P21(iω0)

 has full column rank,

then ∆ is destabilizing.

Note that these conditions are very easy to check, and they will be true in most practical

cases. If they are not valid, the question of robust stability remains undecided. The failing

of the latter conditions might indicate that the process of pulling out the uncertainties

can be performed in a more efficient fashion by reducing the size of ∆.

4.8 Important Specific Robust Stability Tests

Testing (4.34) can be still pretty difficult in general, since the determinant is a complicated

function of the matrix elements, and since we still have to test an infinite number of

matrices for non-singularity.

On the other hand, very many robust stability test for LTI uncertainties have (4.34) at

their roots, and this condition can be specialized to simple tests in various interesting

settings. We can only touch upon the wealth of consequences.
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4.8.1 M is Scalar

If it happens that M(iω) has dimension 1×1, then ∆c is simply a set of complex numbers.

In this case (4.34) just amounts to testing 1−M(iω)∆c 6= 0 for all ∆c ∈∆c. This amounts

to testing, frequency by frequency, whether the set

M(iω)∆c

contains 1 or not. If no, condition (4.34) holds true and we conclude robust stability.

If 1 is contained in this set for some frequency, (4.34) fails, and we might construct a

destabilizing uncertainty as in Section 4.7.4.

In many cases, ∆c is the open unit circle in the complex plane. If 1 ∈M(iω0)∆0, Lemma

?? allows us to construct a proper real rational stable ∆(s) with ∆(iω0) = ∆0. This is

the candidate for a destabilizing perturbation as discussed in Section 4.7.4.

4.8.2 The Small-Gain Theorem

Let us be specific and assume that the dimension of the uncertainty block is p× q. Then

we infer

∆c ⊂ Cp×q.

No matter whether or not ∆c consists of structure or unstructured matrices, it will cer-

tainly be a bounded set. Let us assume that we have found an r for which any

∆c ∈∆c satisfies ‖∆c‖ < r.

In order to check (4.34), we choose an arbitrary ω ∈ R ∪ {∞}, and any ∆c ∈∆c.

We infer that

det(I −M(iω)∆c) 6= 0 (4.36)

is equivalent, by the definition of eigenvalues, to

1 6∈ λ(M(iω)∆c). (4.37)

1 is certainly not an eigenvalue of M(iω)∆c if all these eigenvalues are in absolute value

smaller than 1. Hence (4.37) follows from

ρ(M(iω)∆c) < 1. (4.38)

Since the spectral radius is smaller than the spectral norm of M(iω)∆c, (4.38) is implied

by

‖M(iω)∆c‖ < 1. (4.39)
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Finally, since the norm is sub-multiplicative, (4.39) follows from

‖M(iω)‖‖∆c‖ < 1. (4.40)

At this point we exploit our knowledge that ‖∆c‖ < r to see that (4.40) is a consequence

of

‖M(iω)‖ ≤ 1

r
. (4.41)

We have seen that all the properties (4.37)-(4.41) are sufficient conditions for (4.34) and,

hence, for robust stability.

Why have we listed all these conditions in such a detail? They all appear - usually

separately - in the literature under the topic ‘small gain’. However, these conditions are

not often related to each other such that it might be very confusing what the right choice

is. The above chain of implications gives the answer: They all provide sufficient conditions

for (4.36) to hold.

Recall that we have to guarantee (4.36) for all ω ∈ R ∪ {∞}. In fact, this is implied if

(4.41) holds for all ω ∈ R ∪ {∞}, what is in turn easily expressed as ‖M‖∞ ≤ 1
r
.

Theorem 4.8 If any ∆c ∈∆c satisfies ‖∆c‖ < r, and if

‖M‖∞ ≤
1

r
, (4.42)

then I −M∆ has a proper and stable inverse for all ∆ ∈∆.

Again, one can combine Theorem 4.8 with Theorem 4.4 to see that (4.42) is a sufficient

condition for K to robustly stabilize S(∆, P ).

Corollary 4.9 If K stabilizes P , and if

‖M‖∞ ≤
1

r
,

then K robustly stabilizes S(∆, P ) against ∆.

We stress again that (4.42) is only sufficient; it neglects any structure that might be

characterized through ∆c, and it only exploits that all the elements of this set are bounded

by r.

Remarks. Note that this result also holds for an arbitrary class ∆ of real rational proper

and stable matrices (no matter how they are defined) if they all satisfy the bound

‖∆‖∞ < r.
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Moreover, we are not at all bound to the specific choice of ‖.‖ = σmax(.) as a measure

for the size of the underlying complex matrices. We could replace (also in the definition

of ‖.‖∞) the maximal singular value by an arbitrary norm on matrices that is induced

by vector norms, and all our results remain valid. This would lead to another bunch of

small gain theorems that lead to different conditions. As specific examples, think of the

maximal row sum or maximal column sum which are both induced matrix norms.

4.8.3 Full Block Uncertainties

Let us suppose we have an interconnection in which only one subsystem is subject to

unstructured uncertainties. If this subsystem is SISO system, we can pull out the uncer-

tainty of the interconnection and we end up with an uncertainty block ∆ of dimension

1 × 1. If the subsystem is MIMO, the block will be matrix valued. Let us suppose that

the dimension of this block is p× q, and that is only restricted in size and bounded by r.

In our general scenario, this amounts to

∆c = {∆ ∈ Cp×q | ‖∆‖ < r}.

In other words, ∆ simply consists of all real rational proper and stable ∆(s) whose H∞
norm is smaller than r:

∆ := {∆ ∈ RHp×q
∞ | ‖∆‖∞ < r}. (4.43)

Recall from Theorem 4.8: ‖M‖∞ ≤ 1
r

implies that I−M∆ has a proper and stable inverse

for all ∆ ∈∆.

The whole purpose of this section is to demonstrate that, since ∆ consists of unstructured

uncertainties, the converse holds true as well: If I −M∆ has a proper and stable inverse

for all ∆ ∈∆, then ‖M‖∞ ≤ 1
r
.

Theorem 4.10 Let ∆ be defined by (4.43). Then ‖M‖∞ ≤ 1
r

holds true if and only if

I −M∆ has a proper and stable inverse for all ∆ ∈∆.

We can put it in yet another form: In case that

‖M‖∞ >
1

r
, (4.44)

we can construct - as shown in the proof - a real rational proper and stable ∆ with

‖∆‖∞ < r such that

I −M∆ does not have a proper and stable inverse. (4.45)
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This construction leads to a destabilizing perturbation for (I −M∆)−1, and it is a can-

didate for a destabilizing perturbation of the closed-loop interconnection as discussed in

Section 4.7.4.

Proof. This is what we have to do: If (4.44) holds true, there exists a ∆ ∈∆ with (4.45).

First step. Suppose that we have found ω0 ∈ R∪{∞} with ‖M(iω0)‖ > 1
r

(which exists

by (4.44)). Recall that ‖M(iω0)‖2 is an eigenvalue of M(iω0)M(iω0)∗. Hence there exists

an eigenvector u 6= 0 with

[M(iω0)M(iω0)∗]u = ‖M(iω0)‖2u.

Let us define

v :=
1

‖M(iω0)‖2
M(iω0)∗u and ∆0 := v

u∗

‖u‖2
.

(Note that ∆0 has rank one; this is not important for our arguments.) We observe

‖∆0‖ ≤
‖v‖
‖u‖
≤ 1

‖M(iω0)‖2
‖M(iω0)∗u‖ 1

‖u‖
≤ 1

‖M(iω0)‖
< r

and

[I −M(iω0)∆0]u = u−M(iω0)v =

= u− 1

‖M(iω0)‖2
M(iω0)M(iω0)∗u = u− ‖M(iω0)‖2

‖M(iω0)‖2
u = 0.

We have constructed a complex matrix ∆0 that satisfies

‖∆0‖ < r and det(I −M(iω0)∆0) = 0.

Second step. Once we are at this point, we have discussed in Section 4.7.4 that it suffices

to construct a real rational proper and stable ∆(s) satisfying

∆(iω0) = ∆0 and ‖∆‖∞ < r.

Then this uncertainty renders (I −M∆)−1 non-existent, non-proper, or unstable.

If ω0 = ∞ or ω0 = 0, M(iω) is real. Then u can be chosen real such that ∆0 is a real

matrix. Obviously, ∆(s) := ∆0 does the job.

Hence suppose ω0 ∈ (0,∞). Let us now apply Lemma ?? to each of the components of

u∗

‖u‖2 =
(
u1 · · · uq

)
, v =


v1

...

vp

: There exist αj ≥ 0 and βj ≥ 0 with

uj = ±|uj|
iω0 − αj
iω0 + αj

, vj = ±|vj|
iω0 − βj
iω0 + βj

.
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Define the proper and stable

u(s) :=
(
±|u1| s−α1

s+α1
· · · ±|uq| s−αq

s+αq

)
, v(s) :=


±|v1| s−β1s+β1

...

±|vp| s−βps+βp

 .

We claim that

∆(s) := v(s)u(s)

does the job. It is proper, stable, and it clearly satisfies ∆(iω0) = v u∗

‖u‖2 = ∆0. Finally,

observe that

‖u(iω)‖2 =

q∑
j=1

|uj|2
∣∣∣∣iω − αjiω + αj

∣∣∣∣2 =

q∑
j=1

|uj|2 =

∥∥∥∥ u∗

‖u‖2

∥∥∥∥2

=
1

‖u‖2

and

‖v(iω)‖2 =

p∑
j=1

|vj|2
∣∣∣∣iω − βjiω + βj

∣∣∣∣2 =

p∑
j=1

|vj|2 = ‖v‖2.

Hence ‖∆(iω)‖ ≤ ‖u(iω)‖‖v(iω)‖ = ‖v‖
‖u‖ < r, what implies ‖∆‖∞ < r.

4.9 The Structured Singular Value in a Unifying Framework

All our specific examples could be reduced to uncertainties whose values on the imaginary

axis admit the structure

∆c =



p1I 0
. . .

pnrI

δ1I
. . .

δncI

∆1

. . .

0 ∆nf



∈ Cp×q (4.46)

and whose diagonal blocks satisfy

• pj ∈ R with |pj| < 1 for j = 1, . . . , nr,

• δj ∈ C with |δj| < 1 for j = 1, . . . , nc,
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• ∆j ∈ Cpj×qj with ‖∆j‖ < 1 for j = 1, . . . , nf .

pjI is said to be a real repeated block, δjI is called a complex repeated block, and ∆j

is called a full (complex) block. The sizes of the identities can be different for different

blocks. Real full blocks usually do not occur and are, hence, not contained in the list.

Let us denote the set of all this complex matrices as ∆c. This set ∆c is very easy

to describe: one just needs to fix for each diagonal block its structure (real repeated,

complex repeated, complex full) and its dimension. If the dimension of pjI is rj, and the

dimension of δjI is cj, the µ-tools expect a description of this set in the following way:

blk =



−r1 0
...

...

−rnr 0

c1 0
...

...

cnc 0

p1 q1

...
...

pnf
qnf



.

Hence the row (−rj 0) indicates a real repeated block of dimension rj, whereas (cj 0)

corresponds to a complex repeated block of dimension cj, and (pj qj) to a full block

dimension pj × qj.

Remark. In a practical example it might happen that the ordering of the blocks is

different from that in (4.46). Then the commands in the µ-Toolbox can still be applied

as long as the block structure matrix blk reflects the correct order and structure of the

blocks.

Remark. If ∆c takes the structure (4.46), the constraint on the size of the diagonal

blocks can be briefly expressed as ‖∆c‖ < 1. Moreover, the set r∆c consists of all

complex matrices ∆c that take the structure (4.46) and whose blocks are bounded in size

by r: ‖∆c‖ < r. Here r is just a scaling factor that will be relevant in introducing the

structured singular value.

The actual set of uncertainties ∆ is, once again, the set of all real rational proper and

stable ∆ whose frequency response takes it values in ∆c:

∆ := {∆(s) ∈ RH∞ | ∆(iω) ∈∆c for all ω ∈ R ∪ {∞}}.

Let us now apply the test (4.28) in Theorem 4.5. At a fixed frequency ω ∈ R ∪ {∞}, we
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have to verify whether

I −M(iω)∆c is non-singular for all ∆c ∈∆c. (4.47)

This is a pure problem of linear algebra.

4.9.1 The Structured Singular Value

Let us restate the linear algebra problem we have encountered for clarity: Given the

complex matrix Mc ∈ Cq×p and the (relative open) set of complex matrices ∆c ⊂ Cp×q,

decide whether

I −Mc∆c is non-singular for all ∆c ∈∆c. (4.48)

The answer to this question is yes or no.

We modify the problem a bit. In fact, let us consider the scaled set r∆c in which we have

multiplied every element of ∆c with the factor r. This stretches or shrinks the set ∆c by

the factor r. Then we consider the following problem:

Determine the largest r such that I −Mc∆c is non-singular for all ∆c in the

set r∆c. This largest value is denoted as r∗.

In other words, calculate

r∗ = sup{r | det(I −Mc∆c) 6= 0 for all ∆c ∈ r∆c}. (4.49)

What happens here? Via the scaling factor r, we inflate or shrink the set r∆c. For small

r, I −Mc∆c will be non-singular for any ∆c ∈ r∆c. If r grows larger, we might find some

∆c ∈ r∆c for which I−Mc∆c will turn out singular. If no such r exists, we have r∗ =∞.

Otherwise, r∗ is just the finite critical value for which we can assure non-singularity for

the set r∆c if r is smaller than r∗. This is the reason why r∗ is called non-singularity

margin.

Remark. r∗ also equals the smallest r such that there exists a ∆c ∈ r∆c that renders

I−Mc∆c singular. The above given definition seems more intuitive since we are interested

in non-singularity.

Definition 4.11 The structured singular value (SSV) of the matrix Mc with respect to

the set ∆c is defined as

µ∆c(Mc) =
1

r∗
=

1

sup{r | det(I −Mc∆c) 6= 0 for all ∆c ∈ r∆c}
.
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Remark. The non-singularity margin r∗ has been introduced by Michael Safonov,

whereas the structured singular value has been defined by John Doyle. Both concepts

are equivalent; the structured singular can be related in a nicer fashion to the ordinary

singular value what motivates its definition as the reciprocal of r∗.

Let us now assume that we can compute the SSV. Then we can decide the original question

whether (4.48) is true or not as follows: We just have to check whether µ∆c(Mc) ≤ 1. If

yes, then (4.48) is true, if no, then (4.48) is not true. This is the most important fact to

remember about the SSV.

Theorem 4.12 Let Mc be a complex matrix and ∆c an arbitrary (open) set of complex

matrices. Then

• µ∆c(Mc) ≤ 1 implies that I −Mc∆c is non-singular for all ∆c ∈∆c.

• µ∆c(Mc) > 1 implies that there exists a ∆c ∈∆c for which I −Mc∆c is singular.

Proof. Let us first assume that µ∆c(Mc) ≤ 1. This implies that r∗ ≥ 1. Suppose that

there exists a ∆0 ∈∆c that renders I−Mc∆0 singular. Since ∆c is relative open, ∆0 also

belongs to r∆c for some r < 1 that is close to 1. By the definition of r∗, this implies that

r∗ must be smaller than r. Therefore, we conclude that r∗ < 1 what is a contradiction.

Suppose now that µ∆c(Mc) > 1. This implies r∗ < 1. Suppose I −Mc∆c is non-singular

for all ∆c ∈ r∆c for r = 1. This would imply (since r∗ was the largest among all r for

which this property holds) that r∗ ≥ r = 1, a contradiction.

It is important to note that the number µ∆c(Mc) is depending both on the matrix Mc

and on the set ∆c what we explicitly indicate in our notation. For the computation of

the SSV, the µ-tools expect, as well, a complex matrix M and the block structure blk as

an input. In principle, one might wish to calculate the SSV exactly. Unfortunately, it

has been shown through examples that this is a very hard problem in a well-defined sense

introduced in computer science. Fortunately, one can calculate a lower bound and an

upper bound for the SSV pretty efficiently. In the µ-tools, this computation is performed

with the command mu(M, blk) which returns the row [upperbound lowerbound].

For the reader’s convenience we explicitly formulate the detailed conclusions that can be

drawn if having computed a lower and an upper bound of the SSV.

Theorem 4.13 Let Mc be a complex matrix and ∆c an arbitrary (open) set of complex

matrices. Then

• µ∆c(Mc) ≤ γ1 implies that I −Mc∆c is nonsingular for all ∆c ∈ 1
γ1

∆c.
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• µ∆c(Mc) > γ2 implies that there exists a ∆c ∈ 1
γ2

∆c for which I−Mc∆c is singular.

This is a straightforward consequence of the following simple fact:

αµ∆c(Mc) = µ∆c(αMc) = µα∆c(Mc). (4.50)

A scalar scaling of the SSV with factor α is equivalent to scaling either the matrix Mc or

the set ∆c with the same factor.

Let us briefly look as well at the case of matrix valued scalings. Suppose U and V are

arbitrary complex matrices. Then we observe

det(I −Mc[U∆cV ]) 6= 0 if and only if det(I − [VMcU ]∆c) 6= 0. (4.51)

This shows that

µU∆cV (Mc) = µ∆c(VMcU). (4.52)

Hence, if we intend to calculate the SSV with respect to the set

U∆cV = {U∆cV | ∆c ∈∆c},

we can do that by calculating the SSV of VMcU with respect to the original set ∆c, and

this latter task can be accomplished with the µ-tools.

Before we proceed to a more extended discussion of the background on the SSV, let us

discuss its most important purpose, the application to robust stability analysis.

4.9.2 SSV Applied to Testing Robust Stability

For robust stability we had to check (4.47). If we recall Theorem 4.13, this condition

holds true if and only if the SSV of M(iω) calculated with respect to ∆c is smaller than

1. Since this has to be true for all frequencies, we immediately arrive at the following

fundamental result of these lecture notes.

Theorem 4.14 I −M∆ has a proper and stable inverse for all ∆ ∈∆ if and only if

µ∆c(M(iω)) ≤ 1 for all ω ∈ R ∪ {∞}. (4.53)

We can again combine Theorem 4.8 with Theorem 4.4 to obtain the test for the general

interconnection.

Corollary 4.15 If K stabilizes P , and if

µ∆c(M(iω)) ≤ 1 for all ω ∈ R ∪ {∞},

then K robustly stabilizes S(∆, P ) against ∆.

115



Remark. In case that

∆c := {∆ ∈ Cp×q | ‖∆‖ < 1}

consists of full block matrices only (what corresponds to nr = 0, nc = 0, nf = 1), it

follows from the discussion in Section 4.8.3 that

µ∆c(M(iω)) = ‖M(iω)‖.

Hence Theorem 4.14 and Corollary 4.15 specialize to Theorem 4.8 and Corollary 4.9 in

this particular case of full block uncertainties.

How do we apply the tests? We just calculate the number µ∆c(M(iω)) for each frequency

and check whether it does does not exceed one. In practice, one simply plots the function

ω → µ∆c(M(iω))

by calculating the right-hand side for finitely many frequencies ω. This allows to visually

check whether the curve stays below 1. If the answer is yes, we can conclude robust

stability as stated in Theorem 4.14 and Corollary 4.15 respectively. If the answer is no,

we reveal in the next section how to determine a destabilizing uncertainty.

In this ideal situation we assume that the SSV can be calculated exactly. As mentioned

above, however, only upper bounds can be computed efficiently. Still, with the upper

bound it is not difficult to guarantee robust stability. In fact, with a plot of the computed

upper bound of µ∆cM(iω) over the frequency ω, we can easily determine a number γ > 0

such that

µ∆c(M(iω)) ≤ γ for all ω ∈ R ∪ {∞} (4.54)

is satisfied. As before, we can conclude robust stability for the uncertainty set

{1

γ
∆ | ∆ ∈∆} (4.55)

which consists of all uncertainties that admit the same structure as those in ∆, but that

are rather bounded by 1
γ

instead of 1. This is an immediate consequence of Theorem 4.13.

We observe that the SSV-plot or a plot of the upper bound lets us decide the question

of how large we can let the structured uncertainties grow in order to still infer robust

stability.

If varying γ, the largest class 1
γ
∆ is obtained with the smallest γ for which (4.54) is valid;

this best value is clearly given as

γ∗ = sup
ω∈R∪{∞}

µ∆c(M(iω)).

Since 1
γ∗

is the largest possible inflating factor for the set of uncertainties, this number is

often called stability margin.
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4.9.3 Construction of Destabilizing Perturbations

Let us suppose that we have found some frequency ω0 ∈ (0,∞) for which

µ∆c(M(iω0)) > γ0.

Such a pair of frequency ω0 and value γ0 can be found by visually inspecting a plot of

the lower bound of the SSV over frequency as delivered by the µ-tools. Due to Theorem

4.13, there exists some ∆0 ∈ 1
γ0

∆c that renders I −M(iω0)∆0 singular. Note that the

algorithm in the µ-tools to compute a lower bound of µ∆c(M(iω0)) returns such a matrix

∆0 for the calculated bound γ0.

Based on ω0, γ0 and ∆0, we intend to point out in this section how we can determine a

candidate for a dynamic destabilizing perturbation as discussed in Section 4.7.4.

Let us denote the blocks of ∆0 as

∆0 =



p1I 0
. . .

pnrI

δ0
1I

. . .

δ0
nc
I

∆0
1

. . .

0 ∆0
nf



∈ Cp×q

with pj ∈ R, δ0
j ∈ C, ∆0

j ∈ Cpj×qj .

According to Lemma ??, there exists proper and stable δj(s) with

δj(iω0) = δ0
j and ‖δj‖∞ ≤ |δ0

j | <
1

γ0

.

Since I −M(iω0)∆0 is singular, there exists a complex kernel vector u 6= 0 with (I −
M(iω0)∆0)u = 0. Define v = ∆0u. If we partition u and v according to ∆0, we obtain

vj = ∆0
juj for those vector pieces that correspond to the full blocks. In the proof of

Theorem 4.10 we have shown how to construct a real rational proper and stable ∆j(s)

that satisfies

∆j(iω0) = vj
u∗j
‖uj‖2

and ‖∆j‖∞ ≤
‖vj‖
‖uj‖

≤ ‖∆0
j‖ <

1

γ0

.

(Provide additional arguments if it happens that uj = 0).
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Let us then define the proper and stable dynamic perturbation

∆(s) =



p1I 0
. . .

pnrI

δ1(s)I
. . .

δnc(s)I

∆1(s)
. . .

0 ∆nf
(s)



.

Since each of the diagonal blocks has an H∞-norm that does not exceed γ0, we infer

‖∆‖∞ < 1
γ0

. Hence ∆ ∈ 1
γ0

∆. Moreover, by inspection one verifies that ∆(iω0)u = v.

This implies that [I −M(iω0)∆(iω0)]u = u −M(iω0)v = 0 such that I −M(s)∆(s) has

a zero at iω0 and, hence, its inverse is certainly not stable.

If ω0 = 0 or ω0 = ∞, this construction fails since δ0
j and ∆0

j cannot, in general, taken to

be real. We refer to the reference

A.L. Tits, M.K.H. Fan, On the small-µ theorem, Automatica 31 (1995) 1199-1201

for a construction of ∆ under these circumstances.

In summary, we have found an uncertainty ∆ that is destabilizing for (I −M∆)−1, and

that is a candidate for rendering the system S(∆, P ) controlled with K unstable.

4.9.4 Example: Two Uncertainty Blocks in Tracking Configuration

Let us come back to Figure 41 with

G(s) =
200

(10s+ 1)(0.05s+ 1)2
and K(s) = 0.2

0.1s+ 1

(0.65s+ 1)(0.03s+ 1)
.

In this little example we did not include any weightings for the uncertainties what is, of

course, unrealistic. Note that the uncertainties ∆1 and ∆2 have both dimension 1 × 1.

Pulling them out leads to the uncertainty

∆ =

∆1 0

0 ∆2
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for the interconnection. Since both uncertainties are dynamic, we infer for this setup that

we have to choose

∆c := {

∆1 0

0 ∆2

 | ∆j ∈ C, |∆j| < 1, j = 1, 2}.

For any complex matrix M, the command mu(M, [1 1; 1 1]) calculates the SSV of M with

respect to ∆c. The matrix [1 1; 1 1] just indicates that the structure consists of two blocks

(two rows) that are both of dimension 1× 1.

The code

G=nd2sys( [200],conv([10 1],conv([0.05 1],[0.05 1])) );

K=nd2sys( [0.1 1], conv([0.65 1],[0.03 1]),0.2 );

systemnames=’G’;

inputvar=’[w1;w2;d;n;r;u]’;

outputvar=’[u;r-n-d-w1-G;G+w1+d-r;r+w2-n-d-w1-G]’;

input_to_G=’[u]’;

sysoutname=’P’;

cleanupsysic=’yes’;

sysic

N=starp(P,K);

M11=sel(N,1,1);

M22=sel(N,2,2);

M=sel(N,[1 2],[1 2]);

om=logspace(0,1);

clf;

vplot(’liv,m’,frsp(M11,om),’:’,frsp(M22,om),’:’,vnorm(frsp(M,om)),’--’);

hold on;grid on

Mmu=mu(frsp(M,om),[1 1;1 1]);

vplot(’liv,m’,Mmu,’-’);

computes the transfer matrix M seen by the uncertainty. Note that Mjj is the transfer

function seen by ∆j for j = 1, 2. We plot |M11(iω)|, |M22(iω)|, ‖M(iω)‖, and µ∆c(M(iω))

over the frequency interval ω ∈ [0, 10], as shown in Figure 45. For good reasons to be

revealed in Section 4.10, the upper bound of the SSV coincides with the lower bound such

that, in this example, we have exactly calculated the SSV.

How do we have to interpret this plot? Since the SSV is not larger than 2, we conclude
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Figure 45: Magnitudes of M11, M22 (dotted), norm of M (dashed), SSV of M (solid)

robust stability for all uncertainties that take their values in

1

2
∆c = {

∆1 0

0 ∆2

 | ∆j ∈ C, |∆j| <
1

2
, j = 1, 2}.

For this statement, we did not take into account that the SSV plot shows a variation

in frequency. To be specific, at the particular frequency ω, we can not only allow for

‖∆c‖ < 0.5 but even for

‖∆c‖ < r(ω) :=
1

µ∆c(M(iω))

and we can still conclude that I−M(iω)∆c is non-singular. Therefore, one can guarantee

robust stability for uncertainties that take their values at iω in the set

∆c(ω) := {

∆1 0

0 ∆2

 ∈ C2×2 | |∆1| < r(ω), |∆2| < r(ω)}.

The SSV plot only leads to insights if re-scaling the whole matrix ∆c. How can we

explore robust stability for different bounds on the different uncertainty blocks? This

would correspond to uncertainties that take their values in

{

∆1 0

0 ∆2

 ∈ C2×2 | |∆1| < r1, |∆2| < r2}
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Figure 46: SSV of RM with r1 = 1, r2 ∈ [0.1, 10].

for different r1 > 0, r2 > 0. The answer is simple: just employ weightings! Observe that

this set is nothing but

R∆c with R =

 r1 0

0 r2

 .

In order to guarantee robust stability, we have to test µR∆c(M(iω)) ≤ 1 for all ω ∈
R ∪ {∞}, what amounts to verifying

µ∆c(RM(iω)) < 1 for all ω ∈ R ∪ {∞}

by the property (4.52). Again, we look at our example where we vary r2 in the interval

[0.1, 10] and fix r1 = 1. Figure 46 presents the SSV plots for these values.

Important task. Provide an interpretation of the plots!

Remark. For the last example, we could have directly re-scaled the two uncertainty

blocks in the interconnection, and then pulled out the normalized uncertainties. The

resulting test will lead, of course, to the same conclusions.

Similar statements can be made for the dashed curve and full block uncertainties; the
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discussion is related to the set

{∆c =

∆11 ∆12

∆21 ∆22

 ∈ C2×2 | ‖∆c‖ < 1}.

The dotted curves lead to robust stability results for

{

∆1 0

0 0

 | ∆1 ∈ C, |∆1| < 1}

or

{

 0 0

0 ∆2

 | ∆2 ∈ C, |∆2| < 1}

respectively.

Important task. Formulate the exact results and interpretations for the last three cases.

4.9.5 SSV Applied to Testing the General Hypothesis

Let us recall that we always have to verify the hypotheses 4.3 before we apply our results.

So far we were not able to check (4.23). For the specific set considered in this section,

this simply amounts to a SSV-test: (4.23) is true if and only if

µ∆c(P11(∞)) ≤ 1.

Remark. We observe that the SSV is a tool that is by no means restricted to stability

tests in control. In fact, it is useful in any problem where one needs to check whether a

family of matrices is non-singular.

4.10 A Brief Survey on the Structured Singular Value

This section serves to provide some important properties of µ∆c(Mc), and it should clarify

how it is possible to compute bounds on this quantity.

An important property of the SSV is its ‘monotonicity’ in the set ∆c: If two sets of

complex matrices ∆1 and ∆2 satisfy

∆1 ⊂∆2,

then we infer

µ∆1(Mc) ≤ µ∆2(Mc).
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In short: The larger the set ∆c (with respect to inclusion), the larger µ∆c(Mc).

Now it is simple to understand the basic idea of how to bound the SSV. For that purpose

let us introduce the specific sets

∆1 := {pI ∈ Rq×q | |p| < 1}
∆2 := {δI ∈ Cq×q | |δ| < 1}
∆3 := {∆c ∈ Cp×q | ‖∆c‖ < 1}

that correspond to one real repeated block (nr = 1, nc = 0, nf = 0), one complex repeated

block (nr = 0, nc = 1, nf = 0), or one full block (nr = 0, nc = 0, nf = 1). For these

specific structures one can easily compute the SSV explicitly:

µ∆1(Mc) = ρR(Mc)

µ∆2(Mc) = ρ(Mc)

µ∆3(Mc) = ‖Mc‖.

Here, ρR(M) denotes the real spectral radius of Mc defined as

ρR(Mc) = max{|λ| | λ is a real eigenvalue of Mc},

whereas ρ(M) denotes the complex spectral radius of Mc that is given as

ρ(Mc) = max{|λ| | λ is a complex eigenvalue of Mc}.

In general, we clearly have

∆1 ⊂∆c ⊂∆3

such that we immediately conclude

µ∆1(Mc) ≤ µ∆c(Mc) ≤ µ∆3(Mc).

If there are no real blocks (nr = 0), we infer

∆2 ⊂∆c ⊂∆3

what implies

µ∆2(Mc) ≤ µ∆c(Mc) ≤ µ∆3(Mc).

Together with the above given explicit formulas, we arrive at the following result.

Lemma 4.16 In general,

ρR(Mc) ≤ µ∆c(Mc) ≤ ‖Mc‖.

If nr = 0, then

ρ(Mc) ≤ µ∆c(Mc) ≤ ‖Mc‖.

Note that these bounds are pretty rough. The main goal in computational techniques is

to refine these bounds to get close to the actual value of the SSV.
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4.10.1 Continuity

We have seen that the SSV of Mc with respect to the set {pI ∈ Rp×q | |p| < 1} is the real

spectral radius. This reveals that the SSV does, in general, not depend continuously on

Mc. Just look at the simple example

ρR

 1 m

−m 1

 =

 0 for m 6= 1

1 for m = 0.

It shows that the value of the SSV can jump with only slight variations in m.

This is an important observation for practice. If the structure (4.46) comprises real blocks

(nr 6= 0), then

µ∆c(M(iω))

might have jumps if we vary ω. Even more dangerously, since we compute the SSV at

only a finite number of frequencies, we might miss a frequency where the SSV jumps to

very high levels. The plot could make us believe that the SSV is smaller than one and we

would conclude robust stability; in reality, the plot jumps above one at some frequency

which we have missed, and the conclusion was false.

The situation is more favorable if there are no real blocks nr = 0. Then µ∆c(Mc) depends

continuously on Mc, and jumps do not occur.

Theorem 4.17 If nr = 0 such that no real blocks appear in (4.46), the function

Mc → µ∆c(Mc)

is continuous. In particular, If M is real-rational, proper and stable,

ω → µ∆c(M(iω))

defines a continuous function on R ∪ {∞}.

4.10.2 Lower Bounds

If one can compute some

∆0 ∈
1

γ
∆c that renders I −Mc∆0 singular, (4.56)

one can conclude that

γ ≤ µ∆c(Mc).

The approach taken in the µ-tools is to maximize γ such that there exists a ∆0 as in (4.56).

There is no guarantee whether one can compute the global optimum for the resulting
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maximization problem. Nevertheless, any step in increasing the value γ improves the

lower bound and is, hence, beneficial.

Note that the algorithm outputs a matrix ∆0 as in (4.56) for the best achievable lower

bound γ. Based on this matrix ∆0, one can compute a destabilizing perturbation as

described in Section 4.9.3.

If the structure (4.46) only comprises real blocks (nc = 0, nf = 0), it often happens that

the algorithm fails and that the lower bound is actually just zero. In general, if real blocks

in the uncertainty structure do exist (nr 6= 0), the algorithm is less reliable if compared

to the case when these blocks do not appear (nr = 0). We will not go into the details of

these quite sophisticated algorithms.

4.10.3 Upper Bounds

If one can test that

for all ∆c ∈
1

γ
∆c the matrix I −Mc∆c is non-singular, (4.57)

one can conclude that

µ∆c(Mc) ≤ γ.

We have already seen in Section (4.8.2) that ‖Mc‖ ≤ γ is a sufficient condition for (4.57)

to hold.

How is it possible to refine this condition?

Simple Scalings

Let us assume that all the full blocks in (4.46) are square such that pj = qj. Suppose that

D is any non-singular matrix that satisfies

D∆c = ∆cD for all ∆c ∈
1

γ
∆c. (4.58)

Then

‖D−1McD‖ < γ (4.59)

implies that

I − [D−1McD]∆c (4.60)

is non-singular for all ∆c ∈ 1
γ
∆c. If we exploit D∆c = ∆cD, (4.60) is nothing but

I −D−1[Mc∆c]D = D−1[I −Mc∆c]D.

Therefore, not only (4.60) but even I −Mc∆c itself is non-singular. This implies that

(4.57) is true such that γ is an upper bound for µ∆c(Mc).
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In order to find the smallest upper bound, we hence need to minimize

‖D−1McD‖

over the set of all matrices D that satisfy (4.58). Since D = I is in the class of all these

matrices, the minimal value is certainly better than ‖Mc‖, and we can indeed possibly

refine this rough upper bound through the introduction of the extra variables D. Since

the object of interest is a scaled version D−1McD of Mc, these variables D are called

scalings. Let us summarize what we have found so far.

Lemma 4.18 We have

µ∆c(Mc) ≤ inf
D satisfies (4.58) and is non−singular

‖D−1McD‖.

In order to find the best upper bound, we have to solve the minimization problem on the

right. Both from a theoretical and a practical view-point, it has very favorable properties:

It is a convex optimization problem for which fast solvers are available. Convexity implies

that one can really find the global optimum.

In these notes we only intend to reveal that the fundamental reason for the favorable

properties can be attributed to the following fact: Finding a non-singular D with (4.58)

and (4.59) is a so-called Linear Matrix Inequality (LMI) problem. For such problems

very efficient algorithms have been developed in recent years.

As a first step it is very simple to see that (4.58) holds if and only if D admits the structure

D =



D1 0
. . .

Dnr

Dnr+1

. . .

Dnr+nc

d1I
. . .

0 dnf
I



(4.61)

with

Dj a non-singular complex matrix and dj a non-zero complex scalar

of the same size as the corresponding blocks in the partition (4.46). It is interesting to

observe that any repeated block in (4.46) corresponds to a full block in (4.61), and any

full block in (4.46) corresponds to a repeated block in (4.61).
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In a second step, one transforms (4.59) into a linear matrix inequality: (4.59) is equivalent

to

[D−1McD][D−1McD]∗ < γ2I.

If we left-multiply with D and right-multiply with D∗, we arrive at the equivalent in-

equality

Mc[DD
∗]M∗

c < γ2[DD∗].

Let us introduce the Hermitian matrix

Q := DD∗

such that the inequality reads as

McQM
∗
c < γ2Q. (4.62)

Moreover, Q has the structure

Q =



Q1 0
. . .

Qnr

Qnr+1

. . .

Qnr+nc

q1I
. . .

0 qnf
I



(4.63)

with

Qj a Hermitian positive definite matrix and qj a real positive scalar. (4.64)

Testing whether there exists a Q with the structure (4.63) that satisfies the matrix in-

equality (4.62) is an LMI problem.

Here we have held γ fixed. Typical LMI algorithms also allow to directly minimize γ in

order to find the best upper bound. Alternatively, one can resort to the standard bisection

algorithm as discussed in Section A.

A Larger Class of Scalings

Clearly, the larger the class of considered scalings, the more freedom is available to ap-

proach the actual value of the SSV. Hence a larger class of scalings might lead to the

computation of better upper bounds.
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These arguments turn out to be valid, in particular, if the structure (4.46) comprises

real blocks. The fundamental idea to arrive at better upper bounds is formulated in the

following simple lemma.

Lemma 4.19 Suppose there exists a Hermitian P such that∆c

I

∗ P
∆c

I

 ≥ 0 for all ∆c ∈
1

γ
∆c (4.65)

and that satisfies  I

Mc

∗ P
 I

Mc

 < 0. (4.66)

Then (4.57) holds true and, hence, γ is an upper bound for µ∆c(Mc).

Proof. The proof is extremely simple. Fix ∆c ∈ 1
γ
∆c. We have to show that I −Mc∆c

is non-singular. Let us assume the contrary: I −Mc∆c is singular. Then there exists an

x 6= 0 with (I −Mc∆c)x = 0. Define y := ∆cx such that x = Mcy. Then (4.65) leads to

0 ≤ x∗

∆c

I

∗ P
∆c

I

x =

 y

x

∗ P
 y

x

 .

On the other hand, (4.66) implies

0 > y∗

 I

Mc

∗ P
 I

Mc

 y =

 y

x

∗ P
 y

x

 .

(Since x 6= 0, the vector

 y

x

 is also non-zero.) This contradiction shows that I−Mc∆c

cannot be singular.

Remark. In Lemma 4.19 the converse holds as well: If the SSV is smaller than γ, there

exists a Hermitian P with (4.65) and (4.66). In principle, based on this lemma, one could

compute the exact value of the SSV; the only crux is to parametrize the set of all scalings

P with (4.65) what cannot be achieved in an efficient manner.

Remark. In order to work with (4.58) in the previous section, we need to assume that

the full blocks ∆j are square. For (4.65) no such condition is required. The µ-tools can

handle non-square blocks as well.
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For practical applications, we need to find a set of scalings that all fulfill (4.65). A very

straightforward choice that is implemented in the µ-tools is as follows: Let Pγ consist of

all matrices

P =

−γ2Q S

S∗ Q


where Q has the structure (4.63) and (4.64), and S is given by

S =



S1 0
. . .

Snr

0
. . .

0

0
. . .

0 0



(4.67)

with

Sj a complex skew-Hermitian matrix: S∗j + Sj = 0.

For any P ∈ Pγ, the matrix

∆c

I

∗ P
∆c

I

 is block-diagonal. Let us now check for

each diagonal block that it is positive semidefinite: We observe for

• real uncertainty blocks:

pj(−γ2Qj)pj + pjSj + S∗j pj +Qj = Qj(−γ2 p2
j + 1) ≥ 0.

• complex repeated blocks:

δ∗j (−γ2Qj)δj +Qj = Qj(−γ2 |δj|2 + 1) ≥ 0.

• complex full blocks:

∆∗j(−γ2qjI)∆j + qjI = qj(−γ2 ∆∗j∆j + I) ≥ 0.

We conclude that (4.65) holds for any P ∈ Pγ.

If we can find one P ∈ Pγ for which also condition (4.66) turns out to be true, we can

conclude that γ is an upper bound for the SSV. Again, testing the existence of P ∈ Pγ
that also satisfies (4.66) is a standard LMI problem.
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The best upper bound is of course obtained as follows:

Minimize γ such that there exists a P ∈ Pγ that satisfies (4.66). (4.68)

Again, the best bound can be compute by bisection as described in Section A.

Remark. Only if real blocks do exist, the matrix S will be non-zero, and only in that

case we will benefit from the extension discussed in this section. We have described the

class of scalings that is employed in the µ-tools. However, Lemma 4.19 leaves room for

considerable improvements in calculating upper bounds for the SSV.

4.11 When is the Upper Bound equal to the SSV?

Theorem 4.20 If

2(nr + nc) + nf ≤ 3,

then the SSV µ∆c(Mc) is not only bounded by but actually coincides with the optimal value

of problem (4.68).

Note that this result is tight in the following sense: If 2(nr + nc) + nf > 3, one can

construct examples for which there is a gap between the SSV and the best upper bound,

the optimal value of (4.68).

4.11.1 Example: Different Lower and Upper Bounds

Let

M(s) =


1

2s+1
1 s−2

2s+4

−1 s
s2+s+1

1
(s+1)2

3s
s+5

−1
4s+1

1

 .

Moreover, consider three different structures.

The first consists of two full complex blocks

∆1 :=


∆1 0

0 ∆2

 | ∆1 ∈ C, |∆1| < 1, ∆2 ∈ C2×2, ‖∆2‖ < 1

 .

We plot in Figure 47 ‖M(iω)‖, µ∆1(M(iω)), ρ(M(iω)) over frequency.

We conclude that I −M(iω0)∆c is non-singular for all

• full blocks ∆c ∈ C3×3 with ‖∆c‖ < 1
γ1
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Figure 47: Plots of ‖M(iω)‖, µ∆1(M(iω)) and ρ(M(iω)) over frequency.

• structured blocks ∆c ∈ 1
γ2

∆1

• complex repeated blocks


δ 0 0

0 δ 0

0 0 δ

 with |δ| < 1
γ3

.

In addition, there exists a ∆c that is

• a full block ∆c ∈ C3×3 with ‖∆c‖ < 1
γ
, γ < γ1

• a structured block ∆c ∈ 1
γ
∆1, γ < γ2

• a complex repeated block


δ 0 0

0 δ 0

0 0 δ

 with |δ| < 1
γ
, γ < γ3

that renders I −M(iω0)∆c singular.

As a second case, we take one repeated complex block and one full complex block:

∆2 :=


∆1 0

0 δ2I2

 | ∆1 ∈ C, |∆1| < 1, δ2 ∈ C, |δ2| < 1

 .
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Figure 48: Plots of bounds on µ∆1(M(iω)) and of ρ(M(iω)) over frequency.

As observed in Figure 48, the upper and lower bounds for the SSV are different. Still, the

complex spectral radius bounds the lower bound on the SSV from below.

We conclude that I − M(iω0)∆c is non-singular for all structured ∆c in 1
γ1

∆2. There

exists a structured ∆c in 1
γ
∆2, γ < γ2, that renders I −M(iω0)∆c singular.

As a last case, let us consider a structure with one real repeated block and one full complex

block:

∆3 :=


∆1 0

0 δ2I2

 | ∆1 ∈ C, |∆1| < 1, δ2 ∈ R, |δ2| < 1

 .

Figure 49 shows that lower bound and upper bound of the SSV are further apart than in

the previous example, what reduces the quality of the information about the SSV. Since

the structure comprises a real block, the complex spectral radius is no lower bound on

the SSV (or its lower bound) over all frequencies, as expected.

The upper bound is smaller than γ1 for all frequencies. Hence I −M∆ has proper and

stable inverse for all ∆ ∈ 1
γ1

∆.

There exists a frequency for which the lower bound is larger that γ2: Hence there exists

a ∆ ∈ 1
γ2

∆ such that I −M∆ does not have a proper and stable inverse.

We emphasize that the
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Figure 49: Plots of bounds on µ∆1(M(iω)) and of ρ(M(iω)) over frequency.

Exercises

1) This is a continuation of Exercise 3 in Section 3.

(Matlab) Let the controller K be given as

K =



−4.69 −1.28 −1.02 7.29 −0.937 −0.736 5.69 1.6

−2.42 −3.29 −3.42 6.53 −1.17 −0.922 2.42 4.12

−1.48 0.418 −0.666 2.52 0 0 1.48 1.05

19 −0.491 1.34 −0.391 −6.16 −5.59 0.943 −0.334

24.8 2.35 3.73 −8.48 −7.58 −3.61 −3.45 −3.96

4.38 4.02 3.2 −9.41 2.54 0 −4.38 −5.03

20 −0.757 1.13 −1 −6.16 −5.59 0 0


.

Suppose the component G1 is actually given by

G1 +W1∆ with W1(s) =
s− 2

s+ 2
.

For the above controller, determine the largest r such that the loop remains

stable for all ∆ with

∆ ∈ R, |∆| < r or ∆ ∈ RH∞, ‖∆‖∞ < r.
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Argue in terms of the Nyquist or Bode plot seen by the uncertainty ∆. Con-

struct for both cases destabilizing perturbations of smallest size, and check

that they lead, indeed, to an unstable controlled interconnection as expected.

a) (Matlab) Use the same data as in the previous exercise. Suppose now that the

pole of G2 is uncertain:

G2(s) =
1

s− p
, p ∈ R, |p− 1| < r.

What is the largest possible r such that K still stabilizes P for all possible real

poles p. What happens if the pole variation is allowed to be complex?

b) (Matlab) With W1 as above, let G1 be perturbed as

G1 +W1∆, ∆ ∈ RH∞, ‖∆‖∞ < r1

and let G2 be given as

G2(s) =
1

s− p
, p ∈ R, |p− 1| < r2.

Find the largest r = r1 = r2 such that K still robustly stabilizes the system

in face of these uncertainties. Plot a trade-off curve: For each r1 in a suit-

able interval (which?), compute the largest r2(r1) for which K is still robustly

stabilizing and plot the graph of r2(r1); comment!

2) Suppose ∆c is the set of all matrices with ‖∆‖ < 1 that have the structure

∆ = diag(δ1, . . . , δm) ∈ Rm×m,

and consider the rationally perturbed matrix A∆ = A + B∆(I −D∆)−1C for real

matrices A, B, C, D of compatible size. Derive a µ-test for the following properties:

a) Both I −D∆ and A∆ are non-singular for all ∆ ∈∆c.

b) For all ∆ ∈ ∆c, I −D∆ is non-singular and A∆ has all its eigenvalues in the

open left-half plane.

c) For all ∆ ∈ ∆c, I −D∆ is non-singular and A∆ has all its eigenvalues in the

open unit disk {z ∈ C | |z| < 1}.

3) Let ∆c be the same as in Exercise 2. For real vectors a ∈ Rm and b ∈ Rm, give a

formula for µ∆c(ab
T ). (SSV of rank one matrices.)
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4) a) For the data

Mc =


12 −3 2

−1 7 8

5 3 −1

 and ∆c = {∆c =


∆11 ∆12 0

∆21 ∆22 0

0 0 ∆33

 ∈ C3×3 | ‖∆c‖ < 1}

compute µ∆c(Mc) with a Matlab m-file. You are allowed to use only the

functions max, eig and a for-loop; in particular, don’t use mu.

b) Let Mc =

 M1 M12

M21 M2

 and let ∆c be the set of all ∆c = diag(∆1,∆2) with

full square blocks ∆j satisfying ‖∆j‖ < 1. Give a formula for the value

d∗ = min
d>0

∥∥∥∥∥∥
 M1 dM12

1
d
M21 M2

∥∥∥∥∥∥
2

.

where ‖M‖2
2 = trace(M∗M). How does d∗ lead to an upper bound of µ∆c(M)?

(Matlab) Compare this bound with the exact value in the previous exercise.
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5 Nominal Performance Specifications

In our general scenario (Figure 21), we have collected various signals into the generalized

disturbance w and the controlled variable z, and we assume that these signals are chosen to

characterize the performance properties to be achieved by the controller. So far, however,

we only included the requirement that K should render z = S(P,K)w stable.

For any stabilizing controller, one can of course just directly investigate the transfer

function elements of S(P,K) and decide whether they are satisfactory or not. Most often,

this just means that the Bode plots of these transfer functions should admit a desired

shape that is dictated by the interpretation of the underlying signals. In this context you

should remember the desired shapes for the sensitivity and the complementary sensitivity

transfer matrices in a standard tracking problem.

For the purpose of analysis, a direct inspection of the closed-loop transfer matrix is no

problem at all. However, if the interconnection is affected by uncertainties and if one would

like to verify robust performance, or if one wishes to design a controller, it is required to

translate the desired performance specifications into a weighted H∞-norm criterion.

5.1 An Alternative Interpretation of the H∞ Norm

We have seen in Section 1.2 that the H∞-norm of a proper and stable G is just the energy

gain of the corresponding LTI system.

Most often, reference or disturbance signals are persistent and can be assumed to be

sinusoids. Such a signal is given as

w(t) = w0e
iω0t (5.1)

with w0 ∈ Cn and ω0 ∈ R. If ω0 = 0 and w0 ∈ Rn, this defines the step function w(t) = w0

of height w0. (We note that this class of complex valued signals includes the set of all

real-valued sinusoids. We work with this enlarged class to simplify the notation in the

following arguments.) Let us choose as a measure of size for (5.1) the Euclidean norm of

its amplitude:

‖w(.)‖RMS := ‖w0‖.

As indicated, this defines indeed a norm on the vector space of all sinusoids.

Let w(.) as defined by (5.1) pass the LTI system defined by the proper and stable transfer

matrix G to obtain z(.). As well-known, limt→∞[z(t) − G(iω0)w0e
iω0t] = 0 such that the

steady-state response is

(Gw)s(t) = G(iω0)w0e
iω0t.
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(The subscript means that we only consider the steady-state response of Gw.) We infer

‖(Gw)s‖RMS = ‖G(iω0)w0‖

and hence, due to ‖G(iω0)w0‖ ≤ ‖G(iω)‖‖w0‖,
‖(Gw)s‖RMS

‖w‖RMS

≤ ‖G(iω0)‖ ≤ ‖G‖∞.

Hence the gain of w → (Gw)s is bounded by ‖G‖∞. The gain actually turns out to be

equal to ‖G‖∞.

Theorem 5.1 Let G be proper and stable. Then

sup
w a sinusoid with ‖w‖RMS>0

‖(Gw)s‖RMS

‖w‖RMS

= ‖G‖∞.

The proof is instructive since it shows how to construct a signal that leads to the largest

amplification if passed through the system.

Proof. Pick the frequency ω0 ∈ R ∪ {∞} with ‖G(iω0)‖ = ‖G‖∞.

Let us first assume that ω0 is finite. Then take w0 6= 0 with ‖G(iω0)w0‖ = ‖G(iω0)‖‖w0‖.
(Direction of largest gain of G(iω0).) For the signal w(t) = w0e

iω0t we infer

‖(Gw)s‖RMS

‖w‖RMS

=
‖G(iω0)w0‖
‖w0‖

=
‖G(iω0)‖‖w0‖
‖w0‖

= ‖G(iω0)‖ = ‖G‖∞.

Hence the gain ‖(Gw)s‖RMS

‖w‖RMS
for this signal is largest possible.

If ω0 is infinite, take any sequence ωj ∈ R with ωj → ∞, and construct at each ωj the

signal wj(.) as before. We infer

‖(Gwj)s‖RMS

‖wj‖RMS

= ‖G(iωj)‖

and this converges to ‖G(iω0)‖ = ‖G‖∞. Hence we cannot find a signal for which the

worst amplification is attained, but we can come arbitrarily close.

As a generalization, sums of sinusoids are given as

w(t) =
N∑
j=1

wje
iωjt (5.2)

where N is the number of pair-wise different frequencies ωj ∈ R, and wj ∈ Cn is the

complex amplitude at the frequency ωj. As a measure of size for the signal (5.2) we

employ

‖w‖RMS :=

√√√√ N∑
j=1

‖wj‖2.
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Again, this defines a norm on the vector space of all sums of sinusoids. For any w(.)

defined by (5.2), the steady-state response is

(Gw)s(t) =
N∑
j=1

G(iωj)wje
iωjt

and has norm

‖(Gw)s‖RMS =

√√√√ N∑
j=1

‖G(iωj)wj‖2.

Again by ‖G(iωj)wj‖ ≤ ‖G(iωj)‖‖wj‖ ≤ ‖G‖∞‖wj‖, we infer

‖(Gw)s‖RMS ≤ ‖G‖∞‖w‖RMS.

We arrive at the following generalization of the result given above.

Theorem 5.2 Let G be proper and stable. Then

sup
w a sum of sinusoids with ‖w‖RMS>0

‖(Gw)s‖RMS

‖w‖RMS

= ‖G‖∞.

Remark. We have separated the formulation of Theorem 5.1 from that of Theorem 5.2 in

order to stress that ‖(Gw)s‖RMS

‖w‖RMS
can be rendered arbitrarily close to ‖G‖∞ by using simple

sinusoids as in (5.1); we do not require sums of sinusoids to achieve this approximation.

5.2 The Tracking Interconnection

Let us come back to the interconnection in Figure 17, and let K stabilize the intercon-

nection.

5.2.1 Bound on Frequency Weighted System Gain

Often, performance specifications arise by specifying how signals have to be attenuated

in the interconnection.

Typically, the reference r and the disturbance d are most significant at low frequencies.

With real-rational proper and stable low-pass filters Wr, Wd, we hence assume that r, d

are given as

r = Wrr̃, d = Wdd̃
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where r̃(.), d̃(.) are sinusoids or sums of sinusoids. Similarly, the measurement noise n

is most significant at high frequencies. With a real-rational proper and stable high-pass

filter Wn, we hence assume that n is given as

n = Wnñ

where ñ(.) is a sum of sinusoids. Finally, the size of the unfiltered signals is assumed to

be bounded as ∥∥∥∥∥∥∥∥

d̃

ñ

r̃


∥∥∥∥∥∥∥∥

2

RMS

= ‖r̃‖2
RMS + ‖d̃‖2

RMS + ‖ñ‖2
RMS ≤ 1.

Remark. In our signal-based approach all signals are assumed to enter the interconnec-

tion together. Hence it is reasonable to bound the stacked signal instead of working with

individual bounds on ‖r̃‖RMS, ‖d̃‖RMS, ‖ñ‖RMS. Recall, however, that the above inequality

implies

‖r̃‖2
RMS ≤ 1, ‖d̃‖2

RMS ≤ 1, ‖ñ‖2
RMS ≤ 1,

and that it is implied by

‖r̃‖2
RMS ≤

1

3
, ‖d̃‖2

RMS ≤
1

3
, ‖ñ‖2

RMS ≤
1

3
.

The goal is to keep the norm of the steady-state error es small, no matter which of these

signals enters the interconnection. If we intend to achieve ‖es‖RMS ≤ ε, we can as well

rewrite this condition with We := 1
ε

as ‖ẽs‖RMS ≤ 1 for

ẽ = Wee.

To proceed to the general framework, let us introduce

z = e, z̃ = ẽ and w =


d

n

r

 , w̃ =


d̃

ñ

r̃


as well as the weightings

Wz = We and Ww =


Wd 0 0

0 Wn 0

0 0 Wr

 .

In the general framework, the original closed-loop interconnection was described as

z = S(P,K)w.
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Figure 50: Weighted closed-loop interconnection

Since the desired performance specification is formulated in terms of z̃ and w̃, we introduce

these signals with

z̃ = Wzz and w = Www̃

to get the weighted closed-loop interconnection (Figure 50)

z̃ = [WzS(P,K)Ww]w̃.

Recall that the desired performance specification was reduced to the fact that

‖w̃‖RMS ≤ 1 implies ‖z̃s‖RMS ≤ 1.

By Theorem 5.2, this requirement is equivalent to

‖WzS(P,K)Ww‖∞ ≤ 1. (5.3)

We have arrived at those performance specifications that can be handled with the tech-

niques developed in these notes: Bounds on the weighted H∞-norm of the performance

channels.

Let us recall that this specification is equivalent to

‖Wz(iω)S(P,K)(iω)Ww(iω)‖ ≤ 1 for all ω ∈ R ∪ {∞}.

This reveals the following two interpretations:

• Loop-shape interpretation. The shape of the frequency response ω →
S(P,K)(iω) is compatible with the requirement that the maximal singular value

of the weighted frequency response ω → Wz(iω)S(P,K)(iω)Ww(iω) does not ex-

ceed one. Roughly, this amounts to bounding all singular values of S(P,K)(iω)

from above with a bound that varies according the variations of the singular values

of Wz(iω) and Ww(iω). This rough interpretation is accurate if Wz(iω) and Ww(iω)

are just scalar valued since (5.3) then just amounts to

‖S(P,K)(iω)‖ ≤ 1

|Wz(iω)Ww(iω)|
for all ω ∈ R ∪ {∞}.
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It is important to note that one cannot easily impose a lower bound on the smallest

singular value of S(P,K)(iω)! Instead, desired minimal amplifications are enforced

by imposing upper bounds on the largest singular value of ‘complementary’ trans-

fer functions - for that purpose one should recall the interplay of sensitivity and

complementary sensitivity matrices.

• Disturbance attenuation interpretation. For all disturbances that are defined

through

w(t) =
N∑
j=1

W (iωj)wje
iωjt with

N∑
j=1

‖wj‖2 ≤ 1,

(5.3) implies that the steady-state response zs of z = S(P,K)w satisfies

zs(t) =
N∑
j=1

zje
iωjt with

N∑
j=1

‖Z(iωj)zj‖2 ≤ 1.

For pure sinusoids, any disturbance satisfying

w(t) = W (iω)weiωt with ‖w‖2 ≤ 1

leads to a steady-state response

zs(t) = zeiωt with ‖Z(iω)z‖2 ≤ 1.

This leads to a very clear interpretation of matrix valued weightings: Sinusoids of

frequency ω with an amplitude in the ellipsoid {Ww(iω)w | ‖w‖ ≤ 1} lead to a

steady-state sinusoidal response with amplitude in the ellipsoid {z | ‖Wz(iω)z‖ ≤
1}. Hence Ww defines the ellipsoid which captures the a priori knowledge of the

amplitudes of the incoming disturbances and Wz defines the ellipsoids that captures

desired amplitudes of the controlled output. Through the use of matrix valued

weightings one can hence enforce spatial effects, such as quenching the output error

mainly in a certain direction.

Note that WzS(P,K)Ww is nothing but S(P̃ ,K) for z̃

y

 = P̃

 w̃

u

 =

WzP11Ww WzP12

P21Ww P22

 w̃

u

 .

Instead of first closing the loop and then weighting the controlled system, one can as well

first weight the open-loop interconnection and then close the loop.

5.2.2 Frequency Weighted Model Matching

In design, a typical specification is to let one or several transfer matrices in an intercon-

nection come close to an ideal model. Let us suppose that the real-rational proper and
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Figure 51: Weighted closed-loop interconnection

stable Wm is an ideal model. Moreover, the controller should render S(P,K) to match

this ideal model over certain frequency ranges. With suitable real-rational weightings W1

and W2, this amounts to render ‖W1(iω)[S(P,K)(iω)−Wm(iω)]W2(iω)‖ ≤ γ satisfied for

all frequencies ω ∈ R∪ {∞} where γ is small. By incorporating the desired bound γ into

the weightings (replace W1 by 1
γ
W1), we arrive at the performance specification

‖W1[S(P,K)−Wm]W2‖∞ ≤ 1. (5.4)

To render this inequality satisfied, one tries ‘shape the closed-loop frequency response by

pushing it towards a desired model’. In this fashion, one can incorporate for each transfer

function of S(P,K) both amplitude and phase specifications. If there is no question about

which ideal model Wm to take, this is the method of choice.

Again, we observe that this performance specification can be rewritten as

‖S(P̃ ,K)‖∞ ≤ 1

where P̃ is defined as

P̃ =

W1[P11 −Wm]W2 W1P12

P21W2 P22

 .

Remark. Note that the choice Wm = 0 of the ideal model leads back to imposing a

direct bound on the system gain as discussed before.

In summary, typical signal based performance specifications can be re-formulated as a

general frequency weighted model-matching requirement which leads to a bound on the

H∞-norm of the matrix-weighted closed-loop transfer matrix.

5.3 The General Paradigm

Starting from  z

y

 = P

 w

u

 =

 P11 P12

P21 P22

 w

u

 , (5.5)
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we have seen how to translate the two most important performance specifications on the

closed-loop system

S(P,K),

weighted gain-bounds and weighted model-matching, into the specification

‖S(P̃ ,K)‖∞ ≤ 1 (5.6)

for the weighted open-loop interconnection z̃

y

 = P̃

 w̃

u

 =

 P̃11 P̃12

P̃21 P22

 w̃

u

 . (5.7)

So far, we have largely neglected any technical hypotheses on the weighting matrices that

are involved in building P̃ from P . In fact, any controller to be considered should stabilize

both P and P̃ . Hence we have to require that both interconnections define generalized

plants, and these are the only properties to be obeyed by any weighting matrices that are

incorporated in the interconnection.

Hypothesis 5.3 The open-loop interconnections (5.5) and (5.7) are generalized plants.

Note that P and P̃ have the same lower right block P22. This is the reason why any

controller that stabilizes P also stabilizes P̃ , and vice versa.

Lemma 5.4 Let P and P̃ be generalized plants. A controller K stabilizes P if and only

if K stabilizes P̃ .

Proof. If K stabilizes P , then K stabilizes P22. Since P̃ is a generalized plant and has

P22 as its right-lower block, K also stabilizes P̃ . The converse follows by interchanging

the role of P and P̃ .

Hence the class of stabilizing controller for P and for P̃ are identical.

From now on we assume that all performance weightings are already incorpo-

rated in P . Hence the performance specification is given by ‖S(P,K)‖∞ ≤ 1.

Remark. In practical controller design, it is often important to keep P and P̃ separated.

Indeed, the controller will be designed on the basis of P̃ to obey ‖S(P̃ ,K)‖∞ ≤ 1, but

then it is often much more instructive to directly investigate the unweighted frequency

response ω → S(P,K)(iω) in order to judge whether the designed controller leads to the

desired closed-loop specifications.
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6 Robust Performance Analysis

6.1 Problem Formulation

To test robust performance, we proceed as for robust stability: We identify the perfor-

mance signals, we pull out the uncertainties and introduce suitable weightings for the

uncertainties such that we arrive at the framework as described in Section 4.5. Moreover,

we incorporate in this framework the performance weightings as discussed in Section 5 to

reduce the desired performance specification to an H∞ norm bound on the performance

channel. In Figure 52 we have displayed the resulting open-loop interconnection, the

interconnection if closing the loop as u = Ky, and the controlled interconnection with

uncertainty.

We end up with the controlled uncertain system as described by
z∆

z

y

 = P


w∆

w

u

 =


P11 P12 P13

P21 P22 P23

P31 P32 P33



w∆

w

u

 , u = Ky, w∆ = ∆z∆, ∆ ∈∆.

Let us now formulate the precise hypotheses on P , on the uncertainty class ∆, and on

the performance specification as follows.

Hypothesis 6.1

• P is a generalized plant.

• The set of uncertainties is given as

∆ := {∆ ∈ RH∞ | ∆(iω) ∈∆c for all ω ∈ R ∪ {∞}}

where ∆c is the set of all matrices ∆c structured as (4.46) and satisfying ‖∆c‖ < 1.

• The direct feed-through P11 and ∆c are such that

I − P11(∞)∆c is non-singular for all ∆c ∈∆c.

• The performance of the system is as desired if the H∞-norm of the channel w → z

is smaller than one.

We use the the brief notation

P∆ = S(∆, P ) =

 P22 P23

P32 P33

+

 P21

P32

∆(I − P11∆)−1
(
P12 P13

)
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for the perturbed open-loop interconnection. Then the unperturbed open-loop intercon-

nection is nothing but

P0 = S(0, P ) =

 P22 P23

P32 P33

 .

Suppose that K stabilizes P . Then the perturbed and unperturbed controlled intercon-

nections are described by

z = S(P∆, K)w and z = S(P0, K)w

respectively. If K stabilizes P and if it leads to

‖S(P0, K)‖∞ ≤ 1,

we say that K achieves nominal performance for P .

Accordingly, we can formulate the corresponding analysis and synthesis problems.

Nominal Performance Analysis Problem

For a given fixed controller K, test whether it achieves nominal performance for P .

Nominal Performance Synthesis Problem

Find a controller K that achieves nominal performance for P .

The analysis problem is very easy to solve: Check whether K stabilizes P , and plot

ω → ‖S(P0, K)(iω)‖ in order to verify whether this value remains smaller than 1. Note

that H∞-norm bounds of this sort can be verified much more efficiently on the basis of a

state-space test, as will be discussed in Section 7.2.

The synthesis problem amounts to finding a stabilizing controller K for P that renders

the H∞-norm ‖S(P0, K)‖∞ smaller than 1. This is the celebrated H∞-control problem

and will be discussed in Section 7.4.

The main subject of this section is robust performance analysis. If

K stabilizes P∆ = S(∆, P ) and ‖S(P∆, K)‖∞ ≤ 1 for all ∆ ∈∆,

we say that

K achieves robust performance for S(∆, P ) against ∆.

Let us again formulate the related analysis and synthesis problems explicitly.

Robust Performance Analysis Problem

For a given fixed controller K, test whether it achieves robust performance for S(∆, P )

against ∆.

Robust Performance Synthesis Problem

Find a controller K that achieves robust performance for S(∆, P ) against ∆.
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6.2 Testing Robust Performance

Let us assume throughout that K stabilizes P what implies that N := S(P,K) is stable.

Introduce the partition z∆

z

 = S(P,K)

 w∆

w

 = N

 w∆

w

 =

 M N12

N21 N22

 w∆

w

 .

Then we infer

S(P∆, K) = S(∆, N) = N22 +N21∆(I −M∆)−1N12.

Hence, K achieves robust performance if the robust stability condition

µ∆c(M(iω)) ≤ 1 for all ω ∈ R ∪ {∞}

or equivalently

det(I −M(iω)∆c) 6= 0 for all ∆c ∈∆c, ω ∈ R ∪ {∞}

and the performance bound

‖N22 +N21∆(I −M∆)−1N12‖ ≤ 1 for all ∆ ∈∆

or equivalently

‖N22(iω) +N21(iω)∆(iω)(I −M(iω)∆(iω))−1N12(iω)‖ ≤ 1

for all ∆ ∈∆, ω ∈ R ∪ {∞}

or equivalently

‖N22(iω) +N21(iω)∆c(I −M(iω)∆c)
−1N12(iω)‖ ≤ 1 for all ∆c ∈∆c, ω ∈ R ∪ {∞}

hold true.

Similarly as for robust stability, for a fixed frequency we arrive at a problem in linear

algebra which is treated in the next section.

6.3 The Main Loop Theorem

Here is the linear algebra problem that needs to be investigated: Given the set ∆c and

the complex matrix

Nc =

 Mc N12

N21 N22

 with N22 of size q2 × p2,
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test whether the following two conditions hold:

det(I −Mc∆c) 6= 0 and ‖N22 +N21∆c(I −Mc∆c)
−1N12‖ ≤ 1 for all ∆c ∈∆c.

Here is the fundamental trick to solve this problem: The condition ‖N22 + N21∆c(I −
Mc∆c)

−1N12‖ = ‖S(∆c, Nc)‖ ≤ 1 is equivalent to

det(I − S(∆c, Nc)∆̂c) 6= 0 for all ∆̂c ∈ Cp2×q2 , ‖∆̂c‖ < 1.

We just need to recall that the SSV of a complex matrix equals its norm if the uncertainty

structure just consists of one full block.

Let us hence define

∆̂c = {∆̂c ∈ Cp2×q2 | ‖∆̂c‖ < 1}.

We infer that, for all ∆c ∈∆c,

det(I −Mc∆c) 6= 0 and ‖S(∆c, Nc)‖ ≤ 1

if and only if, for all ∆c ∈∆c and ∆̂c ∈ ∆̂c,

det(I −Mc∆c) 6= 0 and det(I − S(∆c, Nc)∆̂c) 6= 0

if and only if, for all ∆c ∈∆c and ∆̂c ∈ ∆̂c,

det

 I −Mc∆c −N12∆̂c

−N21∆c I −N22∆̂c

 6= 0

if and only if, for all ∆c ∈∆c and ∆̂c ∈ ∆̂c,

det

I −
 Mc N12

N21 N22

∆c 0

0 ∆̂c

 6= 0.

Note that we have used in these derivation the following simple consequence of the well-

known Schur formula for the determinant:

det(I − S(∆c, Nc)∆̂c) = det(I − [N22 +N21∆c(I −Mc∆c)
−1N12]∆̂c) =

= det([I −N22∆̂c]− [N21∆c](I −Mc∆c)
−1[N12∆̂c)]) = det

 I −Mc∆c −N12∆̂c

−N21∆c I −N22∆̂c

 .

This motivates to introduce the set of extended matrices

∆e :=


∆c 0

0 ∆̂c

 : ∆c ∈∆c, ∆̂c ∈ Cp2×q2 , ‖∆̂c‖ < 1


which consists of adjoining to the original structure one full block. We have proved the

following Main Loop Theorem.
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Theorem 6.2 The two conditions

µ∆c(Mc) ≤ 1 and ‖S(∆c, Nc)‖ ≤ 1 for all ∆c ∈∆c

are equivalent to

µ∆e(Nc) ≤ 1.

This result reduces the desired condition to just another SSV-test on the matrix Nc with

respect to the extended structure ∆e.

Typically, a computation of µ∆e(Nc) will lead to an inequality

µ∆e(Nc) ≤ γ

with a bound γ > 0 different from one. The consequences that can then be drawn can be

easily obtained by re-scaling. In fact, this inequality leads to

µ∆e(
1

γ
Nc) ≤ 1.

This is equivalent to

µ∆c(
1

γ
Mc) ≤ 1

and

‖1

γ
N22 +

1

γ
N21∆c(I −

1

γ
Mc∆c)

−1 1

γ
N12‖ ≤ 1 for all ∆c ∈∆c.

Both conditions are clearly nothing but

µ∆c(Mc) ≤ γ

and

‖N22 +N21[
1

γ
∆c](I −Mc[

1

γ
∆c])

−1N12‖ ≤ γ for all ∆c ∈∆c.

We arrive at

det(I −Mc∆c) 6= 0 for all ∆c ∈
1

γ
∆c

and

‖N22 +N21∆c(I −Mc∆c)
−1N12‖ ≤ γ for all ∆c ∈

1

γ
∆c.

Hence a general bound γ different from one leads to non-singularity conditions and a

performance bound γ for the class of complex matrices 1
γ
∆c.

A more general scaling result that is proved analogously can be formulated as follows.
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Lemma 6.3 The scaled SSV-inequality

µ∆e

Nc

 γ1I 0

0 γ2I

 ≤ γ3

is equivalent to

det(I −Mc∆c) 6= 0 for all ∆c ∈
γ1

γ3

∆c

and

‖S(∆c, Nc)‖ ≤
γ3

γ2

for all ∆c ∈
γ1

γ3

∆c.

This result allows to investigate the trade-off between the size of the uncertainty and the

worst possible norm ‖S(∆c, Nc)‖ by varying γ1, γ2 and computing the SSV giving the

bound γ3.

Note that we can as well draw conclusions of the following sort: If one wishes to guarantee

det(I −Mc∆c) 6= 0 and ‖S(∆c, Nc)‖ ≤ β for all ∆c ∈ α∆c

for some bounds α > 0, β > 0, one needs to perform the SSV-test

µ∆e

Nc

 αI 0

0 1
β
I

 ≤ 1.

6.4 The Main Robust Stability and Robust Performance Test

If we combine the findings of Section (6.2) with the main loop theorem, we obtain the

following result.

Theorem 6.4 Let N =

 M N12

N21 N22

 be a proper and stable transfer matrix. For all

∆ ∈∆,

(I −M∆)−1 ∈ RH∞ and ‖S(∆, N)‖∞ ≤ 1

if and only if

µ∆e(N(iω)) ≤ 1 for all ω ∈ R ∪ {∞}.

Combining all the insights we have gained so far leads us to the most fundamental result

in SSV-theory, the test of robust stability and robust performance against structured

uncertainties.
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Figure 53: Equivalent Robust Stability Test

Corollary 6.5 If K stabilizes P , and if

µ∆e(N(iω)) ≤ 1 for all ω ∈ R ∪ {∞},

then K achieves robust performance for S(∆, P ) against all ∆ ∈∆.

At the outset, it looks more complicated to test robust performance if compared to robust

stability. However, the main loop theorem implies that the test of robust performance is

just another SSV test with respect to the extended block structure ∆e.

Accidentally (and with no really deep consequence), the SSV-test for robust performance

can be viewed as a robust stability test for the interconnection displayed in Figure 53.

6.5 Summary

Suppose that K stabilizes the generalized plant P and suppose that the controlled uncer-

tain system is described as z∆

z

 = S(P,K)

 w∆

w

 = N

 w∆

w

 =

 M N12

N21 N22

 w∆

w

 , w∆ = ∆z∆

with proper and stable ∆ satisfying

∆(iω) ∈∆c for all ω ∈ R ∪ {∞}.

Then the controller K achieves
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Figure 54: Summary

• Robust stability if

µ∆c(M(iω)) ≤ 1 for all ω ∈ R ∪ {∞}.

• Nominal performance if

‖N22(iω)‖ ≤ 1 for all ω ∈ R ∪ {∞}.

• Robust performance if

µ∆e(N(iω)) ≤ 1 for all ω ∈ R ∪ {∞}.

In pictures, this can be summarized as follows. Robust stability is guaranteed by an

SSV-test on left-upper block M of N = S(P,K), nominal performance is guaranteed

by an SV-test on the right-lower block N22 of N = S(P,K), and robust performance is

guaranteed by an SSV-test on the whole N = S(P,K) with respect to the extended block

structure.

6.6 An Example

Suppose some controlled system is described with

N(s) =


1

2s+1
1 s−2

2s+4
s−0.1
s+1

−1 s
s2+s+1

1
(s+1)2

0.1

3s
s+5

−1
4s+1

1 10
s+4

1
s+2

0.1
s2+s+1

s−1
s+1

1

 .

Let ∆c be the set of ∆c with ‖∆c‖ < 1 and

∆c =

∆1 0

0 ∆2

 , ∆1 ∈ C2×2, ∆2 ∈ C.
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Figure 55: Norm of N , upper and lower bound on SSV of N , SSV of M .

The extended set ∆e consists of all ∆e with ‖∆e‖ < 1 and

∆e =


∆1 0 0

0 ∆2 0

0 0 ∆̂

 , ∆1 ∈ C2×2, ∆2 ∈ C, ∆̂ ∈ C.

To test robust stability, we plot ω → µ∆c(M(iω)), to test nominal performance, we plot

ω → ‖N22(iω)‖, and the robust performance test requires to plot ω → µ∆e(N(iω)).

Let us first look at a frequency-by-frequency interpretation of the SSV plot of N with

respect to the extended structure (Figure 55).

With the upper bound, we infer µ∆e(N(iω0)) ≤ γ1 what implies

‖S(∆c, N(iω0))‖ ≤ γ1 for all ∆c ∈
1

γ1

∆c.

At the frequency iω0, one has a guaranteed performance level γ1 for the uncertainty set
1
γ1

∆c.
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Figure 56: Upper and lower bound on SSV of N

With the lower bound, we infer µ∆e(N(iω0)) > γ2. This implies that

det(I −M(iω0)∆c) = 0 for some ∆c ∈
1

γ2

∆c

or

‖S(∆c, N(iω0))‖ > γ2 for some ∆c ∈
1

γ2

∆c.

We can exploit the knowledge of the SSV curve for robust stability to exclude the first

property due to γ3 < γ2. (Provide all arguments!) Hence, at this frequency we can violate

the performance bound γ2 by some matrix in the complex uncertainty set 1
γ2

∆c.

Let us now interpret the upper and lower bound plots of the SSV of N for all frequencies

(Figure 56).

Since the upper bound is not larger than 2.72 for all frequencies, we infer that

‖S(∆, N)‖∞ ≤ 2.72 for all ∆ ∈ 1

2.72
∆ ≈ 0.367∆

Since the lower bound is larger that 2.71 for some frequency, we infer that either

(I −M∆)−1 is unstable for some ∆ ∈ 1

2.71
∆ ≈ 0.369∆

or that

‖S(∆, N)‖∞ > 2.71 for some ∆ ∈ 1

2.71
∆ ≈ 0.369∆.
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Figure 57: Upper and lower bound of SSV of scaled N .

The first property can be certainly excluded since Figure 55 reveals that µ∆c(M(iω)) ≤ 2.7

for all ω ∈ R ∪ {∞}.

Let us finally ask ourselves for which size of the uncertainties we can guarantee a robust

performance level of 2.

For that purpose let us plot (Figure 57) the SSV of M N12

N21 N22

 0.5I 0

0 I

 =

 0.5M N12

0.5N21 N22

 .

Since the upper bound is not larger than 1.92 for all frequencies, we conclude

‖S(∆, N)‖∞ ≤ 1.92 for all ∆ ∈ 0.5

1.92
∆ ≈ 0.26∆.
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Exercises

1) Look at a standard tracking configuration for a system G(I + ∆W ) with input

multiplicative uncertainty and a controller K that is described as

y = G(I + ∆W )u, ‖∆‖∞ < 1, u = K(r − y).

The performance is as desired if the transfer matrix from references r to weighted

error V (r−y) has an H∞-norm smaller than 1. Here G, K, ∆, V , W are LTI system

and the latter three are stable.

a) Set up the generalized plant. Show that the weighted closed-loop transfer

matrix has the structure

−M1G M1

−M2G M2

 by computing M1 and M2. Formulate

the µ-tests for robust stability, nominal performance and robust performance.

b) Now let all LTI systems G, K, ∆, V , W be SISO and define S = (I +KG)−1,

T = (I +KG)−1KG. Show that K achieves robust performance iff

|V (iω)S(iω)|+ |W (iω)T (iω)| ≤ 1 for all ω ∈ R ∪ {∞}. (6.1)

(Hint: This is a SSV-problem for rank one matrices!) If a controller achieves

robust stability and nominal performance, what can you conclude about robust

performance? How would you design robustly performing controllers by solving

an H∞ problem?

c) Let’s return to the MIMO case. Suppose that G is square and has a proper

inverseG−1. Show that the SSV for the robust performance test is (at frequency

ω) bounded from above by

‖G(iω)‖‖G(iω)−1‖‖M1(iω)G(iω)‖+ ‖M2(iω)‖.

If a controller achieves robust stability and nominal performance, what can you

now conclude for robust performance? Discuss the role of the plant condition

number ‖G(iω)‖‖G(iω)−1‖!

d) For any γ, construct complex matrices M1, M2 and G such that ‖M1G‖ ≤ 1,

‖M2‖ ≤ 1, but µ(

−M1G M1

−M2G M2

) ≥ γ. Here, µ is computed with respect to

an uncertainty structure with two full blocks. What does this example show?

Hint: Construct the example such that ‖G‖‖G−1‖ is large.

2) Consider the block diagram in Figure 58 where G and H are described by the

transfer functions

G(s) =
1

(0.05s+ 1)2
and H(s) =

200

10s+ 1
.
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Figure 58: Tracking interconnection for exercise 2).

The magnitude of the uncertainty is not larger than 1% at low frequencies, it

does not exceed 100% at 30 rad/sec, and for larger frequencies it increases by

40 db per decade.

a) Design a weighting W that captures the specifications on the uncertainty, and

build the open-loop interconnection that corresponds to the block diagram.

b) Consider static gain controllers u = Ky with K in the interval [1, 3]. Which

controllers stabilize the interconnection? What do you observe if you increase

the gain of the controller for the tracking and disturbance suppression behavior

of the controlled system? What is the effect on robust stability with respect

to the given class of uncertainties?

c) With performance weightings of the form

a ∗ s/b+ 1

s/c+ 1
, a, b, c real,

for the channels d→ e and r → e, design a controller with the H∞ algorithm

to achieve the following performance specifications:

i. Disturbance attenuation of a factor 100 up to 0.1 rad/sec.

ii. Zero steady state response of tracking error (smaller than 10−4) for a ref-

erences step input.

iii. Bandwidth (frequency where magnitude plot first crosses 1/
√

2 ≈ −3 dB

from below) from reference input to tracking error between 10 rad/sec and

20 rad/sec.

iv. Overshoot of tracking error is less than 7% in response to step reference.

Provide magnitude plots of all relevant transfer functions and discuss the re-

sults.
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d) For the design you performed in 2c), what is the maximal size γ∗ of uncertainties

that do not destabilize the controlled system (stability margin). Compute a

destabilizing perturbation of size larger than γ∗.

e) Extend the H∞ specification of 2c) by the uncertainty channel and perform

a new design with the same performance weightings. To what amount do

you need to give up the specifications to guarantee robust stability? If you

compare the two designs, what do you conclude about performing a nominal

design without taking robustness specifications into account?
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7 Synthesis of H∞ Controllers

In this section we provide a self-contained and elementary route to solve the H∞-problem.

We first describe how to bound or compute the H∞-norm of stable transfer matrix in

terms of a suitable Hamiltonian matrix. Then we present a classical result, the so-called

Bounded Real Lemma, that characterizes (in terms of a state-space realization) when a

given transfer matrix has an H∞-norm which is strictly smaller than a number γ. On

the basis of the Bounded Real Lemma, we will derive the celebrated solution of the H∞
control problem in terms of two algebraic Riccati equations and a coupling condition on

their solutions. We sacrifice generality to render most of the derivations as elementary as

possible.

7.1 The Algebraic Riccati Equation and Inequality

The basis for our approach to the H∞ problem is the algebraic Riccati equation or in-

equality. It occurs in proving the Bounded Real Lemma and it comes back in getting to

the Riccati solution of the H∞ problem.

Given symmetric matrices R ≥ 0 and Q, we consider the strict algebraic Riccati inequality

ATX +XA+XRX +Q < 0 (ARI)

and the corresponding algebraic Riccati equation

ATX +XA+XRX +Q = 0. (ARE)

Note that X is always assumed to be real symmetric or complex Hermitian. Moreover,

we allow for a general indefinite Q.

It will turn out that the solutions of the ARE with the property that A + RX has all

its eigenvalues in C< or in C> play a special role. Such a solutions are called stabilizing

or anti-stabilizing. If (A,R) is controllable, we can summarize the results in this section

as follows: The ARE or ARI have solutions if and only if a certain Hamiltonian matrix

defined through A, R, Q has no eigenvalues on the imaginary axis. If the ARI or the

ARE has a solution, there exists a unique stabilizing solution X− and a unique anti-

stabilizing solution X+ of the ARE, and all other solutions X of the ARE or ARI satisfy

X− ≤ X ≤ X+. Here is the main result whose proof is given in the appendix.

Theorem 7.1 Suppose that Q is symmetric, that R is positive semi-definite, and that

(A,R) is controllable. Define the Hamiltonian matrix

H :=

 A R

−Q −AT

 .
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Then the following statements are equivalent:

(a) H has no eigenvalues on the imaginary axis.

(b) ATX +XA+XRX +Q = 0 has a (unique) stabilizing solution X−.

(c) ATX +XA+XRX +Q = 0 has a (unique) anti-stabilizing solution X+.

(d) ATX +XA+XRX +Q < 0 has a symmetric solution X.

If one and hence all of these conditions are satisfied, then

any solution X of the ARE or ARI satisfies X− ≤ X ≤ X+.

We conclude that the stabilizing solution is the smallest among all solutions of the ARE

and the anti-stabilizing solution is the largest.

Remark. Note that H has a specific structure: The off-diagonal blocks are symmetric,

and the second block on the diagonal results from the first by reversing the sign and

transposing. Any such matrix is called a Hamiltonian matrix.

If (A,R) is only stabilizable, X+ does, in general, not exist. All other statements, however,

remain true. Here is the precise results that is proved in the appendix.

Theorem 7.2 Suppose that all hypothesis in Theorem 7.1 hold true but that (A,R) is

only stabilizable. Then the following statements are equivalent:

(a) H has no eigenvalues on the imaginary axis.

(b) ATX +XA+XRX +Q = 0 has a (unique) stabilizing solution X−.

(c) ATX +XA+XRX +Q < 0 has a symmetric solution X.

If one and hence all of these conditions are satisfied, then

any solution X of the ARE or ARI satisfies X− ≤ X.

The proof reveals that it is not difficult to construct a solution once one has verified that

H has no eigenvalues on the imaginary axis. We sketch the typical algorithm that is used

in software packages like Matlab.

Indeed, let H have no eigenvalues in C=. Then it has n eigenvalues in C< and n eigenvalues

in C> respectively. We can perform a Schur decomposition to obtain a unitary matrix T

with

T ∗HT =

M11 M12

0 M22
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where M11 of size n × n is stable and M22 of size n × n is anti-stable. Partition T into

four n× n blocks as

T =

 U ∗
V ∗

 .

The proof of Theorem 7.2 reveals that U is non-singular, and that the stabilizing solution

of the ARE is given by

X = V U−1.

If the Schur decomposition is chosen such that M11 has all its eigenvalues in C> and M22

is stable, then the same procedure leads to the anti-stabilizing solution.

If Q is negative semi-definite, the eigenvalues of the Hamiltonian matrix on the imaginary

axis are just given by uncontrollable or unobservable modes. The exact statement reads

as follows.

Lemma 7.3 If R ≥ 0 and Q ≤ 0 then

λ ∈ C= is an eigenvalue of H =

 A R

−Q −AT


if and only if

λ ∈ C= is an uncontrollable mode of (A,R) or an unobservable mode of (A,Q).

Proof. iω is an eigenvalue of H if and only if

H − iωI =

A− iωI R

−Q −AT − iωI

 =

A− iωI R

−Q −(A− iωI)∗


is singular.

If iω is an uncontrollable mode of (A,R), then
(
A− iωI R

)
does not have full row rank;

if it is an unobservable mode of (A,Q), then

A− iωI
−Q

 does not have full column rank;

in both cases we infer that H − iωI is singular.

Conversely, suppose that H − iωI is singular. Then there exist x and y, not both zero,

with A− iωI R

−Q −(A− iω)∗

 x

y

 = 0.
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This implies

(A− iωI)x+Ry = 0 and −Qx− (A− iωI)∗y = 0. (7.1)

Left-multiply the first equation with y∗ and the second equation with x∗ to get

y∗(A− iωI)x+ y∗Ry = 0

−x∗Qx− y∗(A− iωI)x = −x∗Qx− x∗(A− iωI)∗y = 0.

This leads to

y∗Ry = x∗Qx.

Since R ≥ 0 and Q ≤ 0, we infer Qx = 0 and Ry = 0. Then (7.1) implies (A− iωI)x = 0

and (A − iωI)∗y = 0. If x 6= 0, iω is an unobservable mode of (A,Q), if y 6= 0, it is an

uncontrollable mode of (A,R).

Hence, if (A,R) is stabilizable, if Q ≤ 0, and if (A,Q) does not have unobservable modes

on the imaginary axis, the corresponding Hamiltonian matrix does not have eigenvalues

on the imaginary axis such that the underlying ARE has a stabilizing solution and the

ARI is solvable as well.

7.2 Computation of H∞ Norms

Consider the strictly proper transfer matrix M with realization

M(s) = C(sI − A)−1B

where A is stable. Recall that the H∞-norm of M is defined by

‖M‖∞ := sup
ω∈R
‖M(iω)‖.

In general it is not advisable to compute the H∞-norm of M by solving this optimization

problem. In this section we clarify how one can arrive at a more efficient computation of

this norm by looking, instead, at the following problem: Characterize in terms of A, B,

C whether the inequality

‖M‖∞ < 1 (7.2)

is true or not. Just by the definition of the H∞ norm, (7.2) is equivalent to

‖M(iω)‖ < 1 for all ω ∈ R ∪ {∞}.

Since M is strictly proper, this inequality is always true for ω =∞. Hence it remains to

consider

‖M(iω)‖ < 1 for all ω ∈ R. (7.3)
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If follows by continuity that this is true if and only if

det(M(iω)∗M(iω)− I) 6= 0 for all ω ∈ R. (7.4)

Indeed, ‖M(iω)‖ < 1 implies that the largest eigenvalue of M(iω)∗M(iω) is smaller than

1 such that det(M(iω)∗M(iω) − I) 6= 0. Hence (7.3) implies (7.4). Conversely, suppose

(7.3) is not true. Then there exists a ω0 ∈ R for which ‖M(iω0)‖ ≥ 1. Consider the real-

valued function ω → ‖M(iω)‖ which is continuous (as the norm of a rational function

without pole). Due to limω→∞ ‖M(iω)‖ = 0, there exists an ω1 > ω0 with ‖M(iω1)‖ < 1.

By the intermediate value theorem, there exists some point in the interval ω∗ ∈ [ω0, ω1]

with ‖M(iω∗)‖ = 1. This implies det(M(iω∗)
∗M(iω∗)−I) = 0 such that (7.4) is not true.

Since M is real rational we have M(iω)∗ = M(−iω)T . If we hence define

G(s) := MT (−s)M(s)− I,

(7.4) is the same as

det(G(iω)) 6= 0 for all ω ∈ R.

Since

M(−s)T = [C(−sI − A)−1B]T = BT (−(sI + AT )−1)CT = BT (sI − (−AT ))−1(−CT ),

one easily obtains a state-space realization of G as

G =


A 0 B

−CTC −AT 0

0 BT −I

 .
Let us now apply the Schur formula3 to this realization for s = iω. If we introduce the

abbreviation

H :=

 A 0

−CTC −AT

−
B

0

 (−I)−1
(

0 BT
)

=

 A BBT

−CTC −AT

 , (7.5)

we arrive at

det(G(iω)) =
det(−I)

det(iωI − A) det(iωI + AT )
det(iωI −H).

Now recall that A is stable such that both det(iωI−A) and det(iωI+AT ) do not vanish.

Hence

det(G(iω)) = 0 if and only if iω is an eigenvalue of H.

Hence (7.4) is equivalent to the fact that H does not have eigenvalues on the imaginary

axis. This leads to the following characterization of the H∞-norm bound ‖M‖∞ < 1.

3If D is nonsingular, det(C(sI −A)−1B + D) = det(D)
det(sI−A) det(sI − (A−BD−1C))
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Theorem 7.4 ‖M‖∞ < 1 if and only if

 A BBT

−CTC −AT

 has no eigenvalues on the

imaginary axis.

To compute ‖M‖∞, we actually need to verify whether, for any given positive number γ,

‖C(sI − A)−1B‖∞ < γ (7.6)

is valid or not. Indeed, the inequality is the same as

‖
[

1

γ
C

]
(sI − A)−1B‖∞ < 1 or ‖C(sI − A)−1

[
1

γ
B

]
‖∞ < 1 (7.7)

such that it suffices to re-scale either B or C by the factor 1
γ

to reduce the test to the one

with bound 1. We conclude: (7.6) holds if and only if A 1
γ2
BBT

−CTC −AT

 has no eigenvalues on the imaginary axis

or, equivalently, A BBT

− 1
γ2
CTC −AT

 has no eigenvalues on the imaginary axis.

Why does this result help? It allows to check ‖M‖∞ < γ, a test which involves computing

the norm at infinitely many frequencies, by just verifying whether a Hamiltonian matrix

that is defined through the data matrices A, B, C and the bound γ has an eigenvalue on

the imaginary axis or not. This allows to compute ‖M‖∞ by bisection (Appendix A).

7.3 The Bounded Real Lemma

The characterization of ‖M‖∞ < 1 in terms of the Hamiltonian matrix H is suitable

for computing the H∞-norm of M , but it is not convenient to derive a solution of the

H∞ problem. For that purpose we aim at providing an alternative characterization of

‖M‖∞ < 1 in terms of the solvability of Riccati equations or inequalities. In view of our

preparations showing a relation of the solvability of the ARE or ARI with Hamiltonians,

this is not too surprising.

Theorem 7.5 Let M(s) = C(sI −A)−1B with A being stable. Then ‖M‖∞ < 1 holds if

and only if the ARI

ATX +XA+XBBTX + CTC < 0 (7.8)
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has a solution. This is equivalent to the fact that the ARE

ATX +XA+XBBTX + CTC = 0 (7.9)

has a stabilizing solution.

We only need to observe that the stability of A implies that (A,BBT ) is stabilizable.

Then we can just combine Theorem 7.2 with Theorem 7.4 to obtain Theorem 7.5.

Since the H∞-norms of C(sI −A)−1B and of BT (sI −AT )−1CT coincide, we can dualize

this result.

Theorem 7.6 Let M(s) = C(sI −A)−1B with A being stable. Then ‖M‖∞ < 1 holds if

and only if the ARI

AY + Y AT +BBT + Y CTCY < 0 (7.10)

has a solution. This is equivalent to the fact that the ARE

AY + Y AT +BBT + Y CTCY = 0 (7.11)

has a stabilizing solution.

Task. Provide the arguments why these statements are true.

Remarks.

• Recall how we reduced the bound (7.6) for some γ > 0 to (7.7). Hence (7.6) can be

characterized by performing the substitutions

BBT → 1

γ2
BBT or CTC → 1

γ2
CTC

in all the four AREs or ARIs.

• If X satisfies (7.8), it must be non-singular: Suppose Xx = 0 with x 6= 0. Then

xT (7.8)x = xTBBTx < 0. This implies ‖BTx‖ < 0, a contradiction. If we note that

X−1(7.9)X−1 implies

AX−1 +X−1AT +BBT +X−1CTCX−1 < 0,

we infer that Y = X−1 satisfies (7.10). Conversely, if Y solves (7.10), then Y −1

exists and satisfies (7.8).
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7.4 The H∞-Control Problem

Let us consider the generalized plant z

y

 = P

 w

u

 =


A B1 B2

C1 D11 D12

C2 D21 D22


 w

u

 .

Recall that y is the measured output available for control, u is the control input, z is the

controlled output, and w the disturbance input. We assume that P admits a stabilizing

controller such that

(A,B2) is stabilizable and (A,C2) is detectable.

As controllers we allow for any LTI system

u = Ky =

AK BK

CK DK

 y
specified in the state-space through the parameter matrices AK , BK , CK , DK .

The goal in H∞-control is to minimize the H∞-norm of the transfer function w → z by

using stabilizing controllers. With the previous notation for the controlled closed-loop

system

z = S(P,K)w =

A B
C D

w,
the intention is to minimize

‖S(P,K)‖∞ =

∥∥∥∥∥∥
A B
C D

∥∥∥∥∥∥
∞

over all K that stabilizes P , i.e., which render A stable.

Similarly as for just determining the H∞-norm of a transfer matrix, we rather consider the

so-called sub-optimal H∞ control problem: Given the number γ > 0, find a controller

K such that

K stabilizes P and achieves ‖S(P,K)‖∞ < γ

or conclude that no such controller exists.

As usual, we can rescale to the bound 1 by introducing weightings. This amounts to

substituting P by either one of 1
γ
P11

1
γ
P12

P21 P22

 ,

 1
γ
P11 P12

1
γ
P21 P22

 ,

 1
γ
P11

1√
γ
P12

1√
γ
P21 P22
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that read in the state-space as
A B1 B2

1
γ
C1

1
γ
D11

1
γ
D12

C2 D21 D22

 ,

A 1

γ
B1 B2

C1
1
γ
D11 D12

C2
1
γ
D21 D22

 ,


A 1√
γ
B1 B2

1√
γ
C1

1
γ
D11

1√
γ
D12

C2
1√
γ
D21 D22

 .
Hence the problem is re-formulated as follows: Try to find a controller K such that

K stabilizes P and achieves ‖S(P,K)‖∞ < 1. (7.12)

The conditions (7.12) read in the state-space as

λ(A) ⊂ C< and ‖C(sI −A)−1B +D‖∞ < 1. (7.13)

Note that a K might or might not exist. Hence our goal is to provide verifiable conditions

formulated in terms of the generalized plant P for the existence of such a controller K. If

a controller is known to exist, we also need to devise an algorithm that allows to construct

a suitable controller K which renders the conditions in (7.12) or (7.13) satisfied.

7.5 H∞-Control for a Simplified Generalized Plant Description

The generalized plant reads as

ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w +D22u.

The derivation of a solution of the H∞-problem in its generality is most easily obtained

with LMI techniques. In these notes we only consider the so-called regular problem. This

amounts to the hypothesis that

D12 has full column rank and D21 has full row rank.

These assumptions basically imply that the full control signal u appears via D12u in z,

and that the whole measured output signal y is corrupted via D21w by noise.

In order to simplify both the derivation and the formulas, we confine the discussion to a

generalized plant with the following stronger properties:

D11 = 0, D22 = 0, DT
12

(
C1 D12

)
=
(

0 I
)
,

 B1

D21

DT
21 =

 0

I

 . (7.14)

Hence we assume that both P11 and P22 are strictly proper. Moreover, D12 does not only

have full column rank, but its columns are orthonormal, and they are orthogonal to the

columns of C1. Similarly, the rows of D21 are orthonormal, and they are orthogonal to

the rows of B1.
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7.6 The State-Feedback Problem

Let us first concentrate on the specific control structure

u = Fx

what is often denoted as static state-feedback. The closed-loop system then reads as

ẋ = (A+B2F )x+B1w

z = (C1 +D12F )x.

Hence the static-state feedback H∞ control problem is formulated as follows: Find an F

which renders the following two conditions satisfied:

λ(A+B2F ) ⊂ C< and ‖(C1 +D12F )(sI − A−B2F )−1B1‖∞ < 1. (7.15)

7.6.1 Solution in Terms of Riccati Inequalities

The gain F satisfies both conditions if and only if there exists a Y with

Y > 0, (A+B2F )Y +Y (A+B2F )T +B1B
T
1 +Y (C1 +D12F )T (C1 +D12F )Y < 0. (7.16)

Indeed, if F satisfies (7.15), we can apply Theorem 7.6 to infer that the ARI in (7.16) has

a symmetric solution Y . Since the inequality implies (A + B2F )Y + Y (A + B2F )T < 0,

and since A + B2F is stable, we infer that Y is actually positive definite. Conversely, if

Y satisfies (7.16), then (A+B2F )Y + Y (A+B2F )T < 0 implies that A+B2F is stable.

Again by Theorem 7.6 we arrive at (7.15).

In a next step, we eliminate F from (7.16). This will be possible on the basis of the

following lemma.

Lemma 7.7 For any F ,

(A+B2F )Y + Y (A+B2F )T +B1B
T
1 + Y (C1 +D12F )T (C1 +D12F )Y ≥

≥ AY + Y AT +B1B
T
1 −B2B

T
2 + Y CT

1 C1Y.

Equality holds if and only if

FY +B2 = 0.

Proof. Note that (7.14) implies

Y (C1 +D12F )T (C1 +D12F )Y = Y CT
1 C1Y + Y F TFY.
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Moreover, we exploit (completion of the squares)

(B2FY ) + (B2FY )T + Y F TFY = −B2B
T
2 + (FY +BT

2 )T (FY +BT
2 ).

Both equations imply

(A+B2F )Y + Y (A+B2F )T +B1B
T
1 + Y (C1 +D12F )T (C1 +D12F )Y =

= AY + Y AT +B1B
T
1 −B2B

T
2 + Y CT

1 C1Y + (FY +BT
2 )T (FY +BT

2 ).

Since (FY + BT
2 )T (FY + BT

2 ) ≥ 0 and since (FY + BT
2 )T (FY + BT

2 ) = 0 if and only if

FY +BT
2 = 0, the proof is finished.

Due to this lemma, any Y that satisfies (7.16) also satisfies

Y > 0, AY + Y AT +B1B
T
1 −B2B

T
2 + Y CT

1 C1Y < 0. (7.17)

Note that the resulting ARI is independent of F ! Conversely, if Y is a matrix with (7.17),

it is non-singular such that we can set

F := −BT
2 Y
−1.

Since FY +B2 vanishes, we can again apply Lemma 7.7 to see that (7.17) implies (7.16).

To conclude, there exists an F and a Y with (7.16) if and only if there exists a Y with

(7.17).

Let us summarize what we have found in the following Riccati inequality solution of the

state-feedback H∞ problem.

Theorem 7.8 The gain F solves the state-feedback H∞-problem (7.15) if and only if

there exists a positive definite solution Y of the ARI

AY + Y AT +B1B
T
1 −B2B

T
2 + Y CT

1 C1Y < 0. (7.18)

If Y > 0 is any solution of this ARI, then the gain

F := −BT
2 Y
−1

renders A+B2F stable and leads to ‖(C1 +D12F )(sI − A−B2F )−1B1‖∞ < 1.

At this point it is unclear how we can test whether (7.18) has a positive definite solution.

One possibility is as follows: Observe that Y > 0 and (7.18) are equivalent to (Schur

complement)

Y > 0,

AY + Y AT +B1B
T
1 −B2B

T
2 Y CT

1

C1Y −I

 < 0.

These are two linear matrix inequalities and, hence, they can be readily solved by existing

software.
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7.6.2 Solution in Terms of Riccati Equations

There is an alternative. We can reduce the solvability of (7.18) to a test for a certain

Hamiltonian matrix via Theorem 7.1. For that purpose we need an additional technical

hypothesis; we have to require that (AT , CT
1 C1) is controllable. By the Hautus test, this is

the same as (A,C1) being observable. (Why?) It is important to note that this assumption

is purely technical and makes it possible to provide a solution of the state-feedback H∞
problem by Riccati equations; it might happen that this property fails to hold such that

one has to rely on alternative techniques.

Theorem 7.9 Suppose that

(A,C1) is observable. (7.19)

Then there exists an F that solves the state-feedback H∞-problem (7.15) if and only if the

Riccati equation

AY + Y AT +B1B
T
1 −B2B

T
2 + Y CT

1 C1Y = 0 (7.20)

has an anti-stabilizing solution Y+, and this anti-stabilizing solution is positive definite.

If Y+ > 0 denotes the anti-stabilizing solution of the ARE, the gain

F := −BT
2 Y
−1

+

leads to (7.15).

Proof. If there exists an F that satisfies (7.15), the ARI (7.18) has a solution Y > 0. By

Theorem 7.2, the ARE (7.20) has an anti-stabilizing solution Y+ that satisfies Y ≤ Y+.

Hence Y+ exists and is positive definite.

Conversely, suppose Y+ exists and is positive definite. With F = −BT
2 Y
−1

+ we infer

FY+ +B2 = 0 and hence

AY+ + Y+A
T +GGT −B2B

T
2 + Y+C

T
1 C1Y+ + (FY+ +BT

2 )T (FY+ +BT
2 ) = 0.

By Lemma 7.7, we arrive at

(A+B2F )Y+ + Y+(A+B2F )T +B1B
T
1 + Y+(C1 +D12F )T (C1 +D12F )Y+ = 0. (7.21)

Let us first show that A + B2F is stable. For that purpose let (A + B2F )Tx = λx with

x 6= 0. Now look at x∗(7.21)x:

Re(λ)x∗Y+x+ x∗B1B
T
1 x+ x∗Y+(C1 +D12F )T (C1 +D12F )Y+x = 0.

Since Y+ ≥ 0, this implies Re(λ) ≥ 0. Let us now exclude Re(λ) = 0. In fact, this

condition implies (C1 + D12F )Y+x = 0. If we left-multiply D12, we can exploit (7.14) to
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Figure 59: H∞-observer design.

infer FY+x = 0. This implies BT
2 x = 0 and hence ATx = λx. Since (A,B2) is stabilizable,

we obtain Re(λ) < 0, a contradiction. Therefore, the real part of λ must be negative,

what implies that A+B2F is stable.

Since

A+B2F + Y+(C1 +D12F )T (C1 +D12F ) = A+ Y+C
T
1 C1,

we infer that Y+ is the anti-stabilizing solution of (7.21). Hence the corresponding Hamil-

tonian matrix has no eigenvalues on the imaginary axis (Theorem 7.1) such that (7.15)

follows (Theorem 7.4).

7.7 H∞-Observer Design

Suppose a given system is affected by a genralized disturbance w. Based on the measure-

ment output y, the goal is to estimate the output z of the system as closely as possible.

This should be achieved by an observer, a copy of the system (while neglecting the un-

known disturbance input) that processes the measured output y to generate the estimate

ẑ, which leads to the estimation error

e = z − ẑ.

In H∞-observer design, the quality of the observer is measured in terms of the H∞-norm

of the transfer matrix defined by w → e.

Let the system be described by

ẋ = Ax+B1w, z = C1x, y = C2x+D21w.

An observer is then defined with suitable gain L as

˙̂x = Ax̂+ L(C2x̂− y), ẑ = C1x̂.

For the error dynamics (with state ξ := x− x̂) as described by

ξ̇ = (A+ LC2)ξ + (B1 + LD21)w, e = C1ξ,
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the goal is to achieve with some γ > 0:

eig(A+ LC2) ⊂ C− and ‖C1(sI − A− LC2)−1(B1 + LD21)‖∞ < γ (OD)

Any observer that guarantees (OD) leads to the following properties:

• For nonzero initial condition and the absence of the disturbances, the observer state

converges to the system state asymptotically:

lim
t→∞

(x(t)− x̂(t)) = 0

• For zero initial conditions, the estimation error z− ẑ is endered small in worst-case

for all disturbances w, in the sense that the H∞-norm of w → (z − ẑ) is smaller

than γ.

• The smallest achievable γ is called optimal H∞-estimation level.

• Recall all our earlier discussions concerning the interpretation of this measure!

Morevoer, dynamic filters for capturing spectral properties of the disturbance are

again assumed to be absorbed into the system description at the input.

The following result is easily established by duality.

Theorem 7.10 Let (A,C2) be detectable, B1D
T
21 = 0, D21D

T
21 = I and suppose that

(A,B1) is controllable. Then there exists an observer gain L which achieves (OD) if and

only if the anti-stabilizing solution X+ of the ARE

ATX +XA+XB1B
T
1 X − γ−2CT

1 C1 − CT
2 C2 = 0

exists and is positive definite. If the anti-stabilizing solution X+ of the ARE exists and is

positife definite, L := −X−1
+ CT

2 satisfies (OD).

For the proof just observe that (OD) is equivalent to

eig(AT + CT
2 L

T ) ⊂ C− and ‖(BT
1 +DT

21L
T )(sI − AT − CT

2 L
T )−1CT

1 ‖∞ < γ.

Then apply Theorem 7.9 for (AT , CT
1 , C

T
2 , B

T
1 , D

T
21) substituting (A,B1, B2, C1, D12).

7.8 H∞-Control by Output-Feedback

Let us now come back to the H∞-problem by output feedback control. This amounts to

finding the matrices AK , BK , CK , DK such that the conditions (7.13) are satisfied.

We proceed as in the state-feedback problem. We use the Bounded Real Lemma to rewrite

the H∞ norm bound into the solvability of a Riccati inequality, and we try to eliminate

the controller parameters to arrive at verifiable conditions.
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7.8.1 Solution in Terms of Riccati Inequalities

For the derivation to follow we assume that the controller is strictly proper: DK = 0. The

proof for a controller with DK 6= 0 is only slightly more complicated and fits much better

into the LMI framework what will be discussed in the LMI course.

There exists a controller AK , BK , CK , DK = 0 that satisfies (7.13) if and only if there

exists some X with

X > 0, ATX + XA+ XBBTX + CTC < 0. (7.22)

Indeed, (7.13) implies the existence of a symmetric solution of the ARI in (7.22) by

Theorem 7.5. Since A is stable, ATX + XA < 0 implies that X > 0. Conversely, (7.22)

implies ATX + XA < 0 for X > 0. Hence A is stable and we arrive, again by Theorem

7.5, at (7.13).

Let us now suppose that (7.22) is valid. Partition X and X−1 in the same fashion as A
to obtain

X =

 X U

UT X̂

 and X−1 =

 Y V

V T Ŷ

 .

It is then obvious that

R =

X U

I 0

 and S =

 I 0

Y V

 satisfy SX = R.

We can assume without loss of generality that the size of AK is not smaller than n. Hence

the right upper block U of X has more columns than rows. This allows to assume that

U is of full row rank; if not true one just needs to slightly perturb this block without

violating the strict inequalities (7.22). Then we conclude that R has full row rank. Due

to SX = R, also S has full row rank.

Let us now left-multiply both inequalities in (7.22) with S and right-multiply with ST .

Since S has full row rank and if we exploit SX = R or XST = RT , we arrive at

SRT > 0, SATRT +RAST +RBBTRT + SCTCST < 0. (7.23)
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The appearing blocks are most easily computed as follows:

SRT =

 X I

Y X + V UT Y


RAST =

XA+ UBKC2 XAY + UBKC2Y +XB2CKV
T + UAKV

T

A AY +B2CKV
T


RB =

XB1 + UBKD21

B1


CST =

(
C1 C1Y +D12CKV

T
)
.

Let us now recall a relation between X, Y , U , V and define the new variables F and L

as in

Y X + V UT = I, L = X−1UBK and F = CKV
TY −1. (7.24)

Then the formulas simplify to

SRT =

X I

I Y


RAST =

X(A+ LC2) X(A+ LC2 +B2F )Y + UAKV
T

A (A+B2F )Y


RB =

X(B1 + LD21)

B1


CST =

(
C1 (C1 +D12F )Y

)
.

We conclude that (7.23) read as X I

I Y

 > 0

and (A+ LC2)TX +X(A+ LC2) AT +X(A+ LC2 +B2F )Y + UAKV
T

A+ [X(A+ LC2 +B2F )Y + UAKV
T ]T (A+B2F )Y + Y (A+B2F )T

+

+

X(B1 + LD21)(B1 + LD21)TX X(B1 + LD21)BT
1

B1(B1 + LD21)TX B1B
T
1

+

+

 CT
1 C1 CT

1 (C1 +D12F )Y

Y (C1 +D12F )TC1 Y (C1 +D12F )T (C1 +D12F )Y

 < 0. (7.25)

174



If we pick out the diagonal blocks of the last inequality, we concludeX I

I Y

 > 0 (7.26)

(A+ LC2)TX +X(A+ LC2) +X(B1 + LD21)(B1 + LD21)TX + CT
1 C1 < 0 (7.27)

(A+B2F )Y + Y (A+B2F )T +B1B
T
1 + Y (C1 +D12F )T (C1 +D12F )Y < 0. (7.28)

We can apply Lemma 7.7 to (7.28) and a dual version to (7.27). This implies that X and

Y satisfy (7.26) and the two algebraic Riccati inequalities

ATX +XA+XB1B
T
1 X + CT

1 C1 − CT
2 C2 < 0 (7.29)

AY + Y AT +B1B
T
1 −B2B

T
2 + Y CT

1 C1Y < 0. (7.30)

We have shown: If there exists a controller that renders (7.13) satisfies, then there exist

symmetric matrices X and Y that satisfy the two algebraic Riccati inequalities (7.29)-

(7.30), and that these two matrices are coupled as (7.26). Note that these conditions

are, again, formulated only in terms of the matrices defining the generalized plant; the

controller parameters have been eliminated. It will turn out that one can reverse the

arguments: If X and Y satisfy (7.26),(7.29)-(7.30), one can construct a controller that

leads to (7.13).

Suppose X and Y satisfy (7.26),(7.29)-(7.30). Due to (7.26), X and Y are positive definite

and hence nonsingular. If we apply Lemma 7.7 to (7.30) and a dual version to (7.29), we

conclude that

L := −X−1CT
2 and F := −BT

2 Y
−1

lead to (7.26)-(7.28). Again due to (7.26), I − Y X is non-singular as well. Hence we can

find non-singular square matrices U and V satisfying V UT = I − Y X; take for example

U = I and V = I − Y X. If we set

BK = U−1XL and CK = FY V −T , (7.31)

we infer that the relations (7.24) are valid. If we now consider (7.25), we observe that

the only undefined block on the left-hand side is AK and this appears as UAKV
T in the

off-diagonal position. We also observe that the diagonal blocks of this matrix are negative

definite. If we choose AK to render the off-diagonal block zero, we infer that (7.25) is

valid. This is clearly achieved for

AK = −U−1[AT+X(A+LC2+B2F )Y +X(B1+LD21)BT
1 +CT

1 (C1+D12F )Y ]V −T . (7.32)

We arrive back to (7.23). Now S is square and non-singular. We can hence define X
through X := S−1R. If we left-multiply both inequalities in (7.23) with S−1 and right-

multiply with S−T , we arrive at (7.22). This shows that the constructed controller leads

to (7.13) and the proof cycle is complete.
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Theorem 7.11 There exist AK, BK, CK, DK that solve the output-feedback H∞ problem

(7.13) if and only if there exist X and Y that satisfy the two ARIs

ATX +XA+XB1B
T
1 X + CT

1 C1 − CT
2 C2 < 0, (7.33)

AY + Y AT + Y CT
1 C1Y +B1B

T
1 −B2B

T
2 < 0, (7.34)

and the coupling condition X I

I Y

 > 0. (7.35)

Suppose that X and Y satisfy (7.33)-(7.35). Let U and V be square and non-singular

matrices with UV T = I − XY , and set L := −X−1CT
2 , F := −BT

2 Y
−1. Then AK, BK,

CK as defined in (7.32),(7.31) lead to (7.13).

Remarks. The necessity of the conditions (7.33)-(7.35) has been proved for a strictly

proper controller only. In fact, the conclusion does not require this hypothesis. On

the other hand, the controller as given in the construction is always strictly proper. In

general, if D11 = 0, the existence of a proper controller solving the H∞-problem implies

the existence of a strictly proper controller that solves the problem. Note, however, that

one does in general not get a strictly proper controller that solves the H∞-problem by

simply removing the direct feedthrough term from a non-proper controller that solves the

H∞-problem!

Remark. If we recall (7.14), the formulas for the controller matrices can be simplified to

AK = −U−1[AT +XAY +X(B1B
T
1 −B2B

T
2 ) + (CT

1 C1 − CT
2 C2)Y ]V −T

BK = −U−1CT
2 ,

CK = −BT
2 V
−T .

(7.36)

For the particular choices U = X, V = X−1 − Y or U = Y −1 − X, V = Y , one arrives

at the specific formulas given in the literature. Note that all these constructions lead to

controllers that have the same order as the generalized plant: the dimension of Ac is equal

to the dimension of A.

We note again that (7.34)-(7.35) are equivalent toATX +XA+ CT
1 C1 − CT

2 C2 XB1

BT
1 X −I

 < 0

and AY + Y AT +B1B
T
1 −B2B

T
2 Y CT

1

C1Y −I

 < 0.
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Hence testing the existence of solutions X and Y of (7.33)-(7.35) can be reduced to

verifying the solvability of a system of linear matrix inequalities. In fact, numerical

solvers provide solutions X, Y , and we have shown how to construct on the basis of these

matrices a controller that satisfies (7.13).

7.8.2 Solution in Terms of Riccati Equations

As an alternative, Theorem 7.1 allows to go back to Riccati equations if (A,B1B
T
1 ) and

(AT , CT
1 C1) are controllable as described in the following Riccati equation solution of the

H∞ problem.

Theorem 7.12 Suppose that

(A,B1) is controllable and (A,C1) is observable. (7.37)

There exist AK, BK, CK, DK that solves the output-feedback H∞ problem (7.13) if and

only if the Riccati equations

ATX +XA+XB1B
T
1 X + CT

1 C1 − CT
2 C2 = 0, (7.38)

AY + Y AT + Y CT
1 C1Y +B1B

T
1 −B2B

T
2 = 0,

have anti-stabilizing solutions X+, Y+, and these solutions satisfy the coupling conditionX+ I

I Y+

 > 0. (7.39)

With any non-singular U and V satisfying XY + UV T = I, the formulas (7.36) define a

controller that satisfies (7.13).

Note that the conditions in this result are algebraically verifiable without relying on linear

matrix inequalities. One can test for the existence of anti-stabilizing solutions by verifying

whether the corresponding Hamiltonian matrix has no eigenvalues on the imaginary axis.

If the test is passed, one can compute these anti-stabilizing solutions. Then one simply

needs to check (7.39) what amounts to verifying whether the smallest eigenvalue of the

matrix on the left-hand side is positive.

Proof. Let AK , BK , CK , DK satisfy (7.13). By Theorem 7.11, there exist X, Y with

(7.33)-(7.35). If we apply Theorem 7.1 twice, we infer that the AREs (7.38)-(7.12) have

anti-stabilizing solutions X+, Y+ with X ≤ X+, Y ≤ Y+. The last two inequalities clearly

imply (7.39).
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Let us now suppose that X+, Y+ exist and satisfy (7.39), and construct the controller

in the same fashion as described in Theorem 7.11. As easily seen, the matrix X we

constructed above will satisfy

X > 0, ATX + XA+ XBBTX + CTC = 0. (7.40)

Let us prove that A is stable. For that purpose we assume that Ax = λx with x 6= 0. If

we left-multiply the ARE in (7.40) with x∗ and right-multiply with x, we arrive at

Re(λ)x∗Xx+ x∗XBBTXx+ x∗CTCx = 0.

Since x∗Xx > 0, we infer Re(λ) ≤ 0. Let us show that Re(λ) = 0 cannot occur. In fact,

if Re(λ) = 0, we conclude

x∗XB = 0 and Cx = 0.

Right-multiplying the ARE in (7.40) leads (with −λ = λ) to

x∗XA = λx∗X and, still, Ax = λx

Set x̂ = Xx, and partition x̂ and x according to A. Then we arrive at

(
ŷ∗ ẑ∗

) A B2CK

BKC2 AK

 = λ
(
ŷ∗ ẑ∗

)
and

(
ŷ∗ ẑ∗

) B1

BKD21

 = 0

as well as A B2CK

BKC2 AK

 y

z

 = λ

 y

z

 and
(
C1 D12CK

) y

z

 = 0.

Right-multiplying with B1 and left-multiplying with CT
1 imply that ẑ∗BK = 0 and CKz =

0. This reveals

ŷ∗A = λŷ∗, ŷ∗B1 = 0 and Ay = λy, C1y = 0.

By controllability of (A,B1) and observability of (A,C1), we conclude ŷ = 0 and y = 0.

Finally,  0

ẑ

 =

X+ U

UT ∗

 0

z

 and

 0

z

 =

 Y+ V

V T ∗

 0

ẑ


lead to 0 = Uz and 0 = V ẑ what implies z = 0 and ẑ = 0 since U and V are non-singular.

This is a contradiction to x 6= 0.

Since A is stable, the controller is stabilizing. Moreover, it is not difficult to verify that

the Riccati equation in (7.40) implies ‖C(sI −A)−1B‖∞ ≤ 1. One can in fact show that

the strict inequality holds true; since this is cumbersome and not really relevant for our

considerations, we stop here.
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7.8.3 Solution in Terms of Indefinite Riccati Equations

We observe that Y > 0 and

AY + Y AT + Y CT
1 C1Y +B1B

T
1 −B2B

T
2 = 0, λ(A+ Y CT

1 C1) ⊂ C> (7.41)

is equivalent to Y∞ > 0 and

ATY∞+Y∞A+Y∞(B1B
T
1 −B2B

T
2 )Y∞+CT

1 C1 = 0, λ(A+(B1B
T
1 −B2B

T
2 )Y∞) ⊂ C< (7.42)

with

Y∞ = Y −1.

Proof. Let us show that (7.41) implies (7.42). Left- and right-multiplying the ARE in

(7.41) with Y∞ = Y −1 leads to the ARE in (7.42). Moreover, Y > 0 implies Y∞ = Y −1 > 0.

Finally, the ARE in (7.41) is easily rewritten to

(A+ Y CT
1 C1)Y + Y (AT + Y −1[B1B

T
1 −B2B

T
2 ]) = 0

what leads to

Y −1(A+ Y CT
1 C1)Y = −(A+ [B1B

T
1 −B2B

T
2 ]Y∞)T .

Since A+ Y CT
1 C1 is anti-stable, A+ [B1B

T
1 −B2B

T
2 ]Y∞ must be stable.

The converse implication (7.42)⇒ (7.41) follows by reversing the arguments.

Dually, we have X > 0 and

ATX +XA+XB1B
T
1 X + CT

1 C1 − CT
2 C2 = 0, λ(A+B1B

T
1 X) ⊂ C>

if and only if X∞ > 0 and

AX∞ +X∞A
T +X∞(CT

1 C1 − CT
2 C2)X∞ +B1B

T
1 = 0, λ(A+X∞(CT

1 C1 − CT
2 C2)) ⊂ C<

with

X∞ = X−1.

Finally, X I

I Y

 > 0

is equivalent to

X∞ > 0, Y∞ > 0, ρ(X∞Y∞) < 1

with X∞ = X−1, Y∞ = Y −1.
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Proof. The coupling condition is equivalent to X > 0, Y > 0, Y −X−1 > 0 (Schur) what

is nothing but X > 0, Y > 0, I − Y −1/2X−1Y −1/2 > 0 or, equivalently, X > 0, Y > 0,

ρ(Y −1/2X−1Y −1/2) < 1 what can be rewritten (since ρ(AB) = ρ(BA)) as X > 0, Y > 0,

ρ(X−1Y −1) < 1.

Hence, all conditions in Theorem 7.12 can be rewritten in terms of so-called indefinite

algebraic Riccati equations. They are called indefinite since the matrices defining the

quadratic terms are, in general, not positive or negative semi-definite.

For the particular choice of U = Y −1 −X, V = Y , the formulas for the controller can be

rewritten in terms of X∞ = X−1, Y∞ = Y −1 as follows:

AK = A− (I −X∞Y∞)−1X∞C
T
2 C2 + (B1B

T
1 −B2B

T
2 )Y∞,

BK = (I −X∞Y∞)−1X∞C
T
2 , CK = −BT

2 Y∞.

Proof. If we left-multiply (7.41) by Y −1, we obtain

AT + CT
1 C1Y = −[Y −1AY + Y −1(B1B

T
1 −B2B

T
2 )].

Hence the formula for AK in (7.36) can be rewritten to

AK = −U−1[(X − Y −1)AY − CT
2 C2Y + (X − Y −1)(B1B

T
1 −B2B

T
2 )]V −T

what is nothing but

AK = A+ (Y −1 −X)−1CT
2 C2 + (B1B

T
1 −B2B

T
2 )Y −1.

or

AK = A− (I −X−1Y −1)−1X−1CT
2 C2 + (B1B

T
1 −B2B

T
2 )Y −1.

The formulas for BK and CK are obvious.

Why are the results in the literature usually formulated in terms of these indefinite AREs?

The simple reason is the possibility to relax the artificial and strong hypotheses that

(A,B1) and (A,C1) are controllable and observable to a condition on the non-existence

of uncontrollable or unobservable modes on the imaginary axis. The exact formulation

with a general bound γ and with an explicit controller formula is as follows.

Theorem 7.13 Suppose that

(A,B1), (A,C1) have no uncontrollable, unobservable modes in C=. (7.43)
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Then there exist AK, BK, CK, DK that solves the output-feedback H∞ problem (7.13) if

and only if the unique X∞ and Y∞ with

AX∞ +X∞A
T +X∞(

1

γ2
CT

1 C1 − CT
2 C2)X∞ +B1B

T
1 = 0,

λ(A+X∞(
1

γ2
CT

1 C1 − CT
2 C2)) ⊂ C<

and

ATY∞ + Y∞A+ Y∞(
1

γ2
B1B

T
1 −B2B

T
2 )Y∞ + CT

1 C1 = 0,

λ(A+ (
1

γ2
B1B

T
1 −B2B

T
2 )Y∞) ⊂ C<

exist, and they satisfy

X∞ ≥ 0, Y∞ ≥ 0, ρ(X∞Y∞) < γ2.

If X∞ and Y∞ satisfy all these conditions, a controller with (7.13) is given by

AK BK

CK DK

 =

A− ZX∞C
T
2 C2 +

[
1

γ2
B1B

T
1 −B2B

T
2

]
Y∞ ZX∞C

T
2

−BT
2 Y∞ 0


where Z = (I − 1

γ2
X∞Y∞)−1.

Remark 7.14

1) The constructed controller in Theorem 7.13 is also called central controller. This

terminology will be explained in Section 7.11.

2) X∞ and Y∞ are computed as for standard Riccati equations on the basis of the

Hamiltonian matrices

HX∞ =

 AT 1
γ2
CT

1 C1 − CT
2 C2

−B1B
T
1 −A

 and HY∞ =

 A 1
γ2
B1B

T
1 −B2B

T
2

−CT
1 C1 −AT


as follows: Verify that HX∞ and HY∞ do not have eigenvalues on the imaginary axis.

Then compute (with Schur decompositions)

 UX∞

VX∞

,

 UY∞

VY∞

 and stable MX∞ ,

MY∞ satisfying

HX∞

 UX∞

VX∞

 =

 UX∞

VX∞

MX∞ and HY∞

 UY∞

VY∞

 =

 UY∞

VY∞

MY∞ .
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Verify that UX∞ and UY∞ are non-singular. Then

X∞ = VX∞U
−1
X∞

and Y∞ = VY∞U
−1
Y∞

exist and are the stabilizing solutions of the two indefinite AREs under considera-

tions.

After having verified that (the unique) X∞ and Y∞ exist, it remains to check whether

they are both positive semi-definite, and whether the spectral radius of X∞Y∞ is

smaller than γ2.

2) Note that X∞ and Y∞ are, in general, not invertible. That’s why we insisted on

deriving formulas in which no inverse of X∞ or Y∞ occurs. If X∞ and Y∞ exist, one

can show:

X∞ has no kernel if and only if (A,B1) has no uncontrollable modes in the open

left-half plane, and Y∞ has no kernel if and only if (A,C1) has no unobservable

modes in the open left-half plane.

3) The optimal value

γ∗ = inf
K stabilizies P

‖S(P,K)‖∞

is the smallest of all γ for which the stabilizing solutions X∞, Y∞ of the indefinite

AREs exist and satisfy X∞ ≥ 0, Y∞ ≥ 0, ρ(X∞Y∞) < γ2. The optimal value γ∗ can

hence be computed by bisection.

4) If γ ≤ γ∗, it cannot be said a priori which of the conditions (existence of X∞, Y∞,

positive semi-definiteness, coupling condition) fails.

For γ > γ∗, but γ close to γ∗, it often happens that

I − 1

γ2
X∞Y∞ is close to singular.

Hence computing the inverse of this matrix is ill-conditioned. This leads to an ill-

conditioned computation of the controller matrices as given in the theorem. There-

fore, it is advisable not to get too close to the optimum.

Note, however, that this is only due to the specific choice of the controller formulas.

Under our hypothesis, one can show that there always exists an optimal controller.

Hence there is a possibility, even γ = γ∗, to compute an optimal controller a well-

conditioned fashion.

5) Let us consider the other extreme γ = ∞. Then one can always find X∞ ≥ 0 and

Y∞ ≥ 0 that satisfy

AX∞ +X∞A
T −X∞CT

2 C2X∞ +B1B
T
1 = 0, λ(A−X∞CT

2 C2) ⊂ C<
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and

ATY∞ + Y∞A− Y∞B2B
T
2 Y∞ + CT

1 C1 = 0, λ(A−B2B
T
2 Y∞) ⊂ C<.

(Why?) Moreover, the controller formulas read asAK BK

CK DK

 =

A−X∞CT
2 C2 −B2B

T
2 Y∞ X∞C

T
2

−BT
2 Y∞ 0

 .
Clearly, this controller stabilizes P . In addition, however, it has even the additional

property that it minimizes

‖S(P,K)‖2 among all controllers K which stabilize P .

Here, ‖M‖2 is the so-called H2-norm of the strictly proper and stable matrix M

which is defined via

‖M‖2
2 =

1

2π

∫ ∞
−∞

trace(M(iω)∗M(iω)) dω.

Hence the controller is a solution to the so-called H2-control problem. Since the H2-

norm can be seen to be identical to the criterion in LQG-control, we have recovered

the controller that solves the LQG problem as it is taught in an elementary course.

All this will be discussed in more detail and generality in the LMI course.

7.9 What are the Weakest Hypotheses for the Riccati Solution?

The command hinfys of the µ-tools to design an H∞-controller requires the following

hypotheses for the system

 z

y

 =


A B1 B2

C1 D11 D12

C2 D21 D22


 w

u


describing the interconnection:

• (A,B2) is stabilizable, and (A,C2) is detectable.

• D21 has full row rank, and D12 has full column rank.

• For all ω ∈ R,

A− iωI B1

C2 D21

 has full row rank, and

A− iωI B2

C1 D12

 has full

column rank.
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If not true, the second and the third hypotheses can be easily enforced as follows: With

some ε > 0, solve the problem for the perturbed matrices

(
C1 D12

)
→


C1 D12

εI 0

0 εI

 ,

 B1

D21

→
 B1 εI 0

D21 0 εI

 , D11 →


D11 0 0

0 0 0

0 0 0

 .

Let us denote the resulting generalized plant by


z

z1

z2

y

 = Pε


w

w1

w2

u

 =



A B1 εI 0 B2

C1 D11 0 0 D12

εI 0 0 0 0

0 0 0 0 εI

C2 D21 0 εI D22




w

w1

w2

u

 .

The perturbation just amounts to introducing new disturbance signals w1, w2 and new

controlled signals z1, z2 in order to render all the hypotheses for ε 6= 0 satisfied.

Here are the precise conclusions that can be drawn for the relation of the H∞ problem

for the original interconnection P and for the perturbed interconnection Pε.

• K stabilizes P if and only if K stabilizes Pε. (Why?)

• For any K which stabilizes P and Pε, the gain-interpretation of the H∞ immediately

reveals that

‖S(P,K)‖∞ ≤ ‖S(Pε, K)‖∞.

Hence, if the controller K stabilizes Pε and achieves ‖S(Pε, K)‖∞ < γ, then the very

same controller also stabilizes P and achieves ‖S(P,K)‖∞ < γ. This property

does not depend on the size of ε > 0!

• For any K stabilizing P and Pε, one has

‖S(Pε, K)‖∞ → ‖S(P,K)‖∞ for ε→ 0.

Hence, if there exists a K stabilizing P and rendering ‖S(P,K)‖∞ < γ satisfied,

the very same K stabilizes Pε and achieves ‖S(Pε, K)‖∞ < γ for some sufficiently

small ε > 0.

Note that there are other schemes to perturb the matrices in order to render the hypothe-

ses satisfied. In general, however, it might not be guaranteed that the first of these two

properties is true irrespective of the size of ε > 0.
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7.10 Game-Theoretic Interpretation

This more mathematically orientated chapter gives an extra interpretation of the H∞
control problem in terms of game theory. The main result will be that optimal H∞ control

is the optimal strategy for a player who plays control stragies and tries to minimize a cost

function. Optimal in the following sense: no matter what strategy its opponent plays,

its pay-off is bounded from above by an optimal value and a deviation from the optimal

strategy will leave its opponent the opportunity to drive the cost above the optimal value.

Let us now become more precise: We consider again the system

ẋ = Ax+B1w +B2u, x(0) = ξ

z = C1x+D12u
(SY)

as in the state-feedback case under the following assumptions:

Hypothesis 7.15 Suppose that

(A,B2) is stabilizable. (SF1)

DT
12

(
C1 D12

)
=
(

0 I
)
. (SF2)

(A,C1) is observable. (SF3)

Moreover let Y∞ ≥ 0 satisfy as in Theorem 7.13

ATY∞ + Y∞A+ Y∞(γ−2B1B
T
1 −B2B

T
2 )Y∞ + CT

1 C1 = 0, (7.44)

eig(A+ (γ−2B1B
T
1 −B2B

T
2 )Y∞) ⊂ C− (7.45)

with γ > 0.

Note that observability of (A,C1) implies Y∞ > 0. In linear quadratic game-theory, one

considers the control u and the generalized disturbance w to be manipulated by adversary

“players”. Here the u-player tries to minimize and the w-player tries to maximize the

quadratic cost (or pay-off) ∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt. (CO)

Our intention is to touch upon a specific consequence from the existence of Y∞ - this is a

tip of a whole iceberg of game-theory.

The first result is the following fact.

Lemma 7.16 Suppose that Hypothesis 7.15 holds. If controlling (SY ) with ξ = 0 as

u = −BT
2 Y∞x then ∫ ∞

0

‖z(t)‖2 − γ2‖w(t)‖2dt ≤ 0 (7.46)

for all w ∈ L2.
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Proof. Since Y∞ > 0 we can define Y+ := Y −1
∞ . Then Y+ is the anti-stabilizing solution

of the ARE

AY+ + Y+A+ γ−2B1B
T
1 −B2B

T
2 + Y+C

T
1 C1Y+ = 0

since
AT + CT

1 C1Y+ = Y∞(Y+A
T + Y+C

T
1 C1Y+)

= Y∞(−A−γ−2B1B
T
1 Y∞ +B2B

T
2 Y∞)Y −1

∞

= −Y∞(A+ (γ−2B1B
T
1 −B2B

T
2 )Y∞)Y −1

∞ .

By Theorem 7.9 we can conclude that F = −BT
2 Y∞ satisfies

eig(A+B2F ) ⊂ C− and ‖(C1 +D12F )(sI − A−B2F )−1B1‖ < γ.

Let G(s) be the transfermatrix of the System (SY) controlled by u = Fx. Then G(s) =

(C1 +D12F )(sI − A−B2F )−1B1 and by using Parceval’s identity∫ ∞
0

‖f(t)‖2dt =
1

2π

∫ ∞
−∞
‖f̂(iω)‖2dω for all f ∈ L2

we obtain ∫ ∞
0

‖z(t)‖2dt =
1

2π

∫ ∞
−∞
‖ẑ(iω)‖2dω

=
1

2π

∫ ∞
−∞
‖G(iω)ŵ(iω)‖2dω

≤ ‖G‖2
∞

1

2π

∫ ∞
−∞
‖ŵ(iω)‖2dω

≤ γ2

∫ ∞
0

‖w(t)‖2dt

for all w ∈ L2.

From a game-theoretic point of view Lemma 7.16 means that if the u-player plays the

static-feedback strategy u = −BT
2 Y∞x for the System (SY) with ξ = 0, the cost (CO)

is guaranteed to be bounded by 0 for any finite energy open-loop strategy the w-player

uses.

As a next step we want to generalize this result for arbitrary initial condition ξ.

Lemma 7.17 If Y∞ satisfies only (7.44) then along any trajectory of (SY) with (SF2)

holds:

x(T )TY∞x(T )− ξTY∞ξ +

∫ T

0

‖z(t)‖2 − γ2‖w(t)‖2dt

=

∫ T

0

‖u(t) +BT
2 Y∞x(t)‖2 − γ2

∫ T

0

‖w(t)− γ−2BT
1 Y∞x(t)‖2dt.
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Proof. (7.44) implies

d

dt
x(t)TY∞x(t) = ẋ(t)TY∞x(t) + x(t)TY∞ẋ(t)

= x(t)T
[
ATY∞ + Y∞A

]
x(t) + 2x(t)TY∞B1w(t) + 2x(t)TY∞B2u(t)

=− x(t)TCT
1 C1x(t)− γ−2x(t)TY∞B1B

T
1 Y∞x(t) + x(t)TY∞B2B

T
2 Y∞x(t)

+ 2x(t)TY∞B1w(t) + 2x(t)TY∞B2u(t)

=− x(t)TCT
1 C1x(t) + γ2w(t)Tw(t)− u(t)Tu(t)

− γ2‖w(t)− γ−2BT
1 Y∞x(t)‖2 + ‖u(t) +BT

2 Y∞x(t)‖2

=− ‖z(t)‖2 + γ2‖w(t)‖2 + ‖u(t) +BT
2 Y∞x(t)‖2

− γ2‖w(t)γ−2BT
1 Y∞x(t)‖2.

Integration over [0, T ] proves the result.

Lemma 7.18 Suppose that Hypothesis 7.15 holds and suppose (SY) is controlled by u =

−BT
2 Y∞x. Then we have for all w ∈ L2:∫ ∞

0

‖z(t)‖2 − γ2‖w(t)‖2dt ≤ ξTY∞ξ.

Equality holds for the feedback strategy w = γ−2BT
1 Y∞x.

Proof. As in the proof of Lemma 7.16 it follows that eig(A − B2B
T
2 Y∞) ∈ C−. Now

choose w ∈ L2 arbitrary. Then any trajectory of the controlled system solves ẋ(t) =

(A− B2B
T
2 Y∞)x(t) + B1w(t) with w ∈ L2. By using Young’s inequality for convolutions

we can conclude x ∈ L2. Hence ẋ ∈ L2 and thus limT→∞ x(T ) = 0. Now Lemma 7.17

implies

ξTY∞ξ −
∫ ∞

0

‖z(t)‖2 − γ2‖w(t)‖2dt = γ2

∫ ∞
0

‖w(t)− γ−2BT
1 Y∞x(t)‖2dt ≥ 0.

Equality holds for w = γ−2BT
1 Y∞x. If w = γ−2BT

1 Y∞x any trajectory of the controlled

system solves ẋ(t) = (A − B2B
T
2 Y∞ + γ−2B1B

T
1 Y∞)x(t). Due to (7.45) we can conclude

x ∈ L2 and hence w ∈ L2.

If the u-player plays the static state-feedback strategy u = −BT
2 Y∞x, the incurred cost is

guaranteed to be bounded by ξTY∞ξ, no matter which finite energy open-loop strategy

the w-player uses. The adversary w-player has the possibility to maximize its pay-off by

using the feedback strategy w = γ−2BT
1 Y∞x. For a particular ξ this translates into a finite

energy open-loop disturbance, which is the worst case disturbance from the perspective

of the u-player. The resulting cost equals ξTY∞ξ.

Reversing the roles of w and u leads to an analogous insight.
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Lemma 7.19 Suppose that Hypothesis 7.15 holds and let (SY) be affected by the worst-

case disturbance strategy w = γ−2BT
1 Y∞x. For any u ∈ L2 such that x ∈ L2 we have

ξTY∞ξ ≤
∫ ∞

0

‖z(t)‖2 − γ2‖w(t)‖2dt,

with equality for the feedback control u = −BT
2 Y∞x.

If the w-player plays w = −γ2BT
1 Y∞x, its guaranteed pay-off is ξTY∞ξ for all finite energy

open-loop strategies of u that take care of stabilizing the state. The u-player can react

with u = −BT
2 Y∞x to push its cost down to the lowest possible level ξTY∞ξ. The order of

the decision-taking of the players is important in these conclusions. Note that the roles

of the players are not symmetric, since u has to take care of stabilization.

Let us hence only consider static-state feedback strategies for player u.

Theorem 7.20 Suppose that Hypothesis 7.15 holds. Then the following equation holds:

min
u=Fx, eig(A+B2F )⊂C−

sup
w∈L2

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt = ξTY∞ξ.

If u plays the stabilizing strategy u = −Fx we infer

sup
w∈L2

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt ≥ ξTY∞ξ,

with equality (as we already know) for F∞ = −BT
2 Y∞. We conclude that it is rational

for the u-player to stick to u = F∞x, since a deviation is guaranteed to be not beneficial

- it even does offer the opportunity for player w to drive the cost for u to values above

ξTY∞ξ.

One can view this result as a time-domain interpretation of H∞-control.

In order to proof this result, we need some preparations.

Lemma 7.21 Suppose that eig(A) ⊂ C+. For every w ∈ L2 there exists a unique ξ, such

that the solution of ẋ = Ax+Bw, x(0) = ξ is square integrable.

Proof. Choose w ∈ L2 arbitrary. Then for any system trajectory we know that

e−Atx(t) = ξ +

∫ t

0

e−AτBw(τ)dτ for t ≥ 0. (7.47)

Since −A is Hurwitz, the function τ 7→ e−AτBw(τ) is integrable on [0,∞) by the Hölder

inequality.
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If x ∈ L2 then ẋ ∈ L2, since w ∈ L2 by assumption. Thus we obtain limt→∞ x(t) = 0.

From (7.47) we infer ξ = −
∫∞

0
e−AτBw(τ)dτ which proves uniqueness.

The solution for this initial condition is given by

x(t) = −eAt
∫ ∞

0

e−AτBw(τ)dτ +

∫ t

0

eA(t−τ)Bw(τ)dτ = −
∫ ∞
t

eA(t−τ)Bw(τ)dτ.

Using again Young’s inequality for convolutions leads to x ∈ L2 and hence existence.

Lemma 7.22 Suppose that Hypothesis 7.15 holds and let Y be the stabilizing solution of

the standard ARE: ATY +Y A−Y B2B
T
2 Y +CT

1 C1 = 0. Fix w ∈ L2 and choose the unique

response v ∈ L2 of v̇ = −(A − B2B
T
2 Y )Tv − Y B1w. If the control function u ∈ L2 for

(SY) assures x ∈ L2 then∫ ∞
0

‖z(t)‖2dt ≥ ξTY ξ + 2v(0)T ξ −
∫ ∞

0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t)dt. (7.48)

Equality holds for u(t, x) = −BT
2 Y x−BT

2 v(t).

The right hand side of the inequality only depends on ξ and on w(·), but not on the

control function u(·) or the resulting system trajectory of (SY).

This solves an LQ problem for a system driven by L2-disturbances w(·). Therefore observe

that (7.48) for γ > 0 can be written as

∞∫
0

‖z(t)‖2− γ2‖w(t)‖2dt ≥ ξTY ξ+ 2v(0)T ξ−
∞∫

0

 v(t)

w(t)

T B2B
T
2 −B1

−BT
1 γ2I

 v(t)

w(t)

 dt.

The optimal strategy requires full knowledge of w(·) and is non-causal. This just means

that at time t, the control action cannot be determined based on w|[0,t] only. This is true

since by the proof of Lemma 7.21 v(·) is given by

v(t) = −
∫ ∞
t

e−(A−B2B
T
2 Y )T (t−τ)Y B1w(τ)dτ for t ≥ 0.

Hence knowledge of w(·) on [t,∞) is required to calculate v(t) for a fixed t ≥ 0. Finally

note that under our assumptions there always exists a stabilitzing solution Y of the ARE:

ATY + Y A− Y B2B
T
2 Y + CT

1 C1 = 0.

Proof. As in Lemma 7.17 the proof follows by completion-of-the-squares and by using
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the fact that Y solves the given ARE.

d

dt
(xTY x+ 2vTx) = ẋTY x+ xTY ẋ+ 2v̇Tx+ 2vT ẋ

= xT
[
ATY + Y A

]
x+ 2xTY B1w + 2xTY B2u

− 2vT (A−B2B
T
2 Y )x− 2wTBT

1 Y x+ 2vT (Ax+B1w +B2u)

=− xTCT
1 C1x+ xTY B2B

T
2 Y x+ 2vTB2B

T
2 Y x+ vTB2B

T
2 v

− vTB2B
T
2 v + 2uTBT

2 (Y x+ v) + 2vTB1w

=− ‖C1x‖2 − ‖u‖2 + uTu+ (Y x+ v)TB2B
T
2 (Y x+ v)

+ 2uTBT
2 (Y x+ v)− vTB2B

T
2 v + 2vTB1w

=− ‖z‖2 + ‖u+BT
2 (Y x+ v)‖2 − vTB2B

T
2 v + 2vTB1w.

Since x(T ) → 0, v(T ) → 0 for T → ∞ the statement follows by integration over [0, T ]

and taking the limit T →∞.

Observe again that (7.48) can be written as∫ ∞
0

‖z(t)‖2−γ2‖w(t)‖2dt ≥ ξTY ξ + 2v(0)T

−
∫ ∞

0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t) + γ2w(t)Tw(t)dt.

In the next step we intend to maximize the right-hand side over all pairs (w, v) as

in Lemma 7.22. For given w ∈ L2 by the proof of Lemma 7.21 we know that

v(0) =
∫∞

0
e(A−B2B

T
2 Y )T τY B1w(τ)dτ . Thus the set of all v(0) for such pairs is equal

to the controllable subspace of (−(A− B2B
T
2 Y )T ,−Y B1). Hence these pairs can as well

be parameterized by taking any v0 in the controllable subspace and choosing w ∈ L2

which assures v ∈ L2 for

v̇ = −(A−B2B
T
2 Y )Tv − Y B1w, v(0) = v0. (AUX)

For notational simplicity let us assume that (AUX) is controllable, by Hautus this means

that

(A−B2B
T
2 Y, Y B1B

T
1 Y ) is observable. (OBS)

Let us first fix v0. Then we have to solve the problem of minimizing∫ ∞
0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t) + γ2w(t)Tw(t)dt

=

∫ ∞
0

 v(t)

w(t)

T B2B
T
2 −B1

−BT
1 γ2I

 v(t)

w(t)

 dt

over all w ∈ L2 with v ∈ L2 for solutions of (AUX).
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This is actually a standard LQ problem with stability, but the cost function involves

cross-terms. This is the reasons why we provide a direct solution based on the following

ARE:

−(A−B2B
T
2 Y )Z − Z(A−B2B

T
2 Y )T +B2B

T
2 − γ−2(I + ZY )B1B

T
1 (I + Y Z) = 0.

Lemma 7.23 Let Z be the anti-stabilizing solution of the ARE

(A−B2B
T
2 Y + γ−2B1B

T
1 Y )Z + Z(A−B2B

T
2 Y + γ−2B1B

T
1 Y )T

+γ−2ZY B1B
T
1 Y Z + γ−2B1B

T
1 −B2B

T
2 = 0.

If w ∈ L2 achieves v ∈ L2 for (AUX), the following inequality holds:∫ ∞
0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t) + γ2w(t)Tw(t)dt ≥ vT0 Zv0.

Equality is achieved with w = γ−2BT
1 (I + Y Z)v.

Proof. As before we use the fact that Z solves the ARE and complete the squares:

d

dt
vTZv = v̇TZv + vTZv̇

= vT [−(A−B2B
T
2 Y )Z − Z(A−B2B

T
2 Y )T ]v − 2vTZY B1w

= vT [−B2B
T
2 + γ−2(I + ZY )B1B

T
1 (I + Y Z)]v − 2vTZY B1w

= − vTB2B
T
2 v + 2vTB1w − γ2wTw − 2vT (I + ZY )B1w

+ γ2wTw + γ−2vT (I + ZY )B1B
T
1 (I + Y Z)v

= − vTB2B
T
2 v + 2vTB1w − γ2wTw + γ2‖w − γ−2BT

2 (I + Y Z)v‖2.

Integrating over [0, T ] and taking the limit T →∞ leads to∫ ∞
0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t)+γ2w(t)Tw(t)dt

= v(0)TZv(0) +

∫ ∞
0

γ2‖w − γ−2BT
1 (I + Y Z)v‖2dt

since limT→∞ v(T ) = 0 by assumption. Hence we obtain the desired inequality.

Equality is enforced with w = γ−2BT
1 (I + Y Z)v which results in

v̇ = −[(A−B2B
T
2 Y + γ−2B1B

T
1 Y )T + γ−2Y B1B

T
1 Y Z]v, v(0) = v0.

Since Z is the anti-stabilizing solution of the given ARE we get eig(−(A − B2B
T
2 Y +

γ−2B1B
T
1 Y )T−γ−2Y B1B

T
1 Y Z) ⊂ C− and hence v ∈ L2. This also implies w = γ−2BT

1 (I+

Y Z)v ∈ L2.

Since the following fact is very useful and needed in the following proofs, we formulate it

as a lemma.
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Lemma 7.24 Let R = RT , Q1 = QT
1 , Q2 = QT

2 and let X1 and X2 be symmetric solutions

of
ATX1 +X1A+X1RX1 +Q1 = 0

ATX2 +X2A+X2RX2 +Q2 = 0.

Then ∆ := X2 −X1 solves the ARE

(A+RX1)T∆ + ∆(A+RX1) + ∆R∆ +Q2 −Q1 = 0

Proof. Direct calculation leads to

Q1 −Q2 = (ATX2 +X2A+X2RX2)− (ATX1 +X1A+X1RX1)

= AT∆ + ∆A+X2RX2 −X1RX1 +X1RX2 −X1RX2

= AT∆ + ∆A+ ∆RX2 +X1R∆ + ∆RX1 −∆RX1

= AT∆ + ∆A+X1R∆ + ∆RX1 + ∆R∆

= (A+RX1)T∆ + ∆(A+RX1) + ∆R∆.

The next Lemma shows a relation between the appearing ARE’s. The proof does not

need the assumptions (SF1) - (SF3).

Lemma 7.25 Let Y be as in Lemma 7.22 and let Y∞ ≥ 0 satisfy (7.44)-(7.45). If (OBS)

holds then Z in Lemma 7.23 exists, is positive definite and equals Z = (Y∞ − Y )−1.

Proof. Set Ã := (A + γ−2B1B
T
1 Y − B2B

T
2 Y ) and set ∆ := Y∞ − Y . Applying Lemma

7.24 to (7.44) and

ATY + Y A+ Y (γ−2B1B
T
1 −B2B

T
2 )Y + CT

1 C1 − γ−2Y B1B
T
1 Y = 0

leads to the equation

ÃT∆ + ∆Ã+ ∆(γ−2B1B
T
1 −B2B

T
2 )∆ + γ−2Y B1B

T
1 Y = 0.

Let x ∈ ker(∆). Then γ−2‖BT
1 Y x‖2 = 0 and hence 0 = ∆Ãx = ∆(A − B2B

T
2 Y )x. This

means (A − B2B
T
2 Y ) ker(∆) ⊂ ker(∆) and ker(∆) ⊂ ker(Y B1B

T
1 Y ). By (OBS) we can

conclude ker(∆) = {0}.
Set Q := γ−2Y∞B1B

T
1 Y∞ + CT

1 C1. Then observe that

0 = ATY∞ + Y∞A− Y∞B2B
T
2 Y∞ +Q (7.49)

and

ATY + Y A− Y B2B
T
2 Y +Q = γ−2Y∞B1B

T
1 Y∞ ≥ 0.
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Choose x 6= 0 with (A−B2B
T
2 Y∞)x = λx. Then we obtain by using the ARE for Y∞ :

0 = 2Re(λ)x∗Y∞x + x∗Y∞B2BT
2 Y∞x + γ−2x∗Y∞B1BT

1 Y∞x + x∗CT
1 C1x

= 2Re(λ)x∗Y∞x + ‖BT
2 Y∞x‖2 + γ−2‖BT

1 Y∞x‖2 + ‖C1x‖2

Since Y∞ > 0 and ‖BT
2 Y∞x‖2 + γ−2‖BT

1 Y∞x‖2 + ‖C1x‖2 ≥ 0 we obtain Re(λ) ≤ 0. Hence

we obtain eig(A−B2B
T
2 Y∞) ⊂ C−∪C0 (i.e. Y∞ is the strong solution of the ARE (7.49)).

By Exercise 6 we can conclude Y ≤ Y∞ and hence ∆ ≥ 0.

Now observe that Z = ∆−1 > 0 satisfies the ARE in Lemma 7.23 and

−∆−1[Ã+γ−2ZY B1B
T
1 Y ]T∆ = Ã+(γ−2B1B

T
1 −B2B

T
2 )∆ = A+(γ−2B1B

T
1 −B2B

T
2 )Y∞.

(7.50)

Since A+ (γ−2B1B
T
1 −B2B

T
2 )Y∞ is stable, Ã+ γ−2ZY B1B

T
1 Y is anti-stable.

We are now able to prove Theorem 7.20 under the additional assumption (OBS). If this is

not true, one argues by reducing the dynamics (AUX) to the controllable subspace which

is only notationally a bit more cumbersome.

Proof of Theorem 7.20. Take F with eig(A+BF ) ⊂ C− and control (SY) with u = Fx.

Due to Young’s inequality for convolutions, for w ∈ L2 the controlled system responds

with x ∈ L2 and we can define

γwc(F ) := sup
w∈L2

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt ≤ ∞.

For any w ∈ L2 and v ∈ L2 as in Lemma 7.22, we get

γwc(F ) ≥
∫ ∞

0

‖z(t)‖2 − γ2‖w(t)‖2dt

≥ ξTY ξ + 2v(0)T ξ −
∫ ∞

0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t) + γ2w(t)Tw(t)dt.

Let us now maximize the right-hand side over all such pairs (w, v). As remarked earlier,

we can instead maximize over w ∈ L2 for fixed v(0) = v0 in the controllable subspace of

(−(A−B2B
T
2 Y )T ,−Y B1) such that v ∈ L2.

By Lemma 7.23 and Lemma 7.25 we obtain

γwc(F ) ≥ ξTY ξ + 2vT0 ξ − vT0 Zv0.

As a next step we maximize over v0. Therefore observe that there exists v∗ with Zv∗ = ξ

and that Z has a positive definite square root. Hence

γwc(F ) ≥ ξTY ξ + 2vT0 ξ − vT0 Zv0

= ξTY ξ + 2vT0 ξ − vT0 Zv0 + ξTZ−1ξ − ξTZ−1ξ

= ξTY ξ + ξTZ−1ξ − ‖Z
1
2v0 − Z−

1
2 ξ‖2.
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This shows that the maximum is achieved for v0 = Z−1ξ = v∗ and the maximum value of

the right hand side is given by ξTY ξ + ξTZ−1ξ = ξTY∞ξ by Lemma 7.25. This proves

min
u=Fx, eig(A+B2F )⊂C−

γwc(F ) ≥ ξTY∞ξ.

On the other hand, we know for F∞ = −BT
2 Y∞ by Lemma 7.18 that

min
u=Fx, eig(A+B2F )⊂C−

γwc(F ) ≤ γwc(F∞) ≤ ξTY∞ξ.

This proves Theorem 7.20.

Let us now consider the situation that w plays with open-loop strategies w ∈ L2, and that

u responds with stabilizing open-loop strategies u ∈ L2. The resulting pay-off is again

given by the value ξTY∞ξ.

Theorem 7.26 Suppose that Hypothesis 7.15 holds. Then the following equation holds:

max
w∈L2

min
u∈L2 such that x∈L2

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt = ξTY∞ξ.

If the disturbance w ∈ L2 acts on the system, the best choice for u leads to a cost not

larger than ξTY∞ξ if u plays open-loop and takes care of stability. Moreover, the w-player

can push the cost for u up to the level ξTY∞ξ by open-loop strategies w ∈ L2

Proof. For w ∈ L2 and u ∈ L2 such that x ∈ L2 define

γ(w, u) :=

∫ ∞
0

‖z(t)‖2 − γ‖w(t)‖2dt.

Let w ∈ L2 be arbitrary. With v ∈ L2 satisfying v̇ = −(A− B2B
T
2 Y )Tv − Y B1w and for

the trajectory of ẋ = (A−B2B
T
2 Y )x+B1w−B2B

T
2 v, x(0) = ξ we infer from the equality

in Lemma 7.22 and the inequality Lemma 7.23

γ(w,−BT
2 Y x−BT

2 v)

= ξTY ξ + 2v(0)T ξ −
∫ ∞

0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t) + γ2w(t)Tw(t)dt

≤ ξTY ξ + 2v(0)T ξ − v(0)TZv(0)

= ξTY ξ + ξTZ−1ξ − ‖Z1/2v(0)− Z−1/2ξ‖2

≤ ξTY∞ξ.

Hence we obtain

max
w∈L2

min
u∈L2 s.t. x∈L2

γ(w, u) ≤ ξTY∞ξ.
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On the other hand choose v(0) = v∗ such that v∗ = Z−1ξ and choose w = γ−2BT
1 (I+Y Z)v.

Then using the inequality in Lemma 7.22 and the equality in Lemma 7.23 leads to

max
w∈L2

min
u∈L2 s.t. x∈L2

γ(w, u)

≥ min
u∈L2 s.t. x∈L2

γ(γ−2BT
1 (I + Y Z)v, u)

≥ ξTY ξ + 2vT∗ ξ −
∫ ∞

0

v(t)TB2B
T
2 v(t)− 2v(t)TB1w(t) + γ2w(t)Tw(t)dt

= ξTY ξ + 2vT∗ ξ + vT∗ Zv∗ = ξTY∞ξ.

This proves the claim.

The inner minimization of the u-player can be confined to stabilizing static state-feedback

strategies without changing the value. This should be surprising in view of the structure

of the optimal u-strategy for a fixed disturbance w ∈ L2 as described in Lemma 7.22!

Theorem 7.27 Suppose that Hypothesis 7.15 holds. Then the following equation holds:

ξTY∞ξ = min
u=Fx, eig(A+B2F )⊂C−

sup
w∈L2

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt

= sup
w∈L2

inf
u=Fx, eig(A+B2F )⊂C−

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt.

In game-theory, this means that the game with dynamics (SY) and with w playing finite

energy open-loop strategies while u plays stabilizing static state-feedback strategies has

a value, and the value of the game equals ξTY∞ξ.

Proof. The first equation is just Theorem 7.20. In order to shorten notation, define for

w ∈ L2 and u = Fx with eig(A+B2F ) ∈ C−

ζ(w, u) :=

∫ ∞
0

‖z(t)‖2 − γ‖w(t)‖2dt.

For w ∈ L2 and u = Fx with eig(A+B2F ) ∈ C− arbitrary we trivially get

inf
u=Fx, eig(A+B2F )⊂C−

ζ(w, u) ≤ ζ(w, u).

And hence we obtain for arbitrary u = Fx such that eig(A+B2F ) ⊂ C−

sup
w∈L2

inf
u=Fx, eig(A+B2F )⊂C−

ζ(w, u) ≤ sup
w∈L2

ζ(w, u).

With Theorem 7.20 this leads to

sup
w∈L2

inf
u=Fx, eig(A+B2F )⊂C−

ζ(w, u) ≤ inf
u=Fx, eig(A+B2F )⊂C−

sup
w∈L2

ζ(w, u) = ξTY∞ξ.
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Let w ∈ L2 and choose F with eig(A+B2F ) ∈ C−. Then the solution of ẋ = (A+B2F )x+

B1w, x(0) = ξ is in L2, due to Young’s inequality for convolutions. Hence u = Fx ∈ L2

and

inf
u∈L2 s.t. x∈L2

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt ≤ inf
u=Fx, eig(A+B2F )⊂C−

ζ(w, u).

Taking the supremum over all w ∈ L2 implies with Theorem 7.26

ξTY∞ξ ≤ sup
w∈L2

inf
u=Fx, eig(A+B2F )⊂C−

∫ ∞
0

‖z(t)‖2 − γ2‖w(t)‖2dt ≤ ξTY∞ξ

and hence equality.

Note that the optimal strategies in Theorem 7.26 are generated by solving

v̇ = −(A−B2B
T
2 Y + γ−2(I + ZY )B1B

T
1 Y )Tv, v(0) = Z−1ξ,

ẋ = (A−B2B
T
2 Y )x+ (γ−2B1B

T
1 (I + Y Z)−B2B

T
2 )v, x(0) = ξ.

(7.51)

and with u = −BT
2 Y x−BT

2 v as well as w = γ−2BT
1 (I + Y Z)v.

Moreover we can exploit (7.50) wich reads more explicitly as

−Z[A+ γ−2(I + ZY )B1B
T
1 Y −B2B

T
2 Y ]TZ−1 = A+ γ−2B1B

T
1 Y∞ −B2B

T
2 Y∞.

The coordinate change η = Zv in the dynamics of the optimal strategies (7.51) leads then

to
η̇ = (A+ γ−2B1B

T
1 Y∞ −B2B

T
2 Y∞)η, η(0) = ξ

ẋ = Ax−B2B
T
2 Y (x− η) + (γ−2B1B

T
1 Y∞ −B2B

T
2 Y∞)η, x(0) = ξ.

Since ẋ− η̇ = (A−B2B
T
2 Y )(x− η) and x(0)− η(0) = 0, we infer x(t) = η(t) for all t ≥ 0.

Hence the worst-case disturbance and the optimal control are as well generated by static

state-feedback as

w = γ−2BT
1 (I + Y Z)v = γ−2BT

1 (Z−1 + Y )η = γ−2BT
1 Y∞x,

u = −BT
2 Y x−BT

2 v = −BT
2 Y x−BT

2 Z
−1η = −BT

2 Y∞.

This fact will help in the next section to parameterize all controllers that solve the H∞-

problem.

7.11 Interpretation and Parametrization of Controllers

In this section we want to give an interpretation of the controller constructed in Theorem

7.13 which solves the output-feedback H∞-problem.

Moreover we will parameterize all controllers that solve the output-feedback H∞-problem.

We will especially see that every such controllers equal Kpar ? Q for a fixed LTI system
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Kpar and a stable parameter Q with ‖Q‖∞ < γ.

In order to do so, we need again some preparations.

The following lemma reveals conditions under which external and internal stability are

equivalent.

Lemma 7.28 Let P and K be a generalized plant and a controller with the usual realiza-

tios. Suppose thatA− λI B2

C1 D12

 has full column rank for all λ ∈ C0 ∪ C+ (7.52)

and A− λI B1

C2 D21

 has full row rank for all λ ∈ C0 ∪ C+. (7.53)

Then K stabilizes P iff P ? K is stable.

If D12 has full column rank and D+
12 := (DT

12D12)−1DT
12 then (7.52) holds iff

(A−B2D
+
12C1, C1 −D12D

+
12C1) is detectable.

If D21 has full row rank and D+
21 := DT

21(D21D
T
21)−1DT

12 then (7.53) holds iff

(A−B1D
+
21C2, B1 −B1D

+
21D21) is stabilizable.

Also note that these properties are implied by controllability of (A,B1), observability of

(A,C1) and

DT
12

(
C1 D12

)
=
(

0 I
)

and

 B1

D21

DT
21 =

 0

I

 .

The last property was just (7.14). It is an exercise (Exercise 2) to prove Lemma 7.28 and

the properties above.

Definition 7.29 A transfer matrix G is said to be all-pass if it has no poles on the

imaginary axis and satisfies

G(iω)∗G(iω) = I for all ω ∈ [0,∞]. (7.54)

G is said to be inner if it is all-pass and stable.
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Analogously to inner transfer matrices G ∈ RH∞ is said to be co-inner if

G(iω)G(iω)∗ = I for all ω ∈ [0,∞].

Clearly a square transfer matrix G is inner if and only if G is co-inner. We will focus

on inner transfer matrices. The properties for co-inner transfer matrices can be obtained

by duality. Inner generalized plants P are very useful to us because of the properties in

Lemma 7.32, which is a characterization of stabilizing controllers K that achieve ‖P ?

K‖∞ < 1. They will appear when we modify the standard generalized plant with the

help of the “worst-case disturbance” −γ−2BT
1 Y∞x and the optimal control −BT

2 Y∞x.

At first we present two characterizations of inner transfer matrices.

Lemma 7.30 G is inner if and only if ‖Gu‖2 = ‖u‖2 for all u ∈ L2.

Proof. Suppose G is inner then also G(iω)∗G(iω) = I for all ω ∈ R. Let u ∈ L2 be

arbitrary. Since G is stable Gu ∈ L2 and we can use Parceval’s identity:

‖Gu‖2
2 =

∫ ∞
0

‖Gu(t)‖2dt

=
1

2π

∫ ∞
−∞
‖G(iω)û(iω)‖2dω

=
1

2π

∫ ∞
−∞

û(iω)∗G(iω)∗G(iω)û(iω)dω

=
1

2π

∫ ∞
−∞
‖û(iω)‖2dω = ‖u‖2

2.

Now suppose ‖Gu‖2 = ‖u‖2 for all u ∈ L2. Then G ∈ RH∞ and we get

‖G‖∞ = sup
0<‖u‖2<∞

‖Gu‖2

‖u‖2

= 1 (7.55)

We now show that

‖G(iω)x‖ = ‖x‖ for all x and all ω ∈ R.

Due to (7.55) we only need to show “≥”. Assume there exist ω0 and x0 with ‖G(iω0)x0‖ <
‖x0‖. Then the function u(t) = e−t(iω0 + 1)x0 ∈ L2 satisfies û(iω0) = x0. We can now

use Parceval’s identity as above to obtain

0 =

∫ ∞
−∞
‖û(iω)‖2 − ‖G(iω)û(iω)‖2dω

with ‖û(iω)‖2 − ‖G(iω)û(iω)‖2 ≥ 0 for all ω ∈ R and ‖û(iω0)‖2 − ‖G(iω0)û(iω0)‖2 > 0.

Since G is stable and due to continuity, this is a contradiction.

The polarisation identity now implies

〈y,G(iω)∗G(iω)x〉 = 〈y, x〉 for all x, y and all ω ∈ R
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and hence G(iω)∗G(iω) = I for all ω ∈ [0,∞].

Theorem 7.31 For G(s) = C(sI − A)−1B + D with eig(A) ⊂ C− let X denote the

observability Gramian, the unique solution of the Lyapunov equation ATX+XA+CTC =

0. Then G is inner if

BTX +DTC = 0 and DTD = I.

If (A,B) is controllable, the statement holds with “iff”.

Proof. Define G∗(s) := G(−s)T to infer G(iω)∗ = G∗(iω). Note that

G∗(s) has the realization

 −AT CT

−BT DT

 .
Therefore (7.54) holds iff the transfer matrix

G∗G =

 −AT CT

−BT DT

 A B

C D

 =


−AT CTC CTD

0 A B

−BT DTC DTD


equals the identity matrix I. A coordinate change with X implies that G∗G can also be

realized as 
−AT ATX +XA+ CTC XB + CTD

0 A B

−BT BTX +DTC DTD

 = H∗ +H +DTD

with H(s) = (BTX +DTC)(sI −A)−1B and H∗(s) := H(−s)T . If BTX +DTC = 0 and

DTD = I we get trivially G∗(iω)G(iω) = I for all ω ∈ [0,∞] and since G is stable by

assumption, G is inner.

If G is inner, we can conclude that H∗(iω) + H(iω) is constant for ω ∈ [0,∞]. Since H

and H∗ are strictly proper we obtain

0 = H∗(∞) +H(∞) = H∗(iω) +H(iω) = H(iω)∗ +H(iω)

for all ω ∈ R. Hence DTD = I.

As a next step we show that 0 = H(iω)∗ + H(iω) for all ω ∈ R implies H = 0. This

requires some arguments from complex analysis which can be read-off in any book on

complex analysis.

Choose arbitrary vectors u,v and set Ω := C\(eig(A) ∪ eig(−AT )). Then define the

analytic function f : Ω → C, f(z) = 〈u,H(z)v〉 and g : Ω → C, g(z) = 〈u,−H(−z)Tv〉.
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By assumption f equals g on C0 and hence f equals g on Ω. Since f is analytic on C+

and g is analytic on C−, f has an analytic continuation f̃ on C. Strict properness of H

implies f(z) → 0 for |z| → ∞ and the same holds for the continuation f̃ . Hence we can

conclude that f̃ is bounded on C and by Liouville f̃ is constant on C. Using again that

H is strict proper implies that f̃ vanishes on C. Hence 〈u,H(z)v〉 = 0 for all z ∈ C and

all u, v which means H = 0.

Now assume there exists x0 with (BTX + DTC)x0 6= 0. By controllability of (A,B) we

find a smooth u such that the solution of ẋ = Ax+Bu satisfies x(1) = x0. We can make

sure that u ∈ L2. Then y(1) = (BTX + DTC)x0 6= 0. On the other hand we get with

Parceval

‖y‖2
2 =

∫ ∞
0

‖Hu(t)‖2dt

=
1

2π

∫ ∞
−∞
‖H(iω)û(iω)‖2dω = 0.

Since y is also continuous, this means y(t) = 0 for all t ∈ [0,∞). This is a contradiction.

The proof also shows that G is inner if and only if G(−z)TG(z) = I for all z ∈ C.

If a generalized plant is inner and the transfer function from w to y has a stable inverse,

stabilizing controllers that achieve an H∞-norm bound 1 are very special: they must be

contained in the open unit ball of RH∞. The converse holds as well.

Lemma 7.32 Consider the inner generalized plant z

y

 = P

 w

u

 =

 P11 P12

P21 P22

 w

u

 with P−1
21 ∈ RH∞.

Then the transfer matrix K stabilizes P and achieves ‖P ? K‖∞ < 1 if and only if

K ∈ RH∞ and ‖K‖∞ < 1.

This result is instrumental for parameterizing all suboptimal controllers.

Proof. “⇐”: Since P is inner, we can conclude that ‖P‖∞ = 1 and hence

‖P22‖∞ ≤ ‖P‖∞ = 1.

We can apply Theorem 4.10 to obtain stability of (I − P22K)−1. Since K and P are also

stable K internally stabilizes P .

Let ‖K‖∞ ≤ γ with γ ∈ (0, 1) and define κ = ‖P−1
21 (I − P22K)‖∞. Now choose any

ω ∈ [0,∞] and any complex vector x. Then z = (P ? K)(iω)x satisfies, with y =
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(I − P22(iω)K(iω))−1P21(iω)x the relations z

y

 =

 P11(iω) P12(iω)

P21(iω) P22(iω)

 x

K(iω)y

 . (7.56)

Since P (iω)∗P (iω) = I, we infer

‖z‖2 + ‖y‖2 = ‖x‖2 + ‖K(iω)y‖2 ≤ ‖x‖2 + γ2‖y‖2.

Since x = P21(iω)−1(I−P22(iω)K(iω))y we have ‖x‖2 ≤ κ2‖y‖2 and thus, due to γ2−1 < 0

and κ > 0,

‖z‖2 ≤ [1 + (γ2 − 1)κ−2]x‖2.

Since x, ω were arbitrary, we get ‖(P ? K)(iω)‖ < 1 for all ω and hence ‖P ? K‖∞ < 1.

“⇒”: Suppose supω∈[0,∞] ‖K(iω)‖ ≥ 1. Then we can choose ω ∈ [0,∞] such that iω

is not a pole of K and some complex vector y 6= 0 with ‖K(iω)y‖ ≥ ‖y‖. If defining

x := P21(iω)−1(I − P22(iω)K(iω))y and z := (P ? K)(iω)x, the relation (7.56) holds

again. This now implies

‖z‖2 + ‖y‖2 = ‖x‖2 + ‖K(iω)y‖2 ≥ ‖w‖2 + ‖y‖2

and thus ‖(P ?K)(iω)x‖ = ‖z‖ ≥ ‖x‖. We infer ‖(P ?K)(iω)‖ ≥ 1, which in turn means

‖P ? K‖∞ ≥ 1, a contradiction.

We conclude ‖K(iω)‖ < 1 for all ω ∈ [0,∞]. In particular, K has no poles in C0. Since

P is inner, it trivially satisfies ‖P‖∞ ≤ 1. Since K stabilizes P we can conclude stability

of K by using Lemma 4.6.

We now re-describe the generalized plant P . Therefore let P be as usual

ẋ = A x+B1 w +B2 u

z = C1x+D11w +D12u

y = C2x+D21w +D22u

under the following hypothesis.

Hypothesis 7.33 Suppose that

(A,B2) is stabilizable and (A,C2) is detectable. (OF1)

DT
12

(
C1 D12

)
=
(

0 I
)

and

 B1

D21

DT
21 =

 0

I

 . (OF2)

D11 = 0 and D22 = 0. (OF3)

(A,C1) is observable and (A,B1) is controllable. (OF4)
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Moreover suppose that there exist Y∞ ≥ 0 with

ATY∞ + Y∞A+ Y∞(γ−2B1B
T
1 −B2B

T
2 )Y∞ + CT

1 C1 = 0, (7.57)

eig(A+ (γ−2B1B
T
1 −B2B

T
2 )Y∞) ⊂ C− (7.58)

with γ > 0.

Lemma 7.17 motivates to introduce the new disturbance/control variable

d = w − γ−2BT
1 Y∞x and v = u− F∞x, F∞ := −BT

2 Y∞ (7.59)

for the generalized plant P if ignoring y. Note that d is the deviations of the worst case

disturbance γ−2BT
1 Y∞x and that v is the deviation of the optimal control −BT

2 Y∞x in

the sense of Lemma 7.18, Lemma 7.19 and Theorem 7.20. For x(0) = 0 and trajectories

of finite energy, Lemma 7.17 implies with T →∞ that

‖z‖2
2 + γ2‖d‖2

2 = γ2‖w‖2
2 + ‖v‖2

2.

This means that the following system is inner:

G :


ẋ

z

γd

 =


A+B2F∞ γ−1B1 B2

C1 +D12F∞ 0 D12

−γ−1BT
1 Y∞ I 0




x

γw

v

 . (7.60)

It is indeed possible to algebraically verify the following result.

Lemma 7.34 Suppose that Hypothesis 7.33 holds. Then G defined in (7.60) satisfies all

hypothesis of Lemma 7.32.

Proof. Let G denote the transfer matrix of (7.60) partioned accordingly. Since A +

B2F∞+γ−2B1B
T
1 Y∞ is Hurwitz and (7.57) holds, we infer as already done eig(A+B2F∞) ⊂

C− with Theorem 7.9 as in the proof of Lemma 7.16. Thus we get

G ∈ RH∞ and G−1
21 =

A+B2F∞ + γ−2B1B
T
1 Y∞ γ−1B1

γ−1BT
1 Y∞ I

 ∈ RH∞.
Due to (C1 + D12F∞)T (C1 + D12F∞) = CT

1 C1 + Y∞B2B
T
2 Y∞, the ARE for Y∞ can be

written as

(A+B2F∞)TY∞ + Y∞(A+B2F∞) +

 C1 +D12F∞

−γ−1BT
1 Y∞

T  C1 +D12F∞

−γ−1BT
1 Y∞

 = 0.
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A B1 B2

C1 0 D12

C2 D21 0


P

K

uy

wz

A+ γ−2B1B

T
1 Y∞ B1 B2

−F∞ 0 I

C2 D21 0


P̂

K

y u


A+B2F∞ γ−1B1 B2

C1 +D12F∞ 0 D12

−γ−1BT
1 Y∞ I 0


G

γ−1

d

γd

v

γwz

Figure 60: Re-description of the generalized plant P .

Hence Y∞ is the observability Gramian corresponding to G. Moreover we trivially have γ−1BT
1

BT
2

Y∞ +

 0 I

DT
12 0

 C1 +D12F∞

−γ−1BT
1 Y∞

 = 0

and DT
12D12 = I. Hence G is inner by Theorem 7.31.

If we apply (7.59) to P while ignoring z, we optain

P̂ :


ẋ

v

y

 =


A+ γ−2B1B

T
1 Y∞ B1 B2

−F∞ 0 I

C2 D21 0



x

d

u

 . (7.61)

By the mere definitions of the systems (7.60)-(7.61), their interconnection (both uncon-

trollend and controlled) as depicted in Figure 60 just constitutes another description of

the original generalized plant P .

Similarly to P , G also satisfies the properties of Lemma 7.28. Then a direct application

of Lemma 7.32 with G leads to the following key relation.

Lemma 7.35 Suppose that Hypothesis 7.33 holds. Then the transfer matrix K stabilizes

P with ‖P ? K‖∞ < γ iff P̂ ? K is stable with ‖P̂ ? K‖∞ < γ.
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Proof. Due to (OF2) and (OF4) P satisfies the hypothesis of Lemma 7.28. The same is

true for G. Since

(A+B2F∞ −B2D
+
12(C1 +D12F∞), C1 +D12F∞ −D12D

+
12(C1 +D12F∞)) = (A,C1)

is detectable and

(A+B2F∞ + γ−2B1B
T
1 Y∞, 0)

is stabilizable.

Now suppose K stabilizes P with ‖P ? K‖∞ < γ. Then we get as depicted in Figure 60

(P ? K)γ−1 = G ? K̂ (7.62)

for K̂ := (P̂ ? K)γ−1. Hence G ? K̂ ∈ RH∞ with ‖G ? K̂‖∞ < 1. By Lemma 7.28, K̂

stabilizes G. Then Lemma 7.32 implies that K̂ is stable and ‖K̂‖∞ < 1. Hence P̂ ? K is

stable with ‖P̂ ? K‖∞ < γ.

Conversely, P̂ ?K ∈ RH∞ and ‖P̂ ?K‖∞ < γ implies for K̂ := (P̂ ?K)γ−1 that K̂ ∈ RH∞
and ‖K̂‖∞ < 1. By Lemma 7.32, K̂ stabilizes G with ‖G ? K̂‖∞ < 1. By (7.62),

P ? K ∈ RH∞ with ‖P ? K‖∞ < γ. By Lemma 7.28, K also stabilizes P .

As a next step we express the conditions in Theorem 7.13 as follows.

Lemma 7.36 Suppose that (OF1) - (OF4) hold. Then there exist X∞ ≥ 0 and Y∞ ≥ 0

with

AX∞ +X∞A
T +X∞(γ−2CT

1 C1 − CT
2 C2)X∞ +B1B

T
1 = 0

eig(A+X∞(γ−2CT
1 C1 − CT

2 C2)) ⊂ C−

ATY∞ + Y∞A+ Y∞(γ−2B1B
T
1 −B2B

T
2 )Y∞ + CT

1 C1 = 0

eig(A+ Y∞(γ−2B1B
T
1 −B2B

T
2 )) ⊂ C−

and

ρ(X∞Y∞) < γ2

if and only if there exists Y∞ ≥ 0 and X̂∞ ≥ 0 with

ATY∞ + Y∞A+ Y∞(γ−2B1B
T
1 −B2B

T
2 )Y∞ + CT

1 C1 = 0

eig(A+ Y∞(γ−2B1B
T
1 −B2B

T
2 )) ⊂ C−

and, for Â := A+ γ−2B1B
T
1 Y∞ and F∞ := −BT

2 Y∞,

ÂX̂∞ + X̂∞Â
T + X̂∞(γ−2F T

∞F∞ − CT
2 C2)X̂∞ +B1B

T
1 = 0

eig(Â+ X̂∞(γ−2F T
∞F∞ − CT

2 C2)) ⊂ C−.

The transformation is achieved with X̂∞ = (X−1
∞ − γ−2Y∞)−1.
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The two decoupled AREs with coupled solutions are thus rewritten into two coupled

AREs whose solutions are not coupled any more. More interestingly, the ARE for X̂∞
admits an important interpretation!

Proof. “⇒”: Due to (OF4) X∞ and Y∞ are invertible. We can write the given ARE’s as

ATX−1
∞ +X−1

∞ A+X−1
∞ B1B

T
1 X

−1
∞ + γ−2CT

1 C1 − CT
2 C2 = 0

and

AT (γ−2Y∞) + (γ−2Y∞)A+ (γ−2Y∞)B1B
T
1 (γ−2Y∞)− γ−2F T

∞F∞ + γ−2CT
1 C1 = 0.

We can now apply Lemma 7.24 to ∆ = X−1
∞ − γ−2Y∞ and get

ÂT∆ + ∆Â+ ∆B1B
T
1 ∆ + γ−2F T

∞F∞ − CT
2 C2 = 0 (7.63)

with Â := A + γ−2B1B
T
1 Y∞. Since Y∞ is positive definite, it has a positive def-

inite square root. Hence we can use γ2 > ρ(X∞Y∞) = ρ(Y
1/2
∞ X∞Y

1/2
∞ ) to obtain

λmin(Y
−1/2
∞ X−1

∞ Y
−1/2
∞ ) > γ−2 since X∞ is invertible. This implies

∆ = X−1
∞ − γ−2Y∞ = Y 1/2

∞ (Y −1/2
∞ X−1

∞ Y −1/2
∞ − γ−2I)Y 1/2

∞ > 0.

Now observe that

Â+B1B
T
1 ∆ = A+B1B

T
1 X

−1
∞ = X∞(−AT − (γ−2CT

1 C1 − CT
2 C2)X∞)X−1

∞

is anti-stable. Hence we can conclude with X̂∞ := ∆−1 > 0 that

Â+ X̂∞(γ−2F T
∞F∞ − CT

2 C2) = ∆−1(−ÂT −∆B1B
T
1 )∆

is Hurwitz. Together with (7.63) this completes “if”.

“⇐”: (OF4) implies again that Y∞ and X̂∞ are invertible since (Â, B1) is controllable.

Then X̃∞ := γ−2Y∞ + X̂−1
∞ > 0 solves the ARE

AT X̃∞ + X̃∞A+ X̃∞B1B
T
1 X̃∞ + γ−2CT

1 C1 − CT
2 C2 = 0

Now set X∞ := X̃−1
∞ > 0 to see that X∞ solves the desired ARE. As before since eig(Â+

X̂∞(γ−2F T
∞F∞ − CT

2 C2)) ⊂ C− we can conclude eig(A + X∞(γ−2CT
1 C1 − CT

2 C2) ⊂ C−.

Finally observe that

0 < X̂−1
∞ = X−1

∞ − γ−2Y∞ = Y 1/2
∞ (Y −1/2

∞ X−1
∞ Y −1/2

∞ − γ−2I)Y 1/2
∞ .

Since Y
1/2
∞ > 0, this implies λmin(Y

−1/2
∞ X−1

∞ Y
−1/2
∞ ) > γ−2. Hence we can conclude γ2 >

ρ(Y
1/2
∞ X∞Y

1/2
∞ ) = ρ(X∞Y∞).
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7.11.1 Interpretation of the Output-Feedback Controller

Let us assume that there exists a K stabilizing P with ‖P ?K‖∞ < γ. By Theorem 7.13,

we can construct the central controller. We are now ready to provide an interpretation

of this controller and to prove that it really solves the H∞-problem. By Lemma 7.35,

the latter requires to show that the controller in Theorem 7.13 renders P̂ ?K stable with

‖P̂ ? K‖∞ < γ.

The optimal state-feedback controller for P̂ is u = F∞x (with optimal value zero). If

only y is measured, one could try to reconstruct the required control action with an

H∞-observer for P̂ with the structure

˙̂x = Âx̂+B2u+ L(C2x̂− y), û = F∞x̂,

and then control P̂ with u = û. Theorem 7.10 and Lemma 7.36 motivate to choose the

observer gain L̂∞ = −X̂∞CT
2 . This leads to the controller

˙̂x = (Â+ L̂∞C2)x̂+B2u− L̂∞y, u = F∞x̂. (7.64)

Due to X̂∞ = ZX∞ = (I − γ−2X∞Y∞)−1X∞, this is exactly the controller in Theorem

7.13.

If we introduce the “worst-case disturbance” into the original generalized plant by w =

d+ γ−2BT
1 Y∞x, we obtain

ẋ

z

y

 =


A+ γ−2B1B

T
1 Y∞ B1 B2

C1 0 D12

C2 D21 0



x

d

u

 .

This leads to the following interpretation of the central controller:

The output-feedback H∞-controller results from replacing u in the H∞-state-feedback

controller u = F∞x with the estimate û, obtained by an H∞-observer for the output F∞x

of the generalized plant “in the presence of the worst-case disturbance γ−2BT
1 Y∞x”.

This is often called the separation principle in H∞-theory. For γ = ∞, it reduces to the

classical separation principle for H2-controllers, since then the “worst-case disturbance”

vanishes.

We still owe the proof that the constructed controller (7.64) based on the solutions of the

Riccati equations does indeed solve the H∞-problem.

Lemma 7.37 Suppose that Hypothesis 7.33 holds and that there exists X∞ ≥ 0 with

AX∞ +X∞A
T +X∞(γ−2CT

1 C1 − CT
2 C2)X∞ +B1B

T
1 = 0

eig(A+X∞(γ−2CT
1 C1 − CT

2 C2)) ⊂ C−
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and

ρ(X∞Y∞) < γ2.

Moreover let Â = A + γ−2B1B
T
1 , X̂∞ = (X−1

∞ − γ−2Y∞)−1, L̂∞ = −X̂∞CT
2 and F∞ =

−BT
2 F∞. Then the controller K defined by

˙̂x = (Â+ L̂∞C2)x̂+B2u− L̂∞y, u = F∞x̂.

stabilizes P and ensures ‖P ? K‖∞ < γ.

Proof. If interconnecting P̂ from (7.61) with this controller we obtain
ẋ

˙̂x

v

 =


Â B2F∞ B1

−L̂∞C2 Â+ L̂∞C2 +B2F∞ −L̂∞D21

−F∞ F∞ 0



x

x̂

d

 .

The standard transformation into the error dynamics leads to
Â+B2F∞ B2F∞ B1

0 Â+ L̂∞C2 −(B1 + L̂∞D21)

0 F∞ 0

 =

 Â+ L̂∞C2 −(B1 + L̂∞D21)

F∞ 0

 .
Now set X := X̂∞. Then Lemma 7.36 implies

ÂTX +XÂ+XB1B
T
1 X + γ−2F T

∞F∞ − CT
2 C2 = 0

eig(Â+B1B
T
1 X) ⊂ C+.

The last statement follows as usual from

Â+B1B
T
1 X = X−1(ÂT + (γ−2F T

∞F∞ − CT
2 C2)X̂∞)X

since Â+X̂∞(γ−2F T
∞F∞−CT

2 C2) is Hurwitz. Moreover observe that (Â, C2) is detectable,

B1D
T
21 = 0 and D21D

T
21 = I. Theorem 7.10 implies

eig(Â+ L̂∞C2) ⊂ C− and ‖F∞(sI − Â− L̂∞C2)−1(B1 + L̂∞D21)‖∞ < γ.

Now Lemma 7.35 finishes the proof.

7.11.2 Controller Parameterization

Let us go further and parameterize all suboptimal H∞-controllers for P . The key technical

idea is to dualize and re-describe P̂ as done above for P . Let us first transpose P̂ to obtain

P̃ :


˙̃x

z̃

ỹ

 =


ÂT −F T

∞ CT
2

BT
1 0 DT

21

BT
2 I 0



x̃

w̃

ũ
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Next, with X̂∞ we introduce the new variables

d̃ = w̃ + γ−2F∞X̂∞x̃ and ṽ = ũ− L̂T∞x̃, L̂∞ = −X̂∞CT
2

to arrive at the system

G̃ :


ẋ

z̃

γd̃

 =


ÂT + CT

2 L̂
T
∞ −γ−1F T

∞ CT
2

BT
1 +DT

21L̂
T
∞ 0 DT

21

γ−1F∞X̂∞ I 0




x̃

γw̃

ṽ

 .

Due to the ARE for X̂∞ also G̃ satisfies the properties in Lemma 7.32. Moreover P̃ is the

feedback interconnection of G̃ with

P̌ :


˙̃x

ṽ

ỹ

 =


ÂT − γ−2F T

∞F∞X̂∞ −F T
∞ CT

2

L̂T∞ 0 I

BT
2 + γ−2F∞X̂∞ I 0



x̃

d̃

d̃

 .

Let us “transpose back” which results in

Ptmp =


Â− γ−2F T

∞F∞ −L̂∞ B2 + γ−2X̂∞F
T
∞

−F∞ 0 I

C2 I 0

 .
Just using the fact that the H∞-norm of a transfer matrix stays invariant under transpo-

sition, we obtain the following result.

Lemma 7.38 Suppose that Hypothesis 7.33 holds and that there exists some X̂∞ ≥ 0

with

ÂX̂∞ + X̂∞Â
T + X̂∞(γ−2F T

∞F∞ − CT
2 C2)X̂∞ +B1B

T
1 = 0

eig(Â+ X̂∞(γ−2F T
∞F∞ − CT

2 C2)) ⊂ C−.

for Â := A+ γ−2B1B
T
1 Y∞ and F∞ := −BT

2 Y∞.

Then the LTI controller K renders P̂ ? K stable and achieves ‖P̂ ? K‖∞ < γ if and only

if Ptmp ? K ∈ RH∞ with ‖Ptmp ? K‖∞ < γ.

Proof. First we need to verify some technical properties.

Since Â+B2F∞ is Hurwitz, the pair (Â, B2) is stabilizable. Set as before L̂∞ := −X̂∞CT
2 .

Then (Â, C2) is detectable, since Â + L̂∞C2 is Hurwitz by Theorem 7.10. Hence P̂ is a

generalized plant.

Since B1D
+
21 = B1D

T
21(D21D

T
21)−1 = 0, (Â − B1D

+
21C2, B1 − B1D

+
21D21) = (Â, B1) is

stabilizable by (OF4). Moreover (Â+B2F∞, 0) is clealy detectable. Hence P̂ satisfies all

hypothesis in Lemma 7.28.
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The realization of P̃ is the transpose of that of P̂ . Hence P̃ is also a generalized plant

and its realization satisfies the hypothesis in Lemma 7.28.

Next set H := (DT
21)+(BT

1 +DT
21L̂

T
∞). Then H = (D21D

T
21)−1D21(BT

1 +DT
21L̂

T
∞) = L̂T∞, by

(OF2). Moreover (ÂT +CT
2 L̂

T
∞−CT

2 H, (B
T
1 +DT

21L̂
T
∞)−DT

21H) = (ÂT , BT
1 ) is detectable

and (ÂT+CT
2 L̂

T
∞−γ−2F T

∞F∞X̂∞, 0) is stabilizable, since eig(Â+X̂∞(γ−2F T
∞F∞−CT

2 C2)) ⊂
C−. Further since ÂT +CT

2 L̂
T
∞ is Hurwitz, G̃ is a generalized plant. Hence the realization

of G̃ satisfies the hypothesis in Lemma 7.28.

Next we show that G̃ satisfies the hypothesis of Lemma 7.32. We can use Theorem 7.31

to show that G̃ is inner since eig(ÂT + CT
2 L̂

T
∞) ⊂ C−.

First observe that

G̃−1
21 =

 ÂT + CT
2 L̂

T
∞ − γ−2F T

∞F∞X̂∞ γ−1F T
∞

γ−1F∞X̂∞ I

 ∈ RH∞
since eig(Â+ X̂∞(γ−2F T

∞F∞ − CT
2 C2)) ⊂ C− by assumption.

Second, due to (OF2), L̂∞ = −X̂∞CT
2 and the ARE for X̂∞ we have

(ÂT + CT
2 L̂

T
∞)T X̂∞ + X̂∞(ÂT + CT

2 L̂∞) +

BT
1 +DT

21L̂
T
∞

γ−1F∞X̂∞

T BT
1 +DT

21L̂
T
∞

γ−1F∞X̂∞


=(ÂT + CT

2 L̂
T
∞)T X̂∞ + X̂∞(ÂT + CT

2 L̂∞) +B1B
T
1 + L̂∞L̂

T
∞ + γ−2X̂∞F

T
∞F∞X̂∞

=ÂX̂∞ + X̂∞Â
T − 2X̂∞C

T
2 C2X̂∞ +B1B

T
1 + L̂∞L̂

T
∞ + γ−2X̂∞F

T
∞F∞X̂∞

=0.

This means that X̂∞ is the observability Gramian for G̃.

Third, we trivially have−γ−1F∞

C2

 X̂∞ +

 0 I

D21 0

BT
1 +DT

21L̂
T
∞

γ−1F∞X̂∞

 = 0

and  0 DT
21

I 0

T  0 DT
21

I 0

 = I.

Hence G̃ is inner.

For transfer matrices P and K with proper (I − P22K)−1, observe that

(P ? K)T = P T
11 + P T

21(I −KTP T
22)−1KTP T

12

= P T
11 + P T

21K
T (I − P T

22K
T )−1P T

12 = P T ? KT .

Therefore P ? K ∈ RH∞ with ‖P ? K‖∞ < 1 iff P T ? KT ∈ RH∞ with ‖P T ? KT‖∞ < 1
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This allows us to argue as follows: P̂ ? K ∈ RH∞ with ‖P̂ ? K‖∞ < γ iff P̃ ? KT ∈ RH∞
with ‖P̃ ? K‖∞ < γ iff (Lemma 7.28 for P̃ ) KT stabilizes P̃ with ‖P̃ ? KT‖∞ < γ iff

(Lemma 7.35 for P̃ , G̃ and P̌ ) P̌ ? KT ∈ RH∞ with ‖P̌ ? K‖∞ < γ iff (transposing)

Ptmp ? K ∈ RH∞ with ‖Ptmp ? K‖∞ < γ.

The system Ptmp has a very particular structure, which allows us to solve Q = Ptmp ? K

for K as K = Q ? P−1
tmp and vice versa.

Together with Lemma 7.38, this has the following implication

K stabilizes P with ‖P ? K‖∞ < γ

⇔
Ptmp ? K ∈ RH∞ with ‖Ptmp ? K‖∞ < γ

⇔
K = Q ? P−1

tmp for some Q ∈ RH∞ with ‖Q‖∞ < γ.

Remark 7.39 All γ-suboptimal H∞-controllers for P can be expressed as an LFT of a

fixed system P−1
tmp with a parameter Q that is only constrained to be stable and bounded

in H∞-norm by γ. This means that Q varies in the open RH∞-ball of radius γ.

Theorem 7.40 Under the assumptions (OF1)- (OF4), let there exist an LTI controller

K which stabilizes P with ‖P ? K‖∞ < γ. With X∞ and Y∞ as in Theorem 7.13 define

Z∞ := (I − γ−2X∞Y∞)−1 and F∞ := −BT
2 Y∞, L∞ := −X∞CT

2

as well as

Kpar :=


A+ γ−2B1B

T
1 Y∞ +B2F∞ + Z∞L∞C2 −Z∞L∞ Z∞B2

F∞ 0 I

−C2 I 0

 .
Then K stabilizes P with ‖P ? K‖∞ < γ if and only if K = Kpar ? Q with the parameter

Q ∈ RH∞ satisfying ‖Q‖∞ < γ.

This explains the terminology for the central controller in Theorem 7.13:

Kpar ? 0 =

A+ γ−2B1B
T
1 Y∞ +B2F∞ + Z∞L∞C2 −Z∞L∞

F∞ 0

 .
Proof. The system Ptmp has a very particular structure: It has a proper inverse since

Ptmp(∞) is invertible and the (2, 2)-block of Ptmp and the (1, 1)-block of P−1
tmp are strictly
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proper. Hence for LTI systems K and Q, the LFT’s Ptmp ?K and Q?P−1
tmp are well-posed

and LTI.

Moreover the (1, 2) and the (2, 1) blocks of Ptmp are square and invertible. By computation

one verifies that Q = Ptmp ?K implies K = Q?P−1
tmp. By symmetry, K = Q?P−1

tmp implies

Q = Ptmp ? K.

To prove the first implication, fix λ ∈ C such that it is not a pole of Ptmp, P−1
tmp,

(Ptmp,21)−1, K, Q and any complex vector y. Define u := K(λ)y and z := Q(λ)w

with w := Ptmp,21(λ)−1(I − Ptmp21(λ)K(λ))y. Hence y = Ptmp,21(λ)w + Ptmp,22(λ)u and

z = Ptmp,11(λ)w + Ptmp,12(λ)u. These satisfy z

y

 = Ptmp(λ)

 w

u

⇔
 w

u

 = Ptmp(λ)−1

 z

y

 .

Hence K(λ)y = u = [Q(λ) ? Ptmp(λ)−1]y, i.e. K(λ) = Q(λ) ? Ptmp(λ)−1 since y is free.

Thus K = Q ? P−1
tmp almost everywhere.

It remains to verify the formula for Kpar. Note that B2 +γ−2X̂∞F
T
∞ = (I+γ−2X̂∞Y∞)B2

and

I + γ−2X̂∞Y∞ = X̂∞(X̂−1
∞ + γ−2Y∞) = X̂∞X

−1
∞ = Z∞.

We hence clearly have

P−1
tmp =


Â+B2F∞ + L̂∞C Z∞B2 −L̂∞

−C2 0 I

F∞ I 0

 .
Finally, the upper Q ? P−1

tmp is easily translated into the lower LFT as in

Q ? P−1
tmp =


Â+B2F∞ + L̂∞C2 −L̂∞ Z∞B2

F∞ 0 I

−C2 I 0

 ? Q.
This completes the proof.

Exercises

1) Consider the standard ARE ATX+XA+XRX+Q = 0 for real matrices A, R = RT

and Q = QT and possibly non-Hermitian complex unknowns X.

If X is a stabilizing solution of the ARE, show that X = XT , X = X and that X

is unique.
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2) Prove Lemma 7.28 and show that

a) If D12 has full column rank and D+
12 := (DT

12D12)−1DT
12 then (7.52) holds iff

(A−B2D
+
12C1, C1 −D12D

+
12C1) is detectable.

b) If D21 has full row rank and D+
21 := DT

21(D21D
T
21)−1DT

12 then (7.53) holds iff

(A−B1D
+
21C2, B1 −B1D

+
21D21) is stabilizable.

3) Let (A,B) ∈ Rn×(n+m) be stabilizable. With Q = QT , R = RT ≥ 0 define

q(x, u) :=

 x

u

T  Q S

ST R

 x

u

 .

For ξ ∈ Rn let U(ξ) be the set of all pieveweise continuous (p.c.) control functions

u ∈ L2[0,∞)m such that the trajectory of ẋ = Ax + Bu, x(0) = ξ satisfies x ∈
L2[0,∞)n. Consider the so-called indefinite LQ-problem with stability:

v(ξ) = inf{
∫ ∞

0

q(x(t), u(t))dt : ẋ(t) = Ax(t) +Bu(t), x(0) = ξ, u ∈ U(ξ)}.

Suppose that v(ξ) > −∞ for all ξ ∈ Rn.

a) Show that v(0) = 0.

b) Show that v satisfies the dissipation inequality

v(x(t1)) ≤
∫ t2

t1

q(x(t), u(t))dt+ v(x(t2)) for any trajectory and 0 ≤ t1 ≤ t2.

c) For 0 ≤ t1 ≤ t2 show that v satisfies the optimality principle

v(x(t1)) = inf
u p.c. on [t1,t2]

(∫ t2

t1

q(x(t), u(t))dt+ v(x(t2))

)
.

d) Show that v satisfies the parallelogramm identity and that there exists c > 0

with |v(ξ)| ≤ c‖ξ‖2 for all ξ ∈ Rn. Argue (without details) why there hence

exists a symmetric matrix K with v(ξ) = ξTKξ.

4) Let the hypothesis of Exercise 3 hold.

a) Show that K satisfies the linear matrix inequality (LMI)ATK +KA KB

BTK 0

+

 Q S

ST R

 ≥ 0. (7.65)

b) Show that X ≤ K if X = XT is any solution of the LMI.
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5) In addition to the conditions in Exercise 3 assume that R > 0.

a) Show that the cost of the original problem and the one with the data Q̃ 0

0 I

 :=

 I −SR−1

0 R−1/2

 Q S

ST R

 I 0

−R−1ST R−1/2


and

(Ã, B̃) := (A,B)

 I 0

−R−1ST R−1/2


are identical. How are close-to-optimal control functions related? Hence we

can assume w.l.o.g. that S = 0 and R = I, which is done from now on.

b) Show that X satisfies (7.65) if and only if it satisfies the ARI

ATX +XA−XBBTX +Q ≥ 0. (7.66)

c) For some C and T > 0 let P satisfy the Riccati differential equation Ṗ+ATP+

PA− PBBTP + CTC = 0 with P (T ) = 0 on [0, T ]. Show that

min
ẋ=Ax+Bu, x(0)=ξ,u p.c.

∫ T

0

‖Cx(t)‖2 + ‖u(t)‖2dt = ξTP (0)ξ.

d) If the minimum in c) is zero for all ξ ∈ Rn, show that C = 0.

e) Show that K even satisfies the ARE that corresponds to (7.66).

Hint: Choose C with CTC = ATK +KA−KBBTK +Q and exploit c), d)

and Exercise 3.

6) Consider the ARI ATX + XA − XBBTX + Q ≥ 0 and the corresponding ARE

for stabilizable (A,B) and Q = QT . All unknowns are real-symmetric. An ARE

solution Xs is called strong if it satisfies eig(A−BBTX) ⊂ C− ∪ C0.

a) If Xs is a strong solution, show that

ATX +XA−XBBTX +Q ≥ 0⇒ X ≤ Xs. (7.67)

Hint: Use the difference trick; Prove and work with the fact that ker(∆) for

∆ = X −Xs is (A−BBTXs)-invariant; continue to argue in coordinates such

that ∆ = diag(0,∆2) with invertible ∆2.

b) Conversely, if the ARE solution Xs satisfies (7.67), show that Xs is strong.

Hint: Use the difference trick and with a modal decomposition of A−BBTXs

to construct a solution of the ARE that contradicts (7.67).

c) Show that Xs is unique.

d) If the ARI has a solution, show that the ARE has a strong solution.
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e) If Q ≥ 0 show that the ARE has a strong solution and that it is positive

semi-definite.

7) Consider ẋ = Ax+B1w+B2u, z = C1x+D12u. Suppose that (A,B2) is stabilizable,

that (A,C1) has no unobservable modes in C0 and that

DT
12

(
C1 D12

)
=
(

0 I
)
.

Show that there exists some F with eig(A + B2F ) ⊂ C− and ‖(C1 + D12F )(sI −
A−B2F )−1B1‖∞ < γ if and only if there exists X ≥ 0 with

ATX +XA+X(γ−2B1B
T
1 −B2B

T
2 )X + CT

1 C1 = 0,

eig(A+ (γ−2B1B
T
1 −B2B

T
2 )X) ⊂ C−.

For “only if” display the C−-unobservable modes of (A,C1) in a normal form.

8) Consider ẋ = Ax+B1w+B2u, z = C1x+D12u. Suppose that (A,B2) is stabilizable

and that D12 andA− λI B2

C1 D12

 have full column rank for all λ ∈ C. (7.68)

Show that there exists some F with eig(A + B2F ) ⊂ C− and ‖(C1 + D12F )(sI −
A−B2F )−1B1‖∞ < γ if and only if the ARE

ATX+XA+γ−2XB1B
T
1 X−(XB2 +CT

1 D12)(DT
12D12)−1(BT

2 X+DT
12C1)+CT

1 C1 = 0

has a solution X ≥ 0 with

eig(A+ γ−2B1B
T
1 X −B2(DT

12D12)−1(BT
2 X +DT

12C1)) ⊂ C−.

Can (7.68) be relaxed to requiring the rank condition on C0 only?

9) View Y+(γ) in Theorem 7.9 as a function of γ > 0 on (γmin,∞), where γmin is the

infimal γ > 0 such that the anti-stabilizing solution of the ARE exists. Let γopt be

the optimal value of the state-feedback H∞-synthesis problem and let B1 6= 0.

a) Show that γmin = ‖C1(sI + A+ CT
1 C1Y )−1B1‖∞ > 0 with Y := Y+(∞).

b) Show that Y+(·) is non-decreasing and smooth on its domain of definition.

c) If Y+(γmin) > 0 show that the optimum is attained.

d) If Y+(γmin) 6> 0 show that Y+(γopt) ≥ 0 and Y+(γopt) 6> 0.

e) Under the latter hypothesis, any infimal sequence Fν for the optimal state-

feedback H∞-problem satisfies ‖Fν‖ → ∞ (i.e. is high-gain).

Hint: If not, assume (after taking a subsequence) that Fν converges to some

F∗. Show that eig(A + B2F∗) ⊂ C− ∪ C0, that (sI − A− B2F∗)
−1B1 is stable

and that ‖(C +D12F∗)(sI − A− B2F∗)
−1B1‖∞ = γopt. Modify F∗ to stabilize

A+B2F∗ without changing the norm.
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10) Let P be a generalized plant with the usual state-space realization satisfy (OF1),

(OF3) with D12, DT
21 of full column rank. Set Dc = (DT

12D12)−1DT
12 and Dr =

DT
21(D21D

T
21)−1.

a) Show that there exists some K stabilizing P with ‖P ?K‖∞ < 1 if and only if

there exist symmetric X and Y with X > 0, Y −X−1 > 0 and

(A−B2DcC1)Y + Y (A−B2DcC1)T + Y CT
1 (I −D12Dc)C1Y +B1B

T
1 −

−B2(DT
12D12)−1BT

2 < 0

(A−B1DrC2)TX +X(A−B1DrC2) +XBT
1 (I −DrD21)B1X + C1C

T
1 −

− C2(D21D
T
21)−1CT

2 < 0.

b) Let A be Hurwitz and Q = QT . For any α ∈ R show that ATX +XA+Q < 0

has a solution X = XT with X > αI.

c) Let D21 be square and A−B1D
−1
21 C2 be Hurwitz. Show that there exists some

K stabilizing P with ‖P ?K‖∞ < 1 if and only if there exists some Y > 0 with

(A−B2DcC1)Y + Y (A−B2DcC1)T + Y CT
1 (I −D12Dc)C1Y +B1B

T
1 −

−B2(DT
12D12)−1BT

2 < 0

11) Let the realization of the SISO stable g =

Ag Bg

Cg 1

, h =

Ah Bh

Ch 0

 be minimal

and suppose g has only zeros in C+ that are simple; they are denoted as z1, . . . , zk.

For γ > 0 consider the following model-matching problem:

There exists f ∈ RH∞ with ‖h− gf‖∞ < 1. (7.69)

Provide a solution along the following lines:

a) Set up a generalized plant to transform this problem to a standard H∞-problem

and give a solution with one Lyapunov inequality.

b) If X satisfies (Ag −BgCg)X −XAh−BgCh = 0, show that (7.69) holds if and

only if the solution of the following Lyapunov equation is positive definite:

(Ag −BgCg)Y + Y (Ag −BgCg)
T = BgB

T
g −XBhB

T
hX

T .

Hint: You can use X to transfer the “A”-matrix of the Lyapunov inequality

into block-diagonal form. Then one goes from the Lyapunov inequality to the

equation.

c) Show that w.l.o.g. it is possible to assume Ag − BgCg = diag(z1, . . . , zk) and

that Bg is the all-one vector.
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d) With the standard unit vector ej show that eTj XBh = h(zj). Derive a formula

for eTj Y ek.

e) Show that (7.69) holds iff the matrix with entries

1

zj + zk
− h(zj)h(zk)

zj + zk

is positive definite.

216



8 Robust Performance Synthesis

In the last Section we have dealt with designing a controller that achieves nominal per-

formance. The related problem of minimizing the H∞-norm of the controlled system has

been the subject of intensive research in the 1980’s which culminated in the very elegant

solution of this problem in terms of Riccati equations.

In view of our analysis results in Section 6, the design of controllers that achieve robust

stability and robust performance amounts to minimizing the SSV (with respect to a

specific structure) of the controlled system over all frequencies. Although this problem

has received considerable attention in the literature, the related optimization problem

has, until today, not found any satisfactory algorithmic solution.

Instead, a rather heuristic method has been suggested how to attack the robust per-

formance design problem which carries the name D/K-iteration or scalings/controller-

iteration. Although it cannot be theoretically justified that this technique does lead to

locally or even globally optimal controllers, it has turned out pretty successful in some

practical applications. This is reason enough to describe in this section the pretty simple

ideas behind this approach.

8.1 Problem Formulation

We assume that we have built the same set-up us for testing robust performance in Section

6: After fixing the performance signals, pulling out the uncertainties, and including all

required uncertainty and performance weightings, one arrives at the controlled uncertain

system as described by
z∆

z

y

 = P


w∆

w

u

 =


P11 P12 P13

P21 P22 P23

P31 P32 P33



w∆

w

u

 , u = Ky, w∆ = ∆z∆, ∆ ∈∆

under the Hypotheses 6.1. Let us again use the notation P∆ := S(∆, P ). The goal in this

section is to design a controller K which stabilizes P∆ and which leads to

‖S(P∆, K)‖ ≤ 1

for all uncertainties ∆ ∈∆.

In order to formulate again the robust performance analysis test, let us recall the ex-

tended block-structure

∆e :=


∆c 0

0 ∆̂c

 : ∆c ∈∆c, ∆̂c ∈ Cp2×q2 , ‖∆̂c‖ < 1
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where p2/q2 is the number of components of w/z respectively.

Then K achieves robust performance if it stabilizes the nominal system P and if it renders

the inequality

µ∆e(S(P,K)(iω)) ≤ 1 for all ω ∈ R ∪ {∞} (8.1)

satisfied.

Finding a K which achieves (8.1) cannot be done directly since not even the SSV itself

can be computed directly. The main idea is to achieve (8.1) by guaranteeing that a

computable upper bound on the SSV is smaller than one for all frequencies. Let us recall

that the set of scalings D that corresponds to ∆c for computing an upper bound is given

by all

D =



D1 0
. . .

Dnr

Dnr+1

. . .

Dnr+nc

d1I
. . .

0 dnf
I


where Dj are Hermitian positive definite matrices and dj are real positive numbers. The

class of scalings that corresponds to ∆e is then defined as

De :=


D 0

0 I

 > 0 | D ∈D

 .

Remarks. With choosing this class of scalings, we recall that we ignore the fact that the

uncertainty structure comprises real blocks. Moreover, the scaling block that corresponds

to the full block included for the performance channel in the extension is set (without loss

of generality) equal to the identity matrix.

With these class of scalings we have

µ∆e(S(P,K)(iω)) ≤ inf
D∈De

‖D−1S(P,K)(iω)D‖.

We conclude that any stabilizing controller which achieves

inf
D∈De

‖D−1S(P,K)(iω)D‖ ≤ 1 for all ω ∈ R ∪ {∞} (8.2)
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also guarantees the desired inequality (8.1). Hence instead of designing a controller that

reduces the SSV directly, we design one that minimizes the upper bound of the SSV which

is obtained with the class of scalings De: SSV design is, actually, upper bound design!

Let us slightly re-formulate (8.2) equivalently as follows: There exists a frequency depen-

dent scaling D(ω) ∈De such that

‖D(ω)−1S(P,K)(iω)D(ω)‖ < 1 for all ω ∈ R ∪ {∞}.

This leads us to the precise formulation of the problem that we intend to solve.

Robust performance synthesis problem. Minimize

sup
ω∈R∪{∞}

‖D(ω)−1S(P,K)(iω)D(ω)‖ (8.3)

over all controllers K that stabilize P , and over all frequency dependent scalings D(ω)

with values in the set De.

If the minimal value that can be achieved is smaller than one, we are done: We guarantee

(8.2) and hence also (8.1).

If the minimal value is larger than one, the procedure fails. Since we only consider

the upper bound, it might still be possible to push the SSV below one by a suitable

controller choice. Hence we cannot draw a definitive conclusion in this case. In practice,

one concludes that robust performance cannot be achieved, and one tries to adjust the

weightings in order to still be able to push the upper bound on the SSV below one.

8.2 The Scalings/Controller Iteration

Unfortunately, it is still not possible to minimize (8.3) over the controller K and the

frequency dependent scalings D(ω) together. Therefore, it has been suggested to iterate

the following two steps: 1) Fix the scaling function D(ω) and minimize (8.3) over all

stabilizing controllers. 2) Fix the stabilizing controller K and minimize (8.3) over all

scaling functions D(ω).

This procedure is called D/K-iteration and we use the more appropriate terminology

scalings/controller iteration. It does not guarantee that we really reach a local or even a

global minimum of (8.3). Nevertheless, in each step of this procedure the value of (8.3)

is reduced. If it can be rendered smaller than one, we can stop since the desired goal is

achieved. Instead, one could proceed until one cannot reduce the value of (8.3) by any of

the two steps.

Let us now turn to the details of this iteration.
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First Step. Set

D1(ω) = I

and minimize

sup
ω∈R∪{∞}

‖D1(ω)−1S(P,K)(iω)D1(ω)‖ = ‖S(P,K)‖∞

over all K that stabilize P . This is nothing but a standard H∞ problem! Let the optimal

value be smaller than γ1, and let the controller K1 achieve this bound.

After Step k we have found a scaling function Dk(ω) and a controller Kk that stabilizes

P and which renders

sup
ω∈R∪{∞}

‖Dk(ω)−1S(P,Kk)(iω)Dk(ω)‖ < γk (8.4)

for some bound γk satisfied.

Scalings optimization to determine Dk+1(ω). Given Kk, perform an SSV robust

performance analysis test. This amounts to calculating at each frequency ω ∈ R ∪ {∞}
the upper bound

inf
D∈De

‖D−1S(P,Kk)(iω)D‖ (8.5)

on the SSV. Typical algorithms also return an (almost) optimal scaling Dk+1(ω). This

step leads to a scaling function Dk+1(ω) such that

sup
ω∈R∪{∞}

‖Dk+1(ω)−1S(P,Kk)(iω)Dk+1(ω)‖ < γ̂k

for some new bound γ̂k.

Controller optimization to determine Kk+1. We cannot optimize (8.3) over K for

an arbitrary scaling function D(ω) = Dk+1(ω). This is the reason why one first has to fit

this scaling function by a real rational D̂(s) that is proper and stable, that has a proper

and stable inverse, and that is chosen close to D(ω) in the following sense: For a (small)

error bound ε > 0, it satisfies

‖Dk+1(ω)− D̂(iω)‖ ≤ ε for all ω ∈ R ∪ {∞}.

With D̂, one then solves the H∞-control problem

inf
K stabilizes P

‖D̂−1S(P,K)D̂‖∞

to find an almost optimal controller Kk+1. This step leads to a Kk+1 such that

sup
ω∈R∪{∞}

‖Dk+1(ω)−1S(P,Kk)(iω)Dk+1(ω)‖ < γk+1 (8.6)

holds for some new bound γk+1.
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We have arrived at (8.4) for k → k + 1 and can iterate.

Let us now analyze the improvements that can be gained during this iteration. During

the scalings iteration, we are guaranteed that the new bound γ̂k can be chosen with

γ̂k < γk.

However, it might happened that the value of (8.5) cannot be made significantly smaller

than γk at some frequency. Then the new bound γ̂k is close to γk and the algorithm is

stopped. In the other case, γ̂k is significantly smaller than γk and the algorithm proceeds.

During the controller iteration, one has to perform an approximation of the scaling func-

tion Dk+1(ω) by D̂(iω) uniformly over all frequencies with a real rational D̂(s). If the

approximation error is small, we infer that

sup
ω∈R∪{∞}

‖D̂−1(iω)S(P,K)(iω)D̂(iω)‖ ≈ sup
ω∈R∪{∞}

‖D−1
k+1(ω)S(P,K)(iω)Dk+1(ω)‖

for both K = Kk and K = Kk+1. For a sufficiently good approximation, we can hence

infer from (8.6) that

sup
ω∈R∪{∞}

‖D̂−1(iω)S(P,Kk)(iω)D̂(iω)‖ < γ̂k.

Since Kk+1 is obtained by solving an H∞-optimization problem, it can be chosen with

‖D̂−1S(P,Kk+1)D̂‖∞ ≤ ‖D̂−1S(P,Kk)D̂‖∞.

This implies

sup
ω∈R∪{∞}

‖D̂−1(iω)S(P,Kk+1)(iω)D̂(iω)‖ < γ̂k.

Again, if the approximation of the scalings is good enough, this leads to

sup
ω∈R∪{∞}

‖D−1
k+1(ω)S(P,Kk+1)(iω)Dk+1(ω)‖ < γ̂k.

Hence the bound γk+1 can be taken smaller than γ̂k. Therefore, we can conclude

γk+1 < γk.

Note that this inequality requires a good approximation of the scalings. In practice it

can very well happen that the new bound γk+1 cannot be made smaller than the previous

bound γk! In any case, if γk+1 can be rendered significantly smaller than γk, the algorithm

proceeds, and in the other cases it stops.

Under ideal circumstances, we observe that the sequence of bounds γk is monotonically

decreasing and, since bounded from below by zero, hence convergent. This is the only

convergence conclusion that can be drawn. There are no general implications about

the convergence of Kk or of the scaling functions Dk(ω), and no conclusions can be drawn

about optimality of the limiting value of γk.

Remarks.
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• The µ-tools support the fitting of D(ω) with rational transfer matrices D̂(iω). This

is done with GUI support on an element by element basis of the function D(ω),

where the user has control over the McMillan degree of the rational fitting function.

In addition, automatic fitting routines are available as well.

• Since D̂ and D̂−1 are both proper and stable, minimizing ‖D̂−1S(P,K)D̂‖∞ over K

amounts to solving a standard weighted H∞-problem. The McMillan degree of an

(almost) optimal controller is given by

2 ∗McMillan degree of D̂ + McMillan degree of P.

Keeping the order of K small requires to keep the order of D̂ small. Note that this

might be only possible at the expense of an large approximation error during the

fitting of the scalings. Again, no general rules can be given here and it remains to

the user to find a good trade-off between these two aspects.

• If the order of the controller is too large, one should perform a reduction along the

lines as described in the chapters 7 and 9 in [ZDG] and chapter 11 in [SP].

To learn about the practice of applying the scalings/controller we recommend to run the

himat-demo around the design of a pitch axis controller for the simple model of an airplane

which is included in the µ-Toolbox. This examples comprises a detailed description of

how to apply the commands for the controller/scalings iteration. Moreover, it compares

the resulting µ-controller with a simple loop-shaping controller and reveals the benefits

of a robust design.

Exercise

1) Consider the following simplified model of a distillation column

G(s) =
1

75s+ 1

 87.8 −86.4

108.2 −109.6


(with time expressed in minutes) in the tracking configuration of Figure 61. The

uncertainty weighting is given as

W (s) =

 s+0.1
0.5s+1

0

0 s+0.1
0.5s+1


and the real rational proper and stable ∆ with ‖∆‖∞ < 1 is structured as

∆(s) =

∆1(s) 0

0 ∆2(s)

 .
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Figure 61: Tracking interconnection of simplified distillation column.

a) Provide an interpretation of this uncertainty structure, and discuss how the

uncertainty varies with frequency.

b) Choose the decoupling controllers

Kβ(s) =
β

s
G(s)−1, β ∈ {0.1, 0.3, 0.5, 0.7}

Discuss in terms of step responses in how far these controller lead to a good

closed-loop response! Now choose the performance weightings

Wp(s) = α
s+ β

s+ 10−6
I, α ∈ [0, 1], β ∈ {0.1, 0.3, 0.5, 0.7}

with a small perturbation to render the pure intergrator stable. Test robust

stability, nominal performance, and robust performance of Kβ for α = 1 and

discuss.

Reveal that Kβ does not lead to good robust performance in the time-domain

by determining a simple real uncertainty which leads to bad step responses in

r → e.

c) Perform a two step scalings/controller iteration to design a controller that en-

forces robust peformance, possibly by varying α to render the SSV for robust

performance of the controlled system close to one. Discuss the resulting con-

troller in the frequency-domain and the time-domain, and compare it with the

decoupling controllers Kβ. Show that this controller exhibits a much better

time-response for the ‘bad’ disturbance constructed in the previous exercise.

Remark. You should make a sensible selection of all the plots that you might

collect during performing this exercise in order to nicely display in a non-repetitive

fashion all the relevant aspects of your design!
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9 Youla Jabr Bongiorno Kucera Parametrizations

Our main goal in this section is to parameterize all LTI controller K that stabilize a

given LTI generalized plant P . Theorem 9.16 will show that under some hypothesis K

stabilizes P iff there exist some stable Q with K = J ? Q. A state-space realization of

J is given in Hypothesis 9.15. To develop this result, we will start from a more general

setting. More precisely we will replace the set of stable systems RH∞ by an integral

domain R with unit 1 and replace the set of systems R(s), the real rational functions, by

F , the field of fractions corresponding to R. We introduce in Section 9.1 the algebraic

framework for such general systems and develop algebraic stabilization theory in Section

9.2. Afterwards the Youla parametrization (Theorem 9.13) allows us to parametrize all

stabilizing controllers for general systems and the double Bézout identity for LTI systems

in Section 9.3 allows us to give explicit state space realizations of the systems in Theorem

9.13 in the LTI case. This will finally lead to Theorem 9.16.

9.1 Algebraic Framework

Let R be an integral domain with unit 1. An integral domain is a nonzero commutative

ring in which the product of any two nonzero elements is nonzero. Moreover let F be the

corresponding field of fractions, which is the smallest field in which R can be embedded.

Sometimes F is denoted by Quot(R) or Frac(R). We denote the set of matrices with

entries in R by M(R) or Rm×n, if we want to specify the dimension of the matrices.

Analogously we denote the set of matrices with entries in F by M(F ) or Fm×n. The

identity matrix is denoted as I. If dimensions are not specified and if multiplying or

adding matrices, dimensions are assumed to be compatible. In the sequel, elements in

M(F ) are called systems and those in M(R) are called stable systems.

Example 9.1

• With R = RH∞ and F = R(s), the real-rational functions, the results in this section

can be spezialized to what we are familiar with.

• R = H∞, the Banach algebra of bounded holomorphic functions in C>. This e.g.

allows to handle systems with multiple delays.

• R equals the set of real-rational functions with all its poles in S ⊂ C ∪ {∞}. If

S = {∞}, then R is the set of all real polynomials which are not constant.

• R equals the set of n/d with n ∈ R[z1, . . . , zm] and with d ∈ R[z1, . . . , zm] \ {0}
having all zeros in Cn \ Dn where Dm = {(z1, . . . , zm) ∈ Cm : |zi| ≤ 1}. This allows

to handle stable multi-dimensional discrete-time systems.
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In order to develop the algebraic stabilization theory we need to make use of right and

left coprime factorizations of systems.

Definition 9.2 G ∈ M(F ) has a right factorization (over R) if there exist M,N ∈
M(R) such that M is square and invertible in M(F ) with G = NM−1. The factorization

is coprime if there exist X, Y ∈M(R) with XM + Y N = I.

Any G ∈ Fm×n defines a linear map G : F n → Fm. If G has a right factorization observe

that y = Gu iff y = Nξ and u = Mξ for some ξ ∈ F n. Hence we infer
 y

u

 : y = Gu, u ∈ Fm

 = im

 N

M

 .

This is a so-called image representation (of the graph) of the system G.

The advantage of stability of the factors emerges if considering “bounded input pairs”

(y, u) ∈ Rm × Rn with y = Gu only: all pairs (Nξ,Mξ) for ξ ∈ Rn clearly have this

property. Coprimeness implies that we do indeed reach all such pairs in this fashion.

Lemma 9.3 If G = NM−1 is a right coprime factorization (rcf) then
 y

u

 : u ∈ Rn, y = Gu ∈ Rm

 =


 N

M

 ξ : ξ ∈ Rm

 .

Proof. “⊃”: If y = Nξ and u = Mξ for ξ ∈ Rn, we infer y ∈ Rm, u ∈ Rn and ξ = M−1u

implying y = NM−1u.

“⊂”: If y = Gu = NM−1u for y ∈ Rm, u ∈ Rn, let ξ := M−1u to get y

u

 =

 N

M

 ξ.

Co-primeness just means that

 N

M

 has a left-inverse L =
(
X Y

)
∈M(R). We infer

Rn 3 L

 y

u

 =

 N

M

 ξ = ξ

and thus ξ ∈ Rn. (Hence ξ must be “bounded”).

It is clear how to define the dual notion of Definition 9.2.
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Definition 9.4 G ∈ M(F ) has a left factorization (over R) if there exist M,N ∈
M(R) such that M is square and invertible in M(F ) with G = M−1N . The factorization

is coprime if
(
M N

)
has a right-inverse in M(R).

Left-factorizations give rise to so-called kernel representations:
 y

u

 : y = Gu, u ∈ Fm

 = ker
(
M −N

)
.

Example 9.5 Let G be a transfer matrix with realization ẋ = Ax+Bu, y = Cx+Du.

1) If F renders A + BF Hurwitz then the pre-compensation u = Fx + ξ leads to a

right factorization: Indeed we obtain

ẋ = (A+BF )x+Bξ

y = (C +DF )x+Dξ

u = Fx+ Iξ.

This motivates to define N

M

 =


A+BF B

C +DF D

F I

 ∈ RH∞. (9.1)

Since I is invertible we get M−1 =

 A B

−F I

 and hence

NM−1 =


A+BF −BF B

0 A B

C +DF −DF D

 =


A BF B

0 A+BF 0

C −DF D

 =

 A B

C D

 = G.

The second equation follows by transforming the system with T =

 I 0

−I I

.

2) The factorization in 1) is however in general not coprime. To see this let G = 0 1

0 1

 = 1. Clearly F = −1 renders A−BF Hurwitz and

M−1 =

 0 1

1 1

 =
s+ 1

s
and N =

−1 1

−1 1

 =
s

s+ 1
.
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Now suppose that the factorization is coprime. Choose u = 1 ∈ RH∞ to get

y = Gu = 1 ∈ RH∞. By Lemma 9.3 there exists ξ ∈ RH∞ with 1 = u = Nξ = s
s+1

.

Hence ξ = s+1
s
6∈ RH∞.

3) If A is Hurwitz the factorization in 1) is coprime since X = M−1 ∈ RH∞ and

Y = 0 ∈ RH∞ implies XM + Y N = I.

4) If L renders A+ LC Hurwitz, we get analogously to 1) a left factorization as

(
M̃ Ñ

)
=

A+ LC L B + LD

C I D

 .
If in addition F renders A+BF Hurwitz, we will see in Section 9.3 that the above

left factorization and the right factorization (9.1) are coprime.

Definition 9.6 Q ∈ M(R) is called unimodular or a unit if Q−1 exists and satisfies

Q−1 ∈M(R).

The next result shows that rcf’s only differ by unimodular right factors.

Lemma 9.7 If N1M
−1
1 = N2M

−1
2 are two right coprime factorizations then there exists

a unimodular Q with M1 = M2Q and N1 = N2Q.

Proof. If N1M
−1
1 = N2M

−1
2 are two coprime factorizations, we inferM1

N1

Q =

M2

N2

 and

M2

N2

Q−1 =

M1

N1


for Q := M−1

1 M2. Left-multiplying with the stable left-inverses L1 and L2 corresponding

to the two factorizations implies

Q = L1

M2

N2

 ∈M(R) and Q−1 = L2

M1

N1

 ∈M(R).

Of course, dually, left coprime factorizations just differ by unimodular left factors.

In RH∞, exactly the proper and stable transfer matrices with a proper and stable inverse

are the units. Such transfer matrices are often called outer or minimum-phase.

In this context you should keep in mind the topological consequences of the small-gain

theorem. For example, if M ∈ RH∞ and ‖M‖∞ < 1 then I −M is a unit.
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Lemma 9.8 Let A,B ∈M(F ) and let AB be a unit.

• If A ∈M(R) and B is invertible then B−1 is stable.

• If B ∈M(R) and A is invertible then A−1 is stable

Proof. If AB = Q is a unit then Q−1A ∈ M(R) is a right inverse of B and since B is

invertible we get Q−1A = B−1. This shows B−1 ∈ M(R). The second statement follows

analogously.

9.2 Stabilizable Plants and Controller Parametrization

We now define stabilization of a system G by a controller K in (almost) complete analogy

to Section 3.

Definition 9.9 The system G ∈M(F ) is stabilized by K ∈M(F ) if I −K
−G I

−1

∈M(R).

Precisely it is meant that the inverse exists in M(F ) and is stable.

Let us assume that G admits the rcf G = NM−1. Then trivially I −K
−G I

−1

=

M 0

0 I

 M −K
−N I

−1

. (9.2)

Let us first see that stabilizing controllers are characterized by stability of the inverse on

the right.

Lemma 9.10 If G = NM−1 is a rcf then K stabilizes G iff M −K
−N I

−1

∈M(R). (9.3)

Proof. “If” is trivial by (9.2) since M ∈M(R) . For “only if”, XM + Y N = I impliesX Y

0 I

M 0

0 I

+

 0 −Y
0 0

 M −K
−N I

 = I.

Right-multiplying (9.3) shows by (9.2) that the inverse is stable.
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Theorem 9.11 G ∈M(F ) with the rcf NM−1 is stabilizable iff there exist X̃, Ỹ ∈M(R)

such that X̃M − Ỹ N = I and X̃ is invertible.

Proof. To show “only if”, let K stabilize G and define X̃ Ỹ

Ñ M̃

 :=

 M −K
−N I

−1

∈M(R). (9.4)

This implies  X̃ Ỹ

0 I

 M −K
−N I

 =

 I 0

−N I

 . (9.5)

Hence X̃M − Ỹ N = I and X̃ is invertible, since the r.h.s. is invertible. We also infer

K = X̃−1Ỹ and that this is a lcf.

For “if”, let X̃, Ỹ be as described. Then K := X̃−1Ỹ implies (9.5). Since the left factor

on the left is stable and the r.h.s. is a unit, Lemma 9.8 implies stability of

(
M −K
−N I

)
.

By Lemma 9.10 this implies that K stabilizes G.

The proof shows that stabilizing controllers admit a lcf X̃−1Ỹ with factors as in Theorem

9.11. Moreover if X̃, Ỹ are taken as in Theorem 9.11 then K = X̃−1Ỹ stabilizes G. Let’s

see what happens if G admits both a rcf and a lcf.

Lemma 9.12 Let G have both the rcf NM−1 and the lcf M̃−1Ñ and X̃, Ỹ ∈M(R) satisfy

X̃M − Ỹ N = I. Then X̃ Ỹ

Ñ M̃

 M

−N

 =

 I

0

 and

 X̃ Ỹ

Ñ M̃

 is a unit.

Proof. The equation is a consequence of M̃−1Ñ −NM−1 = 0. If we take stable X, Y

with M̃X − ÑY = I, we obtain X̃ Ỹ

Ñ M̃

 M −Y
−N X

 =

 I Ỹ X − X̃Y
0 I

 .

All these matrices are stable and the r.h.s. is obviously even a unit. Since the r.h.s is

invertible the same holds for both matrices on the l.h.s. By Lemma 9.8, all matrices are

units and the claim follows.

Note that since G has the rcf NM−1 there clearly always exist X̃ Ỹ ∈ M(R) with

X̃M − Ỹ N = I.
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Theorem 9.13 (Youla parametrization) Let G = NM−1 = M̃−1Ñ be a rcf and lcf of G

and choose X̃, Ỹ ∈M(R) with X̃M − Ỹ N = I. Then K stabilizes G iff

K = (X̃ +QÑ)−1(Ỹ +QM̃) (9.6)

for some Youla parameter Q ∈M(R) such that X̃ +QÑ is invertible.

For a controller described as in (9.6), Q enters affinely in I −K
−G I

−1

=

MX̃ MỸ

NX̃ NỸ +I

+

M

N

Q
(
Ñ M̃

)
. (9.7)

Note that (9.6) is a lcf of K. If K0 stabilizes G = NM−1, we have seen in Theorem

9.11 that it admits a lcf K0 = X̃−1Ỹ with stable X̃, Ỹ such that X̃M − Ỹ N = I and

X̃ is invertible. Therefore, the parametrization in Theorem 9.13 can be based on any

stabilizing controller K0 for G, and K0 is then reobtained back from (9.6) with Q = 0.

Proof. “⇐ ”: left-multiply the equation in Lemma 9.12 with

(
I Q

0 I

)
∈M(R) to get

 X̃ +QÑ Ỹ +QM̃

Ñ M̃

 M

−N

 =

 I

0

 .

Hence (9.6) is a lcf of K. Moreover we trivially infer X̃ +QÑ Ỹ +QM̃

0 I

 M −K
−N I

 =

 I 0

−N I

 .

By Lemma 9.8 and 9.10 we conclude that K stabilizes G. Right-multiplying the inverse

of the right-factor and using (9.2), the last equation clearly impliesM 0

N I

 X̃ +QÑ Ỹ +QM̃

0 I

 =

 I −K
−G I

−1

.

This is the claimed expression for the inverse.

“⇒”: Let K̃ be any stabilizing controller. Lemma 9.12 implies X̃ Ỹ

Ñ M̃

 M −K̃
−N I

 =

 I S

0 T


for some S and T . Moreover, since both matrices on the left-hand side are invertible

the right-hand side is invertible. By left-multiplying the inverse of the r.h.s., we get with
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Q := −ST−1 that X̃ +QÑ Ỹ +QM̃

T−1Ñ T−1M̃

 =

 M −K̃
−N I

−1

∈M(R). (9.8)

This implies that X̃ +QÑ and Ỹ +QM̃ are stable. As in the proof of Theorem 9.11, we

also infer that X̃ +QÑ is invertible and that we have K̃ = (X̃ +QÑ)−1(Ỹ +QM̃). (9.8)

even shows that this is a lcf.

Stability of Q itself follows from Lemma 9.12 and I Q

0 I

 X̃ Ỹ

Ñ M̃

 =

 X̃ +QÑ Ỹ +QM̃

Ñ M̃

 ∈M(R).

9.3 Double Bézout Identity for LTI Systems

If G ∈ R(s) is proper, the ingredients to parametrize all stabilizing controllers can be

obtained by state-space computations.

For this purpose we choose a stabilizable and detectable realization

G =

 A B

C D

 .
If F , L are taken with eig(A+BF ) ⊂ C<, eig(A+ LC) ⊂ C< then

K =

 (A+BF ) + L(C +DF ) −L
F 0


is an observer-based stabilizing controller for G. It is now not difficult to construct

matrices in RH∞ which satisfy the double Bézout identity X̃ −Ỹ
−Ñ M̃

M Y

N X

 = I (9.9)

and G = NM−1 = M̃−1Ñ (as well as K = X̃−1Ỹ = Y X−1).
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Introduce the abbreviations AF := A + BF , CF = C + DF as well as AL := A + LC,

BL := B + LD. Then

 I −K
−G I

−1

=


A 0 B 0

0 (A+BF ) + L(C +DF ) 0 −L
0 −F I 0

−C 0 −D I


−1

=

=


A BF B 0

−LC A+BF + LC −LD −L
0 F I 0

C DF D I

 =


AF BF B 0

0 AL −BL −L
F F I 0

CF DF D I

 =

=


AF B 0

F I 0

CF D I



AL −BL −L
F I 0

0 0 I

 =:

M 0

N I

 X̃ Ỹ

0 I

 .

In complete analogy but with another coordinate change:

 I −K
−G I

−1

=


A BF B 0

−LC A+BF + LC −LD −L
0 F I 0

C DF D I

 =

=


AL 0 BL L

−LC AF −LD −L
0 F I 0

C CF D I




AF −LC −LD −L
0 AL BL L

F 0 I 0

CF C D I

 =

=


AF 0 −L
F I 0

CF 0 I



AL BL L

0 I 0

C D I

 =:

 I Y

0 X

 I 0

Ñ M̃

 .

Note that, by their respective definitions, M , X̃ and M̃ , X have proper inverses.

Hence M

N

( X̃ Ỹ
)

+

 0 0

0 I

 =

 Y

X

( Ñ M̃
)

+

 I 0

0 0


which implies M

N

( X̃ Ỹ
)
−

 Y

X

( Ñ M̃
)

=

 I 0

0 −I
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and thus M Y

N X

 X̃ −Ỹ
−Ñ M̃

 = I.

We can also get to the equivalent version M −Y
−N X

 X̃ Ỹ

Ñ M̃

 = I.

Note again that, by the definition of M , N , Ñ , M̃ , X, Y , X̃ and Ỹ both matrices on the

l.h.s. have proper inverses. Hence (9.9) holds and in particular X̃M − Ỹ N = I. These

(or those with reversed order) are called double Bézout identities.

From  I −K
−G I

M 0

N I

 X̃ Ỹ

0 I

 = I

we infer (−GM +N)X̃ = 0 and thus

G = NM−1.

In a similar fashion one can extract K = X̃−1Ỹ . The double Bézout identity then implies

ÑM − M̃N = 0 and thus

G = M̃−1Ñ .

Hence the assumptions from Theorem 9.13 are satisfied and every controller KQ = (X̃ +

QÑ)−1(Ỹ +QM̃) with Q ∈M(R) such that X̃+QÑ is invertible, stabilizes G. Moreover

we regain the controller K by choosing Q = 0.

Observe that the realizations in the Bézout identity can be compactly expressed asM Y

N X

 =


AF B −L
F I 0

CF D I

 ,
 X̃ −Ỹ
−Ñ M̃

 =


AL −BL L

F I 0

C −D I

 . (9.10)

Moreover, we can just read off that

MX̃ MỸ

NX̃ NỸ +I

 =

M 0

N I

 X̃ Ỹ

0 I

 =


AF BF B 0

0 AL −BL −L
F F I 0

CF DF D I

 . (9.11)

We obtain explicit state-space formulas for all matrices in Theorem 9.13.

Note that these relations were obtained with hardly any computations, in contrast to

what you typically see in the literature. Variants (e.g. the extension to time-varying

state-space systems) are also easy to obtain.

233



9.4 Youla Parametrization for Generalized Plants

If P ∈M(F ) we consider again the generalized plant z

y

 = P

 w

u


and define the notion of stabilizing controllers as in Lecture 3.

Definition 9.14 K ∈M(F ) stabilizes P ∈M(F ) if I − P22K is invertible and if
P11 P12 0

0 I 0

P21 P22 I

+


P12

I

P22

K(I − P22K)−1
(
P21 P22 I

)
∈M(R).

To shorten the exposition, we assume that there exists a stabilizing controller for P , and

that K stabilizes P iff K stabilizes P22. The Springer-book by Francis (1987) develops

algebraic tests for F = R(s) and R = RH∞ (as we did in state-space) for these properties.

We can thus parametrize all stabilizing controllers for P , by using the parametrization

for G := P22 in Theorem 9.13. With the notations from there we get

P ? K = P11 + P12K(I − P22K)−1P21 =

= P11 + P12

(
I 0

) I −K
−P22 I

−1 0

I

P21 =

= P11 + P12[MỸ +MQM̃ ]P21

and hence obtain affine dependence of the controlled system on Q.

Our main goal is to obtain this parametrization for LTI generalized plants directly on the

basis of state-space descriptions.

Hypothesis 9.15 Let P be a transfer matrix with

P =


A B1 B2

C1 D11 D12

C2 D21 D22

 , (A,B2) stabilizable , (A,C2) detectable.

Choose F , L that render A+B2F and A+ LC2 Hurwitz and define

 T1 T2

T3 0

 =


A+B2F −B2F B1 B2

0 A+ LC2 B1 + LD21 0

C1 +D12F −D12F D11 D12

0 C2 D21 0
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(in which the lower right transfer matrix indeed vanishes) as well as

J =


A+B2F + LC2 + LD22F L −(B2 + LD22)

−F 0 I

C2 +D22F I −D22

 .

Theorem 9.16 Under Hypotheses 9.15, the LTI controller K stabilizes P iff there exists

some Q ∈ RH∞ with det(I +D22Q(∞)) 6= 0 such that

K = J ? Q.

The set of all closed-loop transfer matrices P ? K that are achievable by stabilizing con-

trollers is given as

{T1 + T2QT3 : Q ∈ RH∞, det(I +D22Q(∞)) 6= 0}.

In many (not all!) situations we can assume w.l.o.g. that D22 = 0 by pushing this direct

feedthrough term to the controller. Then the set of stabilized controlled system admits

the beautiful affine parametrization

T1 + T2QT3 with free Q ∈ RH∞.

Remark. The parametrization of all sub-optimal H∞ in Theorem 7.40 is different: The

parameter does not enter the controlled system affinely!

Proof. We can apply Theorem 9.13 with the matrices (9.10) and (9.11) taken for

G = P22. Note that (9.6) describes stabilizing controllers in M(R(s)), while we target at

a parametrization of all stabilizing controllers that are LTI.

If Q ∈ RH∞ and det(X̃(∞) +Q(∞)Ñ(∞)) = det(I +Q(∞)D22) 6= 0, then K in (9.6) is

obviously proper.

Conversely, if K is LTI and stabilizes P22, we can express it as (9.6) with Q ∈ RH∞ such

that X̃ +QÑ has a rational inverse. Then we get, as in the proof of Theorem 9.13, X̃ +QÑ Ỹ +QM̃

0 I

 M −K
−N I

 =

 I 0

−N I

 ,

which is equivalent to X̃ +QÑ Ỹ +QM̃

0 I

−1

=

 M −K
−N I

 I 0

N I

 .

235



Hence the inverse of X̃ + QÑ is actually proper, which in turn implies 0 6= det(X̃(∞) +

Q(∞)Ñ(∞)) = det(I +Q(∞)D22).

The rest of the proof are straightforward computations.

If K is as in (9.6) then u = Ky iff (X̃+QÑ)u = (Ỹ +QM̃)y iff X̃u− Ỹ y = Q(−Ñu+M̃y)

iff  ŷ

û

 =

 M̃ −Ñ
−Ỹ X̃

 y

u

 , û = Qŷ

iff (use (9.10))

 ŷ

û

 =


A+ LC2 L −B − LD22

C2 I −D22

F 0 I


 y

u

 , û = Qŷ

iff  ŷ

u

 =


A+ LC2 +BF + LD22F L −B − LD22

C2 +D22F I −D22

−F 0 I


 y

û

 , û = Qŷ.

Permuting the outputs shows u = (J ? Q)y and thus K = J ? Q.

The interconnection of 
ẋ

z

y

 =


A B1 B2

C1 D11 D12

C2 D21 D22



x

w

u


and 

ξ̇

u

ŷ

 =


A+B2F+LC2+LD22F L −(B2 + LD22)

−F 0 I

C2 +D22F I −D22



ξ

y

û


can be obtained with the feedback u = ũ from

ẋ

ξ̇

z

ŷ

ũ


=



A 0 B1 0 B2

LC2 A+B2F+LC2+LD22F LD21−(B2+LD22)LD22

C1 0 D11 0 D12

C2 C2+D22F D21 −D22 D22

0 −F 0 I 0





x

ξ

w

û

u


.
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Without tedious computations, the lower LFT clearly equals

 z

ŷ

 =


A −B2F B1 B2

LC2 A+B2F + LC2 LD21 −B2

C1 −D12F D11 D12

C2 C2 D21 0


 w

û



which leads with a state-coordinate change to

 z

ŷ

 =


A+B2F −B2F B1 B2

0 A+ LC2 B1 + LD21 0

C1 +D12F −D12F D11 D12

0 C2 D21 0


 w

û

 .

With T1, T2, T3 as defined above this is z

ŷ

 =

 T1 T2

T3 0

 w

û

 .

This indeed implies P ? J ? Q = P ? K = T1 + T2QT3 as claimed.

Remarks

Note that the representations for T1 and T2 simplify to

T2 =

 A+B2F B2

C1 +D12F D12

 and T3 =

A+ LC2 B1 + LD21

C2 D21

 .
Also T1 can be expressed in the following ways:
A+B2F −B2F B1

0 A+LC2 B1+LD21

C1+D12F −D12F D11

=


A+B2F −LC2 −LD21

0 A+LC2 B1+LD21

C1+D12F C1 D11

=

= T2

A+ LC2 B1 + LD21

−F 0

+

 A+B2F B1

C1 +D21F D11

 =

=

 A+B2F −L
C1 +D12F 0

T3 +

A+ LC2 B1 + LD21

C1 D11

 .
Applications

There are very many ways to exploit the Youla parametrization:
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• Convex optimization for optimal feedback controller synthesis.

• Switching or interpolating controllers (also on-line for time-varying transitions) with

guarantees for stability and performance.

• Designing infinite dimensional controllers for finite-dimensional plants, such as delay

system and synthesis of Smith predictors.

• Reduction of control to functional analytic approximation problems for infinite di-

mensional plants or more general classes of systems.

• Solution of math problems by control techniques (Nehari, Nevanlinna-Pick,

Carathéodory-Fejér, ...)

Of course, employing Youla-techniques is often not straightforward.

Exercises

1) Consider the standard tracking configuration given in the figure below with a to-

be-controlled stable SISO system g and a to-be-designed controller k

gk+
u y

−
r e

a) Compute the transfer functions Tur and Tyr from r to u and from r to y.

b) The set V of all strictly proper rational functions without pole on the imaginary

axis is a vector space. Argue that the 2-norm of the frequency response of some

strictly proper f defined as

‖f‖2 :=

√
1

2π

∫ ∞
−∞
|f(iω)|2dω

comes from an inner product on V .

c) Show that the subspace of all strictly proper and stable rational functions,

denoted as RH2, is orthogonal to the subspace of all strictly proper and anti

stable rational functions, denoted as RH⊥2 and argue that any strictly proper

rational function f without pole on the imaginary axis can be uniquely decom-

posed into the sum of fs ∈ RH2 and fu ∈ RH⊥2 as f = fs + fu.

d) Consider now the problem given in the figure below, which is called a model

matching problem: Given stable g, m (m strictly proper), design a strictly

proper controller k which internally stabilizes the closed loop system and min-

imizes the 2-norm of the transfer function Tzr from r to z, which is called the

matching error.

238



gk+ +
yue

− z

m

−

r

Show that this problem can be reduced to

inf
q∈RH2

‖gq −m‖2. (9.12)

e) Give the optimal solution of the reduced and original problem, if g−1 is sta-

ble and proper, and argue that there exists almost optimal solutions qε, kε
dependinf on some positive ε if g−1 is stable but not propber.

f) Suppose that g is stable and has no zeros on the imaginary axis and at infinity.

It is a fact that there exists a factorization g = gigo, where go and g−1
o are

proper and stable and gi has magnitude 1 on the whole imaginary axis (such

as e.g. s−α0

s+α0
for α0 > 0). Use this fact to reduce the problem (9.12) to the

equivalent problem

inf
x∈RH2

‖gix−m‖2. (9.13)

g) Determine the transfer function r such that the optimization problem (9.13)

can be transformed to the equivalent problem

inf
x∈RH2

‖x− r‖2.

h) Use again the fact thet r can be decomposed into the sum of a strictly proper

stable rs and a strictly proper anti stable ru to design the optimal controller

kopt and to compute infx∈RH2 ‖x− r‖2.

1) Suppose we have the structured system y1

y2

 = P

 u1

u2

 =

 P11 0

P21 P22

 u1

u2


with P22 being strictly proper. The aim of this exercise is that the set of all (lower)

triangular stabilizing controllers K can be parameterized as

K = Y11 + Y12Q(I − Y22Q)−1Y21 with Q =

Q11 0

Q21 Q22

 ∈ RH∞
for some (lower) triangular Y11, Y12, Y21 and Y22.
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a) Suppose P is stable and let K stabilize P . Show that Q = K(I − PK)−1 is a

Youla parameter for K. Moreover show that Q is triangular iff K is triangular.

b) Now choose a minimal realization

P =

 P11 0

P21 P22

 =


A B1 B2

C1 D11 0

C2 D21 D22

 .
Show that due to C1(sI − A)−1B2 = 0 the controllable subspace of (A,B2) is

contained in the unobservable subspace of (A,C1). Show that we can hence

find a state coordinate change such that

 A B2

C1 0

 =


A11 0 0

A21 A22 B22

C11 0 0

 .
c) By b) we can realize P as

P =


A11 0 B11 0

A21 A22 B21 B22

C11 0 D11 0

C21 C22 D21 D22

 and define K =


AK11 0 BK

11 0

AK21 A
K
22 BK

21 BK
22

CK
11 0 DK

11 0

CK
21 CK

22 DK
21 D

K
22

 .

Show that K stabilizes P iff (A11, B11), (A22, B22) are stabilizable and

(A11, C11), (A22, C22) are detectable.

d) By c) we can find for P with minimal realization as in b) triangular F and L

such that A+BF and A+ LC are Hurwitz. Define

Y =

 Y11 Y12

Y21 Y22

 =


A+BF L −B
−F 0 I

C I 0

 .
Show that all stabilizing controllers are given by K = Y ? Q with Q ∈ RH∞.

e) Show that if Q ∈ RH∞ is triangular then K = Y ?Q is a triangular stabilizing

controller for P and show that if K is a triangular stabilizing controller for

P then Q = (I + ZY22)−1Z with Z = Y −1
12 (K − Y11)Y −1

21 is the corresponding

Youla parameter and is triangular.
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10 A Brief Summary and Outlook

We have seen that the generalized plant framework is very general and versatile to

capture a multitude of interconnection structures. This concept extends to much larger

classes of uncertainties, and it can be also generalized to some extent to non-linear systems

where it looses, however, its generality.

The structured singular value offered us computable tests for robust stability and

robust performance against structured linear time-invariant uncertainties. It is possible

to include parametric uncertainties which are, however, computationally more delicate.

Nominal controller synthesis, formulated as reducing the H∞-norm of the perfor-

mance channel, found a very satisfactory and complete solution in the celebrated Riccati

approach to H∞-control.

Robust controller synthesis is, from a theoretical point of view and despite intensive

efforts, still in its infancy. The scaling/controller iteration and variations thereof form - to

date - the only possibility to design robustly peforming controllers. It offers no guarantee

of optimality, but it has proven useful in practice.

These notes were solely concerned with LTI controller analysis/synthesis, with LTI un-

certainties, and with H∞-norm bounds as performance specifications. Linear Matrix

Inequalities (LMIs) techniques offer the possibilities for extensions in the following direc-

tions:

• There is a much greater flexibility in choosing the performance specification, such as

taking into account H2-norm constraints (stochastic noise reduction), positive real

conditions and amplitude constraints.

• The LMI framework allows the extension to multi-objective design in which the

controller is built to guarantee various performance specs on different channels.

• It is possible to include time-varying parametric, non-linear static and non-linear

dynamic uncertainties in the robustness tests. The uncertainties will be described in

this framework by Integral Quadratic Constraints (IQCs) which are generalizations

of the scalings techniques developed in these notes.

• Finally, LMI techniques allow to perform a systematic design of gain-scheduling

controller to attack certain class of non-linear control problems.
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A Bisection

At several places we encountered the problem to compute a critical value γcritical, such

as in computing the upper bound for the SSV or the optimal value in the H∞ problem.

However, the algorithms we have developed only allowed to test whether a given number γ

satisfies γcritical < γ or not. How can we compute γcritical just by exploiting the possibility

to perform such a test?

The most simple technique is bisection. Fix a level of accuracy ε > 0.

• Start with an interval [a1, b1] such that a1 ≤ γcritical ≤ b1.

• Suppose one has constructed [aj, bj] with aj ≤ γcritical ≤ bj.

Then one tests whether

γcritical <
aj + bj

2
.

We assume that this test can be performed and leads to either yes or no as an

answer.

If the answer is yes, set [aj+1, bj+1] = [aj,
aj+bj

2
].

If the answer is no, set [aj+1, bj+1] = [
aj+bj

2
, bj].

• If bj+1 − aj+1 > ε then proceed with the second step for j replaced by j + 1.

If bj+1 − aj+1 ≤ ε then stop with aj+1 ≤ γcritical ≤ aj+1 + ε.

Since the length of [aj+1, bj+1] is just half the length of [aj, bj], there clearly exists an index

for which the length of the interval is smaller than ε. Hence the algorithm always stops.

After the algorithm has stopped, we have calculated γcritical up to the absolute accuracy

ε.

B Proof of Theorem 7.1

Note that

ATX +XA+XRX +Q = (−A)T (−X) + (−X)(−A) + (−X)R(−X) +Q

and

A+RX = −((−A) +R(−X)).

Hence we can apply Theorem 7.2 to the ARE/ARI

(−A)TY + Y (−A) + Y RY +Q = 0, (−A)TY + Y (−A) + Y RY +Q < 0

if (−A,R) is stabilizable. This leads to the following result.
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Corollary B.1 Suppose that all hypothesis in Theorem 7.2 hold true but that (−A,R) is

only stabilizable. Then the following statements are equivalent:

(a) H has no eigenvalues on the imaginary axis.

(b) ATX +XA+XRX +Q = 0 has a (unique) anti-stabilizing solution X+.

(c) ATX +XA+XRX +Q < 0 has a symmetric solution X.

If one and hence all of these conditions are satisfied, then

any solution X of the ARE or ARI satisfies X ≤ X+.

Combining this corollary with Theorem 7.2 implies Theorem 7.1.

C Proof of Theorem 7.2

Let us first show the inequality X− ≤ X if X− is the stabilizing solution of the ARE

(existence assumed) and X is any other solution of the ARE or ARI.

The key is the easily proved identity

(ATZ + ZA+ ZRZ +Q)− (ATY + Y A+ Y RY +Q) =

= (A+RY )T (Z − Y ) + (Z − Y )(A+RY ) + (Z − Y )R(Z − Y ). (C.1)

If we set Z = X and Y = X−, and if we exploit R ≥ 0, we obtain

0 ≥ ATX +XA+XRX +Q ≥ (A+RX−)T (X −X−) + (X −X−)(A+RX−).

Since A+RX− is stable, we infer that X −X− ≥ 0.

Minimality of X− implies that there is at most one stabilizing solution. In fact, if X1 and

X2 are two stabilizing solutions of the ARE, we can infer X1 ≤ X2 (since X2 is smallest)

and X2 ≤ X1 (since X1 is smallest); this leads to X1 = X2.

Before we can start the proof, we have to establish an important property of the Hamil-

tonian matrix H. First we observe that the particular structure of H can be expressed as

follows. Defining

J :=

 0 −I
I 0

 ,

the matrix JH is symmetric! It is a pretty immediate consequence of this fact that

the eigenvalues of any Hamiltonian matrix are located symmetrically with respect to the

imaginary axis in the complex plane.
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Lemma C.1 Suppose H is a matrix such that JH is symmetric. If H has k eigenvalues

in C< then it has also k eigenvalues in C> (counted with their algebraic multiplicity) and

vice versa.

Proof. By JH = (JH)T = HTJT = −HTJ we infer JHJ−1 = −HT . Hence H and

−HT are similar and, thus, their characteristic polynomials are identical: det(H − sI) =

det(−HT − sI). Since H has even size, we infer det(−HT − sI) = det(HT + sI) =

det(H + sI) = det(H − (−s)I). The resulting equation det(H − sI) = det(H − (−s)I) is

all what we need: If λ ∈ C< is a zero of det(H − sI) (of multiplicity k), −λ is a zero (of

multiplicity k) of the same polynomial.

Now we can start the stepwise proof of Theorem 7.2.

Proof of (a) ⇒ (b). Since H has no eigenvalues in C=, it has n eigenvalues in C< and in

C> respectively (Lemma C.1). Then there exists a unitary matrix T with

T ∗HT =

M M12

0 M22


where M of size n×n is stable and M22 of size n×n is antistable. Let us denote the first

n columns of T by Z to infer

HZ = ZM.

Now partition Z =

 U

V

 with two square blocks U and V of size n. The difficult step

is now to prove that U is invertible. Then it is not so hard to see that X− := V U−1 is

indeed a real Hermitian stabilizing solution of the ARE.

We proceed in several steps. We start by showing

V ∗U = U∗V.

Indeed, HZ = ZM implies Z∗JHZ = Z∗JZM . Since the left-hand side is symmetric,

so is the right-hand side. This implies (Z∗JZ)M = M∗(Z∗J∗Z) = −M∗(Z∗JZ) by

J∗ = −J . Since M is stable, we infer from M∗(Z∗JZ) + (Z∗JZ)M = 0 that Z∗JZ = 04

what is indeed nothing but V ∗U = U∗V . Next we show that

Ux = 0⇒ RV x = 0⇒ UMx = 0.

Indeed, Ux = 0 and the first row of HZ = ZM imply UMx = (AU +RV )x = RV x and

thus x∗V ∗UMx = x∗V ∗RV x. Since x∗V ∗U = x∗U∗V = 0, the left-hand side and hence

4Recall that AX −XB = 0 has no nonzero solution iff A and B have no eigenvalues in common.
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the right-hand side vanish. By R ≥ 0, we conclude RV x = 0. From UMx = RV x we

infer UMx = 0. Now we can establish that

U is invertible.

It suffices to prove ker(U) = {0}. Let us assume that ker(U) is nontrivial. We have

just shown x ∈ ker(U) ⇒ Ux = 0 ⇒ UMx = 0 ⇒ Mx ∈ ker(U). Hence ker(U) is a

nonzero M -invariant subspace. Therefore, there exists an eigenvector of M in ker(U),

i.e., an x 6= 0 with Mx = λx and Ux = 0. Now the second row of HZ = ZM yields

(−QU − ATV )x = VMx and thus ATV x = −λV x. Since Ux = 0, we have RV x = 0

(second step) or RTV x = 0. Since (A,R) is stabilizable and Re(−λ) > 0, we infer V x = 0.

Since Ux = 0, this implies Zx = 0 and hence x = 0 because Z has full column rank.

However, this contradicts the choice of x as a nonzero vector.

Since U is nonsingular we can certainly define

X− := V U−1.

X− is Hermitian since V ∗U = U∗V implies U−∗V ∗ = V U−1 and hence (V U−1)∗ = V U−1.

X− is a stabilizing solution of the ARE. Indeed, from HZ = ZM we infer HZU−1 =

ZMU−1 = ZU−1(UMU−1). This leads to

H

 I

X−

 =

 I

X−

 (UMU−1).

The first row of this identity shows A + RX− = UMU−1 such that A + RX− is stable.

The second row reads as −Q−ATX− = X−(A+RX−) what is nothing but the fact that

X− satisfies the ARE.

So far, X− might be complex. Since the data matrices are real, we have

ATX +XA+XRX +Q = AT X̄ + X̄A+ X̄RX̄ +Q, A+RX = A+RX̄.

Consequently, with X−, also its complex conjugate X̄− is a stabilizing solution of the

ARE. Since we have already shown that there is at most one such solution, we infer

X = X̄− such that X− must be necessarily real.

Proof of (b) ⇒ (a). Just evaluating both sides gives

H

 I 0

X− I

 =

 I 0

X− I

A+RX− R

0 −(A+RX−)T

 .

Hence

H is similar to

A+RX− R

0 −(A+RX−)T

 . (C.2)
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Therefore, any eigenvalue of H is an eigenvalue of A + RX− or of −(A + RX−)T such

that H cannot have eigenvalues in C=.

Proof of (a) ⇒ (c). We perturb Q to Q + εI and denote the corresponding Hamiltonian

as Hε. Since the eigenvalues of a matrix depend continuously on its coefficients, Hε has

no eigenvalues in C= for all small ε > 0. By (b), there exists a symmetric X with

ATX +XA+XRX +Q+ εI = 0 what implies (c).

Proof of (c) ⇒ (b): Suppose Y satisfies the strict ARI and define P := ATY + Y A +

Y RY +Q < 0. If we can establish that

(A+RY )T∆ + ∆(A+RY ) + ∆R∆ + P = 0 (C.3)

has a stabilizing solution ∆, we are done: Due to (C.1), X = Y + ∆ satisfies the ARE

and renders A+RX = (A+RY ) +R∆ stable. The existence of a stabilizing solution of

(C.3) is assured as follows: Clearly, (A + RY,R) is stabilizable and (A,P ) is observable

(due to P < 0). Due to R ≥ 0 and P < 0, Lemma 7.3 is applicable and we can conclude

that the Hamiltonian matrix corresponding to (C.3) does not have any eigenvalues on the

imaginary axis. Hence we can apply the already proved implication (a) ⇒ (b) to infer

that (C.3) has a stabilizing solution.
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